Закрытая система теплоснабжения что это такое
различия схем на примерах фото и видео
Содержание:
4. Экономия ресурсовБлагодаря теплоснабжению дома и квартиры обеспечиваются теплом, а соответственно в них комфортно находиться. Одновременно с обогревом жилые строения, промышленные объекты, общественные здания получают горячее водоснабжение для бытовых или производственных потребностей. В зависимости от способа доставки теплоносителя на сегодняшний день существуют открытые и закрытые системы теплоснабжения.
Одновременно схемы обустройства систем теплообеспечения бывают:
- централизованными - ими обслуживаются целые жилые районы или населенные пункты;
- местными – для обогрева одного строения или группы зданий.
Открытые системы теплоснабжения
В открытой системе вода подается постоянно из теплоцентрали и это компенсирует ее расход даже при условии полного разбора. В советское время по такому принципу функционировало примерно 50% теплосетей, что объяснялось экономичностью и минимизацией затрат на обогрев и ГВС.
Но открытая система теплоснабжения имеет ряд недостатков. Чистота воды в трубопроводах не соответствует требованиям санитарно-гигиенических норм. Поскольку жидкость перемещается по трубам значительной протяженности, она становится другого цвета и приобретает неприятные запахи. Часто при взятии проб воды работниками санэпидемстанций из таких трубопроводов в ней обнаруживают вредоносные бактерии.
Открытая схема теплоснабжения функционирует на основе законов термодинамики: горячая вода поднимается вверх, благодаря чему на выходе котла создается высокое давление, а на входе в теплогенератор - небольшое разряжение. Далее жидкость направляется из зоны повышенного давления в зону более низкого и в результате осуществляется естественная циркуляция теплоносителя.Желание очистить поступающую по открытой системе жидкость приводит к снижению экономичности теплоснабжения. Даже самые современные способы устранения загрязнений воды не способны преодолеть этот значительный недостаток. Поскольку протяженность сетей немалая, возрастают расходы, а эффективность очистки остается прежней.
Будучи в нагретом состоянии, вода имеет свойство увеличиваться в объеме, поэтому для данного типа отопительной системы требуется наличие открытого расширительного бака, такого как на фото – это устройство абсолютно негерметично и напрямую соединяется с атмосферой. Поэтому такое обеспечение теплом получило соответствующее название - открытая водяная система теплоснабжения.
В открытом типе вода нагревается до 65 градусов и потом подается к кранам водоразбора, откуда поступает к потребителям. Подобный вариант теплоснабжения позволяет пользоваться дешевыми смесителями вместо дорого теплообменного оборудования. Так как разбор подогретой воды неравномерен, по этой причине линии подачи конечному потребителю рассчитывают с учетом максимального потребления.
Закрытые системы теплоснабжения
Представляет собой закрытая система теплоснабжения конструкцию, в которой теплоноситель, циркулирующий в трубопроводе, используется только для обогрева и вода из тепловой сети не отбирается на горячее водоснабжение.
В закрытом варианте обеспечения обогрева помещений подача тепла регулируется централизованно, а количество жидкости в системе остается неизменной. Расход тепловой энергии зависит от температуры циркулирующего по трубам и радиаторам теплоносителя.
В системах теплоснабжения закрытого типа, как правило, используются тепловые пункты, в которые горячая вода поступает от поставщика теплоэнергии, например ТЭЦ. Далее температура теплоносителя доводится до нужных параметров для теплообеспечения и горячего водоснабжения и направляется потребителям.
Когда функционирует закрытая система теплоснабжения – схема поставки тепла обеспечивает высокое качество ГВС и энергосберегающий эффект. Ее главный недостаток - сложность водоподготовки по причине удаленности одного теплового пункта от другого.
Зависимая и независимая системы теплоснабжения
И открытая и закрытая система теплоснабжения могут подсоединяться двумя способами – зависимым и независимым.
Зависимый способ подключения открытой системы означает подсоединение через элеваторы и насосы. В независимом типе горячая вода поступает через теплообменник.
Экономия ресурсов
Зависимый тип закрытой системы предусматривает, что вода поступает к потребителю, минуя тепловые пункты. В данном случае нет необходимости устанавливать циркуляционные насосы, приборы для регулировки теплообмена и автоматического контроля. Но есть и минус – невозможность регулировать температурный режим в системе.
Независимые закрытые системы теплоснабжения экономят энергоресурсы в размере 10-40 % в год. Они позволяют регулировать количество поставляемого тепла, температуру теплоносителя и улучшать его качественные характеристики, что приводит к надежной работе нагревательного оборудования.
Пример открытой системы теплоснабжения на видео:
Открытая и закрытая система теплоснабжения
Теплоснабжением называют снабжение теплом жилых, общественных и промышленных зданий и сооружений для обеспечения как коммунально-бытовых (отопление, вентиляция, горячее водоснабжение), так и технологических нужд потребителей.
Теплоснабжение бывает местным и централизованным. Система централизованного теплоснабжения обслуживает жилые или промышленные районы, а местного - одно или несколько зданий. В России наибольшее значение приобрело централизованное теплоснабжение.
В зависимости от способа присоединения системы горячего водоснабжения к системе теплоснабжения, последнее делится на открытое и закрытое.
Открытые системы теплоснабжения
Открытые системы теплоснабжения характеризуются тем, что водоразбор горячей воды для нужд потребителя происходит непосредственно из теплосети, причем, он может быть как полным, так и частичным. Остающаяся в системе горячая вода продолжает использоваться для отопления или вентиляции.
Расход воды в теплосети при этом способе компенсируется дополнительным количеством воды, которая подается в тепловую сеть. Преимущество открытой системы теплоснабжения заключается в ее экономической выгоде. Во время советского периода почти 50 % всех систем теплоснабжения были открытого типа.
В то же время, нельзя сбрасывать со счетов то, что такая система теплоснабжения имеет и ряд существенных недостатков. Прежде всего, это невысокое санитарно-гигиеническое качество воды. Отопительные приборы и трубопроводные сети придают воде специфический запах и цветность, появляются различные посторонние примеси, а также, бактерии. Для очистки воды в открытой системе обычно применяются различные методы, но их использование снижает экономический эффект.
Открытая система теплоснабжения по способу присоединения к теплосетям может быть зависимой, т.е. соединяться через элеваторы и насосы, или присоединяться по независимой схеме - через теплообменники. Остановимся на этом подробней.
Зависимые системы теплоснабжения
Зависимые системы теплоснабжения, это такие системы, в которых теплоноситель по трубопроводу попадает сразу в систему отопления потребителя. Здесь нет никаких промежуточных теплообменников, тепловых пунктов и гидравлической изоляции. Несомненно, что такая схема присоединения понятна и конструктивно проста. Она несложна в обслуживании и не требует никакого дополнительного оборудования, например, циркуляционных насосов, автоматических приборов регулирования и контроля, теплообменников и т.д. Чаще всего, эта система привлекает своей, на первый взгляд, экономичностью.
Однако она имеет существенный недостаток, а именно, невозможность отрегулировать теплоснабжение в начале и конце отопительного сезона, когда появляется избыток тепла. Это не только влияет на комфорт потребителя, но и приводит к теплопотерям, что снижает ее кажущуюся первоначально экономичность.
Когда становятся актуальными вопросы энергосбережения, разрабатываются и активно внедряются методики перехода зависимой системы теплоснабжения к независимой, это позволяет экономию тепла порядка на 10-40% в год.
Независимые системы теплоснабжения
Независимыми системами теплоснабжения называют системы, в которых отопительное оборудование потребителей изолировано гидравлически от производителя тепла, а для теплоснабжения потребителей используют дополнительные теплообменники центральных тепловых пунктов.
Независимая система теплоснабжения имеет целый ряд неоспоримых преимуществ. Это:
- возможность регулирования количества тепла, доставленного к потребителю при помощи регулирования вторичного теплоносителя;
- ее более высокая надежность;
- энергосберегающий эффект, при такой системе экономия тепла составляет 10-40 %;
- появляется возможность улучшения эксплуатационных и технических качеств теплоносителя, что существенно повышает защиту котельных установок от загрязнений.
Благодаря этим преимуществам, независимые системы теплоснабжения стали активно применяться в крупных городах, где тепловые сети достаточно протяженны и существует большой разброс тепловых нагрузок.
В настоящее время разработаны и успешно внедряются технологии реконструкции зависимых систем в независимые. Несмотря на значительные капиталовложения это, в конечном итоге, дает свой эффект. Естественно, что независимая открытая система - дороже, однако она значительно улучшает качество воды по сравнению с зависимой.
Закрытые системы теплоснабжения
Закрытые системы теплоснабжения – это системы, в которых вода, циркулирующая в трубопроводе, используется только как теплоноситель, и не забирается из теплосистемы для нужд обеспечения горячего водоснабжения. При такой схеме система полностью закрыта от окружающей среды.
Конечно же, утечки теплоносителя возможны и при такой системе, однако, они весьма незначительны и легко устраняются, а потери воды без проблем автоматически восполняются с помощью регулятора подпитки.
Подача тепла в закрытой системе теплоснабжения регулируется централизованным способом, при этом количество теплоносителя, т.е. воды, остается в системе неизменным. Расход тепла в системе зависит от температуры циркулирующего теплоносителя.
Как правило, в закрытых системах теплоснабжения используются возможности тепловых пунктов. На них, от поставщика теплоэнергии, например, ТЭЦ, поступает теплоноситель, а его температура регулируется до необходимой величины для нужд отопления и горячего водоснабжения районными центральными тепловыми пунктами, которые и распределяют ее по потребителям.
Приемущества и недостатки закрытой системы теплоснабжения
Преимущества закрытой системы теплоснабжения заключаются в высоком качестве горячего водоснабжения. Кроме того, она дает энергосберегающий эффект.
Ее, практически, единственный недостаток в сложности водоподготовки из-за удаленности тепловых пунктов друг от друга.
открытая или закрытая, что это такое, разница
При помощи теплоснабжения отапливаются практически все частные дома и квартиры. Возникает принцип естественной циркуляции тепла, благодаря чему в помещениях создается теплая и комфортная атмосфера. Как и отопление, все промышленные и жилые сооружения имеют подключение к горячему водоснабжению — специальной системе подачи нагретой воды.
Согласно методу транзита теплового носителя в помещение, имеет место деление на открытые системы отопления и закрытые аналоги теплоснабжения. Каждая со своими принципами работы и способами циркуляции. От пользователя требуется знать основные отличия систем, плюсы и минусы каждой из них, а также важные характеристики и качества для оптимального выбора, например, в частный дом.
Содержание статьи:
Что это такое?
Тепловое обеспечение домов и квартир делятся на два типа:
- местные системы обеспечения, которые подразумевают поставку тепла в одно сооружение или небольшую группу;
- централизованная поставка теплового снабжения, которая применяется для целых поселков, районов.
Важно! Для обогрева квартир применяется отопление открытого или закрытого типов.
Каждый из них обладает некоторыми отличиями. Например, открытый тип заключается в подаче нагретого теплоносителя для пользователей непосредственно из тепловой сети. Каждый из пользователей забирает часть теплового носителя или его целиком. Закрытый тип подразумевает замкнутый контур, где нагрев теплоносителя и его потребление проходит в пределах одной системы.
Открытая
В представленной схеме теплоноситель (вода) регулярно подается из тепловой централи, что компенсирует ее потребление и расход даже в случае полного разбора. В отечественных советских условиях согласно такой схемы работало около 50 процентов тепловых сетей, что предоставляло наибольшую экономию и снижение расходов на обогрев и горячее водоснабжение.
Однако, несмотря на экономические преимущества и другие сильные стороны, открытая схема обладает некоторыми существенными недостатками. Чистота теплоносителя в трубах не проходит согласно санитарно-гигиенических показателей. Вода проходит в системе с довольно большой продолжительностью, в связи с чем сильно меняет цвет и приобретает неприятный запах. Во время тестирования качества воды сотрудники санитарно-эпидемиологической станции находят вредные бактерии в трубопроводах.
Обратите внимание! Чтобы прочистить транспортируемую воду в открытой системе, необходимо снизить эффективность и экономичность снабжения тепловой энергией.
Несмотря на обилие наиболее технологичных методов очистки теплоносителя, представленный минус системы устранить практически невозможно. В связи с большой длиной сети отопления, растет стоимость, однако качество очистки не меняется.
Открытая технология работает на основе классических термодинамических законов. Нагретый теплоноситель поднимается вверх, в связи с чем на выходе нагревателя появляется высокое давление. При этом на входе в тепловой генератор образуется невысокое разряжение. Последовательно вода перемещается из зоны с увеличенным давлением в участок с пониженным. Это обеспечивает естественную циркуляцию воды, в отличие от закрытой системы, где циркуляция зачастую принудительная.
Находясь в нагретом состоянии, вода постоянно увеличивает собственный объем. Для указанной системы необходима обязательная установка расширительного бака. Такое изделие не обладает полной герметичностью и контактирует с окружающей атмосферой. Именно по этой причине теплообеспечение такого типа носит название открытой системы водяного теплового снабжения.
При указанной технологии, вода проходит нагрев до 65 градусов по Цельсию и транзитом поступает в водоразборные краны. В дальнейшем она перемещается непосредственно к потребителям. Такая технологическая особенность позволяет применять стандартные недорогие смесители и обойтись без дорогостоящих изделий теплового обмена. Поскольку разбор нагретого теплоносителя происходит неравномерно, то линии транзита для конечных пользователей рассчитывают всегда с наиболее возможным потреблением.
Закрытая
Представленная система получила максимальное распространение в условиях частных домов или многоэтажек с индивидуальными котлами и обогревом. Такая технология заключается в конструкции, где вода, проходящая по трубопроводу, применяется только для отопления или нагрева, а вода из тепловой сети не расходуется на горячее водоснабжение.
Что такое закрытая система отопления, и почему она носит такое название, будет понятно, если рассмотреть ее схему на рисунке.
Все компоненты системы отопления не входят в контакт с окружающей атмосферой и наглухо закрыты. Схема обладает небольшой потерей воды, однако они автоматически восполняются с помощью регулятора подпитки.
Закрытая технология обеспечения нагрева теплоносителя для обогрева может быть отрегулирована централизованно. При этом количество воды в системе не меняется. Потребление тепловой энергии зависит от температуры нагрева проходящего по трубам теплового носителя.
Представленные системы с закрытой технологией функционируют с применением тепловых пунктов, в которые нагретая воды проходит от поставщика тепловой энергии. Им может выступать тепловая электрическая централь. После этого, температура воды приводится к необходимым параметрам для обеспечения теплом и транспортируется конечным пользователям.
При работе закрытой системы теплового снабжения технология предоставляет хорошее качество горячей воды и эффективность в направлении энергосбережения. Однако есть и негативный момент, который заключается в высокой сложности подготовки воды, в связи с большой продолжительностью одной тепловой точки от другой.
Плюсы и минусы
Открытая система поставки тепла по достоинствам и недостаткам отличается только чистотой воды. Первая имеет достаточно загрязненную воду и теплоноситель, в которых могут даже образовываться вредные бактерии. Поэтому, плюсы и минусы необходимо рассмотреть конкретно для централизованной системы или децентрализованной.
Автономная
Положительные качества систем в автономном отоплении:
- возможность включения и отключения отопления в любое удобное время;
- регулировка температуры лично пользователем на основании личных предпочтений;
- хорошая экономия средств на коммунальных платежах;
- при помощи котла подается отопление и горячая вода;
Недостатки:
- необходимо приобрести квартиру или дом, подключенные к автономной системе, или получать специальное разрешение, что займет много времени и сил;
- ответственность за безопасное функционирование котла лежит только на пользователе;
- оборудование имеет высокую цену. Кроме этого, потребуется провести небольшой ремонт и монтаж оборудования, что тоже имеет довольно высокую стоимость;
- чтобы котел работал качественно и эффективно, следует соблюдать множество параметров, например: давление газа, напряжение в сети, чистота воды. Очень часто необходимо будет наличие источника бесперебойного питания, когда имеют место проблемы с электроэнергией.
Для централизованной системы характерны такие положительные качества:
- этот вид поставки тепла обходится дешевле на начальном этапе, поскольку не требуется покупка и монтаж специального оборудования;
- нет необходимости в выполнении регулярных настроек и регулировок;
- пользователь не несет ответственности за функционирование приборов, что обеспечивает полную безопасность;
- при отопительном сезоне обеспечивается непрерывность подачи тепла.
Негативные свойства:
- требуется сооружение тепловых сетей;
- присутствуют лишние тепловые потери в сетях, которые достигают 20 процентов;
- стоимость подачи тепла повышенная, что сказывается на коммунальных услугах;
- отопительный сезон длится определенное время, у пользователя нет возможности включить систему ранее или выключить позже. В межсезонье некоторые могут испытывать дискомфорт.
Экономная система для частного дома
При наличии собственного дома нет смысла пользоваться централизованной системой отопления. В доме требуется возможность создания комфортной и энергосберегающей атмосферы в любое время года. Поэтому, лучше всего подойдет автономная открытая система отопления и подачи горячей воды. Источником для создания такого варианта может служить тепловой котел в газовом или электрическом исполнении.
Создание собственными руками
Выполнение системы закрытого типа является очень трудоемким и сложным процессом с множеством тонкостей. Требуется наличие практических знаний и достаточного опыта, чтобы система эффективно функционировала. Желательно доверить выполнение процедуры профессионалам. При любительском способе монтажа постоянно возникают проблемы и трудности, которые впоследствии скажутся на работе схемы.
Советы и рекомендации
Выбирать определенную систему требуется только в зависимости от личных предпочтений. Открытая отопительная технология подойдет для небольших зданий, дач и частных домов. Закрытая более сложна в монтаже, поэтому чаще применима для многоквартирных домов, коттеджей.
Закрытая и открытые системы отопления имеют небольшое количество отличий. Однако каждая обладает определенными преимуществами и недостатками. Выбор конкретной системы зависит только от предпочтений домовладельца.
Закрытая и открытая система теплоснабжения: особенности, недостатки и преимущества
Для отопления помещений применяется закрытая и открытая система теплоснабжения. Последний вариант дополнительно обеспечивает потребителя горячей водой. При этом необходимо контролировать постоянное пополнение системы.
Закрытая система применяет воду только как теплоноситель. Она постоянно циркулирует по замкнутому циклу, где потери минимальны.
Любая система состоит из трех главных частей:
- источник тепла: котельная, ТЭЦ и др.;
- тепловые сети, по которым транспортируется теплоноситель;
- потребители тепла: калориферы, радиаторы.
Особенности открытой системы
Достоинством открытой системы является ее экономичность. Из-за большой протяженности трубопроводов качество воды ухудшается: она становится мутной, приобретает цветность, имеет неприятный запах. Попытки очистить ее делают способ применения дорогим.
Трубы теплосети можно увидеть в больших городах. Они имеют большой диаметр и укутаны в теплоизолятор. От них делаются отводы к отдельным домам через тепловую подстанцию. Горячая вода поступает для использования и к радиаторам отопления из общего источника. Ее температура колеблется в пределах 50-75°С.
Подключение теплоснабжения к сети производится зависимым и независимым способами, реализующими закрытую и открытую системы теплоснабжения. Первый заключается в подаче воды напрямую – с помощью насосов и элеваторных узлов, где она доводится до требуемой температуры путем смешивания с холодной водой. Независимый способ заключается в подаче горячей воды через теплообменник. Он более затратный, но качество воды у потребителя выше.
Особенности закрытой системы
Тепловая магистраль выполнена в виде отдельного замкнутого контура. Вода в ней подогревается через теплообменники от магистрали ТЭЦ. Здесь требуются дополнительные насосы. Температурный режим получается более стабильный, а вода – лучше. Она остается в системе и не забирается потребителем. Минимальные потери воды восстанавливаются автоматической подпиткой.
Закрытая автономная система получает энергию от теплоносителя, поступающего на тепловые пункты. Там вода доводится до необходимых параметров. Для систем отопления и горячего водопровода поддерживаются разные температурные режимы.
Недостатком системы является сложность процесса водоподготовки. Также дорого обходится доставка воды в тепловые пункты, расположенные далеко друг от друга.
Трубы тепловых сетей
В настоящее время отечественные тепловые сети находятся в аварийном состоянии. В связи с большим износом коммуникаций дешевле заменить трубы для теплотрассы на новые, чем заниматься постоянным ремонтом.
Сразу обновить все старые коммуникации в стране невозможно. При строительстве или капитальном ремонте домов устанавливают новые трубы в пенополиуретановой изоляции (ППУ), в несколько раз сокращающие потери тепла. Трубы для теплотрассы изготавливают по специальной технологии, заливая пеной зазор между расположенной внутри стальной трубой и оболочкой.
Температура транспортируемой жидкости может достигать 140°С.
Использование ППУ в качестве теплоизоляции позволяет сохранять тепло значительно лучше традиционных защитных материалов.
Теплоснабжение многоквартирных жилых домов
В отличие от дачи или коттеджа, теплоснабжение многоквартирного дома содержит сложную схему разводки труб и нагревателей. Кроме того, в систему входят средства контроля и обеспечения безопасности.
Для жилых помещений существуют нормативы отопления, где указываются критические уровни температуры и допустимые погрешности, зависящие от сезона, погоды и времени суток. Если сравнить закрытую и открытую системы теплоснабжения, первая лучше поддерживает необходимые параметры.
Коммунальное теплоснабжение должно обеспечивать поддерживание основных параметров в соответствии с ГОСТ 30494-96.
Наибольшие потери тепла происходят на лестничных клетках жилых домов.
Снабжение теплом большей частью производится по старым технологиям. По существу системы отопления и охлаждения должны объединяться в общий комплекс.
Недостатки централизованного отопления жилых домов приводят к необходимости создания индивидуальных систем. Сделать это сложно из-за проблем на законодательном уровне.
Автономное теплоснабжение жилого дома
В зданиях старого типа по проекту предусмотрена централизованная система. Индивидуальные схемы позволяют выбрать типы систем теплоснабжения в плане снижения расходов на энергоноситель. Здесь имеется возможность их мобильного отключения при отсутствии необходимости.
Проектирование автономных систем производится с учетом нормативов отопления. Без этого дом сдать в эксплуатацию невозможно. Следование нормам гарантирует комфорт для проживания жильцов дома.
Источником нагрева воды обычно служит газовый или электрический котел. Необходимо выбрать способ промывки системы. В централизованных системах применяется гидродинамический способ. Для автономной можно использовать химический. При этом необходимо учитывать безопасность влияния реагентов на радиаторы и трубы.
Правовые основы отношений в области теплоснабжения
Отношения энергетических компаний и потребителей регламентирует ФЗ о теплоснабжении № 190, вступивший в силу с 2010 г.
- В главе 1 излагаются основные понятия и общие положения, определяющие сферу правовых основ экономических отношений в теплоснабжении. В нее также входит обеспечение горячей водой. Утверждаются общие принципы организации поставки тепла, заключающиеся в создании надежных, эффективных и развивающихся систем, что очень важно для проживания в сложном российском климате.
- Главы 2 и 3 отражают обширную область полномочий местных органов власти, которые управляют ценообразованием в сфере теплоснабжения, утверждают правила его организации, учет расхода тепловой энергии и нормативы ее потерь при передаче. Полнота власти в этих вопросах позволяет контролировать организации теплоснабжения, относящиеся к монополистам.
- В главе 4 отражаются отношения между поставщиком тепловой энергии и потребителем на основании договора. Рассматриваются все правовые аспекты подключения к тепловым сетям.
- Глава 5 отражает правила подготовки к сезону отопления и ремонта тепловых сетей и источников. В ней описывается, что делать при неплатежах по договору и несанкционированных подключениях к тепловым сетям.
- В главе 6 определяются условия перехода организации в статус саморегулируемой в области теплоснабжения, организации передачи прав на владение и пользование объектом теплоснабжения.
Пользователи тепловой энергии должны знать положения ФЗ о теплоснабжении, чтобы отстаивать свои законные права.
Составление схемы теплоснабжения
Схема теплоснабжения представляет собой предпроектный документ, в котором отражены правовые отношения, условия функционирования и развития системы обеспечения теплом городского округа, поселения. По отношению к ней в федеральный закон входят определенные нормы.
- Схемы теплоснабжения для поселений утверждаются органами исполнительной власти или местного самоуправления, в зависимости от численности населения.
- Для соответствующей территории должна быть единая теплоснабжающая организация.
- В схеме указываются энергетические источники с указанием их основных параметров (загрузка, графики работы и др.) и радиусом действия.
- Указываются мероприятия по развитию системы обеспечения теплом, консервации избыточных мощностей, созданию условий ее бесперебойной работы.
Объекты теплоснабжения размещаются в границах поселения согласно утвержденной схеме.
Цели применения схемы теплоснабжения
- определение единой теплоснабжающей организации;
- определение возможности подключения к тепловым сетям объектов капитального строительства;
- включение мероприятий по развитию систем подачи тепла в инвестиционную программу организации теплоснабжения.
Заключение
Если сравнить закрытую и открытую системы теплоснабжения, в настоящее время перспективной является внедрение первой. Горячее водоснабжение позволяет повысить качество подаваемой воды до уровня питьевой.
Несмотря на то что новые технологии являются ресурсосберегающими и сокращают выбросы в атмосферу, они требуют значительных инвестиций. При этом не хватает квалифицированных специалистов в связи с отсутствием специальной кадровой подготовки и низким уровнем заработной платы.
Способы внедрения находятся за счет коммерческого и бюджетного финансирования, конкурсов на инвестиционные проекты и др. мероприятий.
Системы теплоснабжения - открытые и закрытые
Системы теплоснабжения - открытые и закрытые
Открытые системы теплоснабжения
Открытые системы теплоснабжения с промышленными котлами – это системы, в которых происходит водоразбор горячей воды для нужд потребителя непосредственно из теплосети.
Водоразбор может быть частичным или полным. Оставшаяся в системе горячая вода используется для отопления и вентиляции. Расход воды в теплосети при этом компенсируется дополнительным количеством воды, подающимся в тепловую сеть.
К основным преимуществам открытой системы теплоснабжения - это ее экономическая выгода.
К недостатками открытой системы теплоснабжения считают невысокое санитарно-гигиеническое качество воды. Отопительные приборы, трубопроводные сети придают воде цветность, запах, образуются различные примеси, бактерии. Для очистки воды в открытой системе применяются различные методы, но их использование снижает экономический эффект.
Закрытые системы теплоснабжения
Закрытые системы теплоснабжения – системы, в которых циркулирующая в трубопроводе вода используется только как теплоноситель, и не забирается из теплосети для обеспечения горячего водоснабжения.
Система в этом случае полностью закрыта от окружающей среды. В закрытой системе возможна незначительная утечка теплоносителя. Потери воды восполняются с помощью регулятора подпитки автоматически.
Подача тепла в закрытой системе теплоснабжения регулируется централизованно, при этом количество теплоносителя (воды) остается в системе неизменным, а расход тепла зависит от температуры циркулирующего теплоносителя.
В закрытых системах теплоснабжения, используются возможности тепловых пунктов. К ним поступает теплоноситель от поставщика теплоэнергии, а центральные тепловые пункты районов регулируют температуру теплоносителя до необходимой величины для нужд отопления и горячего водоснабжения, и распределяют потребителю.
К преимуществами закрытой системы теплоснабжения относят высокое качество горячего водоснабжения, энергосберегающий эффект.
Недостатками закрытой системы теплоснабжения – сложности водоподготовки из-за удаленности тепловых пунктов друг от друга.
Закрытая система теплоснабжения как работает система
Таковой является система, теплоноситель которой изолирован и работает исключительно по назначения. Он не участвует в водоснабжении прямо, а только косвенно, не отбирается потребителями из сети. Скажем так, «трансфер» тепла для систем отопления и для горячего снабжения проходит через теплообменники. Для этого, в теплопунктах зданий устанавливают сами теплообменники (подогреватели), насосы различной специализации, смесители, аппаратура для контроля и пр.
Открытая система теплоснабжения


Список может меняться в зависимости от типа и мощности пункта. Центральный и индивидуальный тепловой пункты могут иметь различную степень автоматизации, системы могут быть многоступенчатыми и иметь в своём составе несколько пунктов на пути, от ТЭЦ к потребителям. Стандартно, при закрытом теплоснабжении, теплопункт имеет два контура, обеспечивающих передачу теплоты системе отопления и системе водоснабжения. Каждый контур оборудован теплообменником соответствующего типа, пластинчатым, многоходовым, пр. индивидуально определяет проект.


Жидкость или антифриз, передающие теплоту, от теплоприготовительной установки, вторичным сетям, имеет неизменный объём и может лишь восполняться подпитывающей системой в случае потерь. Теплоноситель основной магистрали, должен проходить водоподготовку, для придания ему необходимых свойств, обеспечивающих безвредность для сетевых трубопроводов и теплообмена, как теплопунктов так и теплоприготовительных мощностей.


Эффективность теплоносителя
Цикл проходимый носителем тепла немногим сложнее, чем в открытом механизме. Охлаждённый теплоноситель, по возвратной магистрали поступает к теплофикационным подогревателям или котельным, где принимает температуру от горячего, технологического пара турбин, конденсата или нагревается в котле. Потери, если таковые имеются, восполняются подпиточной жидкостью, благодаря регулятору. Устройство всегда поддерживает заданное давление, удерживая его статическое значение. Если тепло получают от ТЭЦ, теплоноситель нагревается от пара, имеющего температуру 120° – 140°С.


Температура зависит от давления и отбор обычно производится из цилиндров среднего давления. Часто теплофикационный отбор на установке всего один. Отводимый пар имеет давление 0.12 – 0.25 МПа, которое повышают (при регулируемом отборе) при сезонном похолодании или расходе пара на аэрацию. При похолодании жидкость может догреваться пиковым котлом. Аэратор может быть подсоединён к одному из отборов турбины, а в питательный бак поступает химически очищенная, подготовленная вода. Отводимое для потребителей тепло, получаемое от паровых конденсатов и пара, регулируют качественно, то есть при постоянном объёме носителя регулируют только температуру.

По сетевому трубопроводу, теплоноситель поступает в теплопункт, где контуры отопления формируют требуемую температуру. Контур водоснабжения, делает это с помощью циркуляционной линии и насоса, получив подогретую теплообменником воду и подмешивая её к водопроводной и остывающей в трубах воде. Отопительный же имеет свою регулирующую арматуру, позволяющую качественно влиять на отбор тепла. Закрытая система предполагает независимое регулирование отбора тепла.
Однако такая схема не обладает достаточной гибкостью и должна иметь производительный трубопровод. В целях снижения вложений в теплосеть, организовывают связанное регулирование, при котором регулятор расхода водоснабжения определяет баланс в сторону одного из контуров. В результате, потребность в нагреве компенсируется из отопительного контура.


Недостаток подобной балансировки, несколько плавающая температура обогреваемых помещений. Нормативы допускают колебания температуры в пределах 1 – 1.5°С, что обычно происходит, пока максимальный расход на воду не превысит 0.6 расчётного, на отопление. Как и в открытой системе теплоснабжения, возможно применение совмещённого качественного регулирования подачи теплоты. Когда расход теплоносителя и сами теплопроводные сети рассчитываются на нагрузку отопительной и вентиляционной системы, увеличивая температуру носителя, для компенсации потребности горячего снабжения. В подобном случае, тепловая инерция зданий, выполняет роль теплоаккумуляторов, выравнивая колебания температур, вызванные неравномерным отбором тепла из связанной системы.


Преимущества
К сожалению, на постсоветском пространстве теплоснабжение подавляющего большинства потребителей до сих пор организовано по старой, открытой схеме. Закрытая схема сулит значительный выигрыш по многим параметрам. Именно поэтому, переход на закрытое теплоснабжение, в масштабе страны может принести серьёзные экономические выгоды. К примеру в России, на государственном уровне, переход на более экономный вариант, стал частью энергосберегающей программы на будущее.
Отказ от старой схемы принесёт сокращение потерь тепла, за счёт возможности точной регулировки потребления. Каждый теплопункт имеет возможность тонко регулировать потребление тепла абонентами.
Нагревательное оборудование работающее в изолированном режиме закрытой системы, гораздо меньше подвержено воздействию привносимых открытой сетью факторов. Следствие этого, продленный ресурс котлов, теплоприготовительных установок и промежуточных коммуникаций.
Она не требует повышенной устойчивости к высокому давлению, на всём протяжении теплопроводящих магистралей, это значительно снижает аварийность трубопроводов по причине порывов давлением. В свою очередь – это снижает потери тепла при утечках. Как результат, экономия, стабильность и качество обеспечения теплом и горячей водой, компенсируют недостатки системы. А они тоже есть. Процедуры невозможно провести централизованно. Каждый отдельный замкнутый контур требует своего обслуживания. Будь то турбины, контуры абонентов или промежуточная магистраль.
Каждый теплопункт – отдельная единица, для осуществления водоподготовки. Скорее всего, при модернизации схемы из открытой в закрытую, в большинстве случаев придётся увеличить площадь, необходимую под установку оснастки ИТП, а также реорганизация электроснабжения. Помимо этого, существенно возрастает потребление холодного на снабжение здания, поскольку именно она идёт на подогрев в теплообменники и далее потребителю, при независимом подключении горячего. Это неизменно повлечёт переустройство водопровода, ради перехода на закрытую схему горячего.
Глобальное введение независимого присоединения горячего оснащения к тепловым сетям, повлечёт изрядное повышение нагрузки на внешние сети холодного водоснабжения, поскольку придётся питать потребителей увеличенными объёмами, необходимыми для горячего водоснабжения, которые сейчас даются по тепловым сетям. Для многих населённых пунктов это станет серьёзным препятствием на пути модернизации. Дополнительное оснащение насосными установками в горячем снабжении и циркуляционных установках, в механизмах отопления зданий вызовет дополнительную нагрузку на электрические сети и без их реконструкции тоже не обойтись.
Видео мастер класс “Закрытая система отопления своими руками”
Как оптимизировать ваши замкнутые системы | 2018-11-13
Как оптимизировать ваши замкнутые системы | 2018-11-13 | Технологическое отопление Этот веб-сайт требует для работы определенных файлов cookie и использует другие файлы cookie, чтобы помочь вам получить лучший опыт. При посещении этого веб-сайта уже установлены определенные файлы cookie, которые вы можете удалить или заблокировать. Закрывая это сообщение или продолжая использовать наш сайт, вы соглашаетесь на использование файлов cookie. Посетите нашу обновленную политику конфиденциальности и файлов cookie, чтобы узнать больше. Этот веб-сайт использует файлы cookieЗакрывая это сообщение или продолжая использовать наш сайт, вы соглашаетесь с нашей политикой использования файлов cookie. Узнать больше Этот веб-сайт требует для работы определенных файлов cookie и использует другие файлы cookie, чтобы помочь вам получить наилучшие впечатления. При посещении этого веб-сайта уже установлены определенные файлы cookie, которые вы можете удалить или заблокировать. Закрывая это сообщение или продолжая использовать наш сайт, вы соглашаетесь на использование файлов cookie. Посетите нашу обновленную политику конфиденциальности и файлов cookie, чтобы узнать больше. .
Основы системы отопления и охлаждения: советы и рекомендации
Как только воздух нагревается или охлаждается у источника тепла / холода, его необходимо распределить по различным комнатам вашего дома. Этого можно добиться с помощью систем с принудительной подачей воздуха, гравитации или излучения, описанных ниже.
Системы нагнетания воздуха
Система принудительной подачи воздуха распределяет тепло, производимое печью, или холод, производимый центральным кондиционером, через вентилятор с электрическим приводом, называемый нагнетателем, который нагнетает воздух через систему металлических каналов в комнаты в вашем доме.По мере того, как теплый воздух из печи течет в комнаты, более холодный воздух в комнатах течет вниз по другому набору каналов, называемому системой возврата холодного воздуха, в печь для обогрева. Эта система регулируется: вы можете увеличивать или уменьшать количество воздуха, проходящего через ваш дом. В центральных системах кондиционирования воздуха используется та же система принудительной подачи воздуха, включая вентилятор, для распределения холодного воздуха по комнатам и для возврата более теплого воздуха для охлаждения.
Объявление
Проблемы с системами принудительной подачи воздуха обычно связаны с неисправностью вентилятора.Воздуходувка также может быть шумной и добавляет стоимость электроэнергии к стоимости топочного топлива. Но поскольку в ней используется воздуходувка, система принудительной подачи воздуха представляет собой эффективный способ направлять переносимое по воздуху тепло или холодный воздух по всему дому.
Гравитационные системы
Гравитационные системы основаны на принципе подъема горячего воздуха и опускания холодного воздуха. Следовательно, гравитационные системы нельзя использовать для распределения холодного воздуха из кондиционера. В гравитационной системе печь располагается рядом с полом или под ним.Нагретый воздух поднимается по воздуховодам и попадает в пол по всему дому. Если печь расположена на первом этаже дома, тепловые регистры обычно располагаются высоко на стенах, потому что регистры всегда должны быть выше печи. Нагретый воздух поднимается к потолку. По мере того, как воздух охлаждается, он опускается, входит в каналы возвратного воздуха и возвращается в печь для повторного нагрева.
Другой основной системой распределения для отопления является лучистая система.Источником тепла обычно является горячая вода, которая нагревается печью и циркулирует по трубам, встроенным в стену, пол или потолок.
Радиант Системс
Излучающие системы работают, обогревая стены, пол или потолок комнат или, что чаще всего, обогревая радиаторы в комнатах. Затем эти предметы нагревают воздух в комнате. В некоторых системах используются электрические нагревательные панели для выработки тепла, которое излучается в комнаты. Как и настенные гравитационные обогреватели, эти панели обычно устанавливают в теплом климате или там, где электричество относительно недорогое.Системы излучающего излучения нельзя использовать для распределения холодного воздуха от кондиционера.
Радиаторы и конвекторы, наиболее распространенные средства распределения лучистого тепла в старых домах, используются с системами водяного отопления. Эти системы могут зависеть от силы тяжести или от циркуляционного насоса для циркуляции нагретой воды от котла к радиаторам или конвекторам. Система, в которой используется насос или циркуляционный насос, называется гидравлической системой.
Современные системы лучистого отопления часто встраиваются в дома, построенные на фундаменте из бетонных плит.Под поверхностью бетонной плиты прокладывается сеть водопроводных труб. Когда бетон нагревается трубами, он нагревает воздух, соприкасающийся с поверхностью пола. Плита не должна сильно нагреваться; в конечном итоге он будет контактировать с воздухом во всем доме и нагревать его.
Системы Radiant, особенно когда они зависят от силы тяжести, подвержены ряду проблем. Трубы, используемые для распределения нагретой воды, могут забиться минеральными отложениями или наклониться под неправильным углом.Также может выйти из строя бойлер, в котором вода нагревается у источника тепла. В новых домах системы горячего водоснабжения устанавливаются редко.
В следующем разделе вы узнаете, как термостат и другие элементы управления используются для поддержания климата в помещении, создаваемого вашими системами отопления и охлаждения.
.Общие сведения о теплообменниках - типы, конструкции, применение и руководство по выбору

Изображение предоставлено: Alaettin YILDIRIM / Shutterstock.com
Теплообменники - это устройства, предназначенные для передачи тепла между двумя или более жидкостями, т. Е. Жидкостями, парами или газами, с разными температурами. В зависимости от типа используемого теплообменника, процесс теплопередачи может быть газ-газ, жидкость-газ или жидкость-жидкость и происходить через твердый сепаратор, который предотвращает смешивание текучих сред, или прямой поток жидкости. контакт.Другие конструктивные характеристики, включая конструкционные материалы и компоненты, механизмы теплопередачи и конфигурации потока, также помогают классифицировать и классифицировать типы доступных теплообменников. Эти теплообменные устройства находят применение в самых разных отраслях промышленности и разработаны и изготовлены для использования как в процессах нагрева, так и охлаждения.
Эта статья посвящена теплообменникам, исследует их различные конструкции и типы и объясняет их соответствующие функции и механизмы.Кроме того, в этой статье приводятся рекомендации по выбору и общие области применения для каждого типа теплообменного устройства.
Термодинамика теплообменника
Конструкция теплообменника - это упражнение в термодинамике, науке, изучающей поток тепловой энергии, температуру и взаимосвязь с другими формами энергии. Чтобы понять термодинамику теплообменника, хорошей отправной точкой является изучение трех способов передачи тепла - теплопроводности, конвекции и излучения.В следующих разделах представлен обзор каждого из этих режимов теплопередачи.
Проводимость
Проводимость - это передача тепловой энергии между материалами, находящимися в контакте друг с другом. Температура - это мера средней кинетической энергии молекул в материале - более теплые объекты (которые имеют более высокую температуру) демонстрируют большее движение молекул. Когда более теплый объект соприкасается с более холодным объектом (тем, который имеет более низкую температуру), происходит передача тепловой энергии между двумя материалами, при этом более холодный объект получает больше энергии, а более теплый объект становится менее энергичным.Этот процесс будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.
Скорость, с которой тепловая энергия передается в материале за счет теплопроводности, определяется следующим выражением:
В этом выражении Q представляет количество тепла, передаваемого через материал во времени t , ΔT представляет собой разность температур между одной стороной материала и другой (температурный градиент), A представляет собой площадь поперечного сечения материала, а d - толщина материала.Константа k известна как теплопроводность материала и является функцией внутренних свойств материала и его структуры. Воздух и другие газы обычно имеют низкую теплопроводность, в то время как неметаллические твердые вещества показывают более высокие значения, а металлические твердые тела обычно показывают самые высокие значения.
Конвекция
Конвекция - это передача тепловой энергии от поверхности за счет движения нагретой жидкости, такой как воздух или вода.Большинство жидкостей расширяются при нагревании и, следовательно, становятся менее плотными и поднимаются по сравнению с другими более холодными частями жидкости. Итак, когда воздух в комнате нагревается, он поднимается к потолку, потому что он теплее и менее плотный, и передает тепловую энергию, сталкиваясь с более холодным воздухом в комнате, затем становится более плотным и снова падает на пол. Этот процесс создает поток естественной или свободной конвекции. Конвекция также может происходить за счет так называемой принудительной или вспомогательной конвекции, например, когда нагретая вода перекачивается по трубе, например, в системе водяного отопления.
Для свободной конвекции скорость передачи тепла выражается законом охлаждения Ньютона:
Где Q-точка - скорость передачи тепла, h c - коэффициент конвективной теплопередачи, A - площадь поверхности, на которой происходит процесс конвекции, а ΔT - разность температур между поверхность и жидкость. Коэффициент конвективной теплопередачи h c является функцией свойств жидкости, аналогично теплопроводности материала, упомянутого ранее в отношении проводимости.
Радиация
Тепловое излучение - это механизм передачи тепловой энергии, включающий излучение электромагнитных волн от нагретой поверхности или объекта. В отличие от теплопроводности и конвекции, тепловое излучение не требует промежуточной среды для переноса энергии волны. Все объекты, температура которых выше абсолютного нуля (-273,15 o C), излучают тепловое излучение в обычно широком спектральном диапазоне.
Чистую скорость радиационных тепловых потерь можно выразить с помощью закона Стефана-Больцмана следующим образом:
, где Q - теплоотдача в единицу времени, T ч - температура горячего объекта (в абсолютных единицах, o K), T c - температура более холодного окружения. (также в абсолютных единицах, o K), σ - постоянная Стефана-Больцмана (значение которой равно 5.6703 x 10 -8 Вт / м 2 K 4 ). Термин, представленный как ε , представляет собой коэффициент излучения материала и может иметь значение от 0 до 1, в зависимости от характеристик материала и его способности отражать, поглощать или передавать излучение. Это также функция температуры материала.
Основные принципы теплообменников
Независимо от типа и конструкции, все теплообменники работают в соответствии с одними и теми же фундаментальными принципами, а именно нулевым, первым и вторым законами термодинамики, которые описывают и диктуют перенос или «обмен» тепла от одной жидкости к другой.
- Нулевой закон термодинамики гласит, что термодинамические системы, находящиеся в тепловом равновесии, имеют одинаковую температуру. Более того, если каждая из двух систем находится в тепловом равновесии с третьей системой, то две первые системы должны быть в равновесии друг с другом; таким образом, все три системы имеют одинаковую температуру. Этот закон, предшествующий трем другим законам термодинамики по порядку, но не в развитии, не только выражает тепловое равновесие как переходное свойство, но также определяет понятие температуры и устанавливает ее как измеримое свойство термодинамических систем.
- Первый закон термодинамики основан на нулевом законе, устанавливая внутреннюю энергию ( U ) как еще одно свойство термодинамических систем и указывая на влияние тепла и работы на внутреннюю энергию системы и энергию окружающей среды. Кроме того, первый закон, также называемый законом обмена энергией, по сути, гласит, что энергия не может быть создана или уничтожена, а только передана другой термодинамической системе или преобразована в другую форму (например,г., обогревать или работать).
Например, если тепло поступает в систему из окружающей среды, происходит соответствующее увеличение внутренней энергии системы и уменьшение энергии окружающей среды. Этот принцип можно проиллюстрировать следующим уравнением, где ΔU система представляет внутреннюю энергию системы, а ΔU окружающей среды представляет внутреннюю энергию окружающей среды:
- Второй закон термодинамики устанавливает энтропию ( S ) как дополнительное свойство термодинамических систем и описывает естественную и неизменную тенденцию Вселенной и любой другой замкнутой термодинамической системы к увеличению энтропии с течением времени.Этот принцип может быть проиллюстрирован следующим уравнением, где ΔS представляет изменение энтропии, ΔQ представляет изменение тепла, добавляемого к системе, а T представляет собой абсолютную температуру:
В целом эти принципы определяют основные механизмы и операции теплообменников; Нулевой закон устанавливает температуру как измеримое свойство термодинамических систем, Первый закон описывает обратную зависимость между внутренней энергией системы (и ее преобразованными формами) и энергией окружающей ее среды, а Второй закон выражает тенденцию двух взаимодействующих систем к двигаться к тепловому равновесию.Таким образом, теплообменники функционируют, позволяя жидкости более высокой температуры ( F 1 ) взаимодействовать - прямо или косвенно - с жидкостью более низкой температуры ( F 2 ), что позволяет тепло для передачи от F 1 к F 2 для перехода к равновесию. Эта передача тепла приводит к снижению температуры для F 1 и увеличению температуры для F 2 .В зависимости от того, нацелено ли приложение на нагрев или охлаждение жидкости, этот процесс (и устройства, которые его используют) можно использовать для направления тепла к системе или от нее, соответственно.
Расчетные характеристики теплообменника
Как указано выше, все теплообменники работают по одним и тем же основным принципам. Однако эти устройства можно классифицировать и классифицировать несколькими способами в зависимости от их конструктивных характеристик. К основным характеристикам, по которым можно отнести теплообменники, относятся:
- Конфигурация потока
- Способ строительства
- Механизм теплопередачи
Конфигурация потока
Конфигурация потока, также называемая устройством потока, теплообменника относится к направлению движения текучих сред внутри теплообменника относительно друг друга.В теплообменниках используются четыре основных конфигурации потока:
- Попутный поток
- Противоток
- Поперечный поток
- Гибридный поток
Попутный поток
Теплообменники с прямоточным потоком , также называемые теплообменниками с параллельным потоком, представляют собой теплообменные устройства, в которых жидкости движутся параллельно и в одном направлении друг с другом. Хотя такая конфигурация обычно приводит к более низкой эффективности, чем устройство противотока, она также обеспечивает максимальную термическую однородность по стенкам теплообменника.
Противоток
Противоточные теплообменники , также известные как противоточные теплообменники, спроектированы так, что жидкости движутся антипараллельно (т. Е. Параллельно, но в противоположных направлениях) друг другу внутри теплообменника. Наиболее часто используемая из конфигураций потока, устройство противотока обычно демонстрирует наивысшую эффективность, поскольку оно обеспечивает наибольшую теплопередачу между жидкостями и, следовательно, наибольшее изменение температуры.
Поперечный поток
В теплообменниках перекрестного тока жидкости текут перпендикулярно друг другу. Эффективность теплообменников, в которых используется такая конфигурация потока, находится между противоточными и прямоточными теплообменниками.
Гибридный поток
Теплообменники с гибридным потоком демонстрируют некоторую комбинацию характеристик ранее упомянутых конфигураций потока. Например, конструкции теплообменников могут использовать несколько каналов и устройств (например,g., как противоточные, так и перекрестные потоки) в одном теплообменнике. Эти типы теплообменников обычно используются с учетом ограничений приложения, таких как пространство, бюджетные затраты или требования к температуре и давлению.
На рисунке 1 ниже показаны различные доступные конфигурации потока, включая конфигурацию с перекрестным / противотоком, которая является примером конфигурации гибридного потока.
Рисунок 1 - Конфигурации потока теплообменника
Метод строительства
Если в предыдущем разделе теплообменники классифицировались на основе типа используемой конфигурации потока, в этом разделе они классифицируются на основе их конструкции.Конструктивные характеристики, по которым можно классифицировать эти устройства, включают:
- Рекуперативное против регенеративного
- Прямое против косвенного
- Статическая и динамическая
- Типы используемых компонентов и материалов
Рекуперативная и регенеративная
Теплообменники можно разделить на рекуперативные теплообменники и рекуперативные теплообменники.
Разница между рекуперативными и регенеративными системами теплообменников заключается в том, что в рекуперативных теплообменниках (обычно называемых рекуператорами) каждая жидкость одновременно протекает через свой собственный канал внутри теплообменника.С другой стороны, регенеративных теплообменников , также называемых емкостными теплообменниками или регенераторами, поочередно позволяют более теплым и более холодным жидкостям проходить через один и тот же канал. И рекуператоры, и регенераторы могут быть далее разделены на различные категории теплообменников, такие как прямые или непрямые, статические или динамические, соответственно. Из двух указанных типов рекуперативные теплообменники чаще используются в промышленности.
Прямая и косвенная
В рекуперативных теплообменникахдля обмена теплом между жидкостями используются процессы прямого или косвенного контакта.
В теплообменниках прямого контакта жидкости не разделяются внутри устройства, а тепло передается от одной жидкости к другой посредством прямого контакта. С другой стороны, в непрямых теплообменниках жидкости остаются отделенными друг от друга теплопроводными компонентами, такими как трубки или пластины, на протяжении всего процесса теплопередачи. Компоненты сначала получают тепло от более теплой жидкости, когда она течет через теплообменник, а затем передают тепло более холодной жидкости, когда она течет через теплообменник.Некоторые из устройств, в которых используются процессы прямого контактного переноса, включают градирни и паровые инжекторы, в то время как устройства, в которых используются процессы косвенного контактного переноса, включают трубчатые или пластинчатые теплообменники.
Статическая и динамическая
Существует два основных типа регенеративных теплообменников - статические теплообменники и динамические теплообменники. В статических регенераторах (также известных как регенераторы с неподвижным слоем) материал и компоненты теплообменника остаются неподвижными при прохождении жидкости через устройство, в то время как в динамических регенераторах материал и компоненты перемещаются в процессе теплопередачи.Оба типа подвержены риску перекрестного загрязнения между потоками текучей среды, что требует тщательного проектирования во время производства.
В одном из примеров статического типа более теплая жидкость проходит через один канал, тогда как более холодная жидкость проходит через другой в течение фиксированного периода времени, в конце которого за счет использования быстродействующих клапанов происходит реверсирование потока, так что два жидкости переключают каналы. В примере динамического типа обычно используется вращающийся теплопроводный компонент (например,g., барабан), через который непрерывно протекают более теплые и более холодные жидкости, хотя и отдельными, изолированными секциями. По мере вращения компонента любая заданная секция поочередно проходит через потоки более теплого пара и более холодного пара, позволяя компоненту поглощать тепло от более теплой жидкости и передавать тепло более холодной жидкости по мере прохождения через нее. На рисунке 2 ниже изображен процесс теплопередачи в регенераторе роторного типа с противоточной конфигурацией.
Рисунок 2 - Теплообмен в регенераторе роторного типа
Компоненты и материалы теплообменника
Существует несколько типов компонентов, которые можно использовать в теплообменниках, а также широкий спектр материалов, используемых для их изготовления.Используемые компоненты и материалы зависят от типа теплообменника и его предполагаемого применения.
Некоторые из наиболее распространенных компонентов, используемых для создания теплообменников, включают кожухи, трубки, спиральные трубки (змеевики), пластины, ребра и адиабатические колеса. Более подробная информация о том, как эти компоненты функционируют в теплообменнике, будет предоставлена в следующем разделе (см. Типы теплообменников).
В то время как металлы очень подходят - и широко используются - для изготовления теплообменников из-за их высокой теплопроводности, как в случае теплообменников из меди, титана и нержавеющей стали, другие материалы, такие как графит, керамика, композиты или пластмассы , может иметь большие преимущества в зависимости от требований приложения теплопередачи.
Рисунок 3 - Классификация теплообменников по конструкции

** Представленная классификация соответствует информации, опубликованной на сайте Thermopedia.com.
Механизм теплопередачи
В теплообменниках используются два типа механизмов теплопередачи - однофазный или двухфазный.
В однофазных теплообменниках жидкости не претерпевают никаких фазовых превращений в процессе теплопередачи, что означает, что как более теплые, так и более холодные жидкости остаются в том же состоянии вещества, в котором они попали в теплообменник.Например, в приложениях теплопередачи вода-вода более теплая вода теряет тепло, которое затем передается более холодной воде и не превращается в газ или твердое вещество.
С другой стороны, в двухфазных теплообменниках жидкости действительно претерпевают фазовый переход в процессе теплопередачи. Фазовое изменение может происходить в одной или обеих участвующих текучих средах, приводя к переходу из жидкости в газ или из газа в жидкость. Обычно устройства, в которых используется двухфазный механизм теплопередачи, требуют более сложных конструктивных решений, чем устройства, в которых используется однофазный механизм теплопередачи.Некоторые из доступных типов двухфазных теплообменников включают котлы, конденсаторы и испарители.
Виды теплообменников
Исходя из указанных выше конструктивных характеристик, доступно несколько различных вариантов теплообменников. Некоторые из наиболее распространенных вариантов, используемых в промышленности, включают:
- Кожухотрубные теплообменники
- Двухтрубные теплообменники
- Пластинчатые теплообменники
- Конденсаторы, испарители и котлы
Кожухотрубные теплообменники
Наиболее распространенный тип теплообменников, кожухотрубных теплообменников состоит из одной трубы или ряда параллельных трубок (т.е.например, пучок труб), заключенный в герметичный цилиндрический сосуд высокого давления (т.е. оболочку). Конструкция этих устройств такова, что одна жидкость протекает через меньшую трубку (и), а другая жидкость течет вокруг ее / их внешней (их) стороны и между ними / ими внутри герметичной оболочки. Другие конструктивные характеристики, доступные для этого типа теплообменника, включают ребристые трубы, одно- или двухфазную теплопередачу, противоток, прямоточный или перекрестный поток, а также одно-, двух- или многопроходные конфигурации.
Некоторые из доступных типов кожухотрубных теплообменников включают спиральные змеевики и двухтрубные теплообменники, а некоторые из применений включают предварительный нагрев, охлаждение масла и производство пара.

Изображение предоставлено: Антон Москвитин / Shutterstock.com
Двухтрубный теплообменник
Кожухотрубный теплообменник, двухтрубные теплообменники используют простейшую конструкцию и конфигурацию теплообменника, которая состоит из двух или более концентрических цилиндрических труб или трубок (одна большая труба и одна или несколько меньших трубок).В соответствии с конструкцией всех кожухотрубных теплообменников одна жидкость протекает через меньшую трубу (и), а другая жидкость течет вокруг меньшей трубы (ов) внутри большей трубы.
Требования к конструкции двухтрубных теплообменников включают характеристики рекуперативного и косвенного типов, упомянутых ранее, поскольку жидкости остаются разделенными и протекают по своим каналам на протяжении всего процесса теплопередачи. Тем не менее, существует некоторая гибкость в конструкции двухтрубных теплообменников, поскольку они могут быть спроектированы с прямоточными или противоточными устройствами и могут использоваться модульно в последовательной, параллельной или последовательно-параллельной конфигурации внутри системы.Например, на Рисунке 4 ниже показан перенос тепла в изолированном двухтрубном теплообменнике с прямоточной конфигурацией.
Рисунок 4 - Теплообмен в двухтрубном теплообменнике
Пластинчатые теплообменники
Пластинчатые теплообменники, также называемые пластинчатыми теплообменниками, состоят из нескольких тонких гофрированных пластин, связанных вместе. Каждая пара пластин создает канал, по которому может течь одна жидкость, и пары уложены друг на друга и прикреплены - посредством болтов, пайки или сварки - так, что между парами создается второй канал, через который может течь другая жидкость.
Стандартная пластинчатая конструкция также доступна с некоторыми вариациями, например, пластинчато-ребристые или пластинчатые теплообменники. Пластинчато-ребристые теплообменники используют ребра или прокладки между пластинами и позволяют использовать несколько конфигураций потока и более двух потоков жидкости, проходящих через устройство. Пластинчатые теплообменники с подушками оказывают давление на пластины, чтобы повысить эффективность теплопередачи по поверхности пластины. Некоторые из других доступных типов включают пластинчатые и рамные, пластинчатые и кожухо-спиральные теплообменники.

Кредит изображения: withGod / Shutterstock.com
Конденсаторы, испарители и котлы
Котлы, конденсаторы и испарители - это теплообменники, в которых используется двухфазный механизм теплопередачи. Как упоминалось ранее, в двухфазных теплообменниках одна или несколько текучих сред претерпевают фазовое изменение во время процесса теплопередачи, переходя либо из жидкости в газ, либо из газа в жидкость.
Конденсаторы - это теплообменные устройства, которые забирают нагретый газ или пар и охлаждают их до точки конденсации, превращая газ или пар в жидкость.С другой стороны, в испарителях и котлах процесс теплопередачи переводит жидкости из жидкой формы в газообразную или парообразную.
Другие варианты теплообменников
Теплообменники используются во множестве приложений в самых разных отраслях промышленности. Следовательно, существует несколько вариантов теплообменников, каждый из которых соответствует требованиям и спецификациям конкретного применения. Помимо упомянутых выше вариантов, доступны другие типы, включая теплообменники с воздушным охлаждением, теплообменники с вентиляторным охлаждением и теплообменники с адиабатическим колесом.
Рекомендации по выбору теплообменника
Несмотря на то, что существует широкий спектр теплообменников, пригодность каждого типа (и его конструкции) для передачи тепла между жидкостями зависит от технических характеристик и требований применения. Эти факторы в значительной степени определяют оптимальную конструкцию желаемого теплообменника и влияют на соответствующие расчеты номинальных характеристик и размеров.
Некоторые из факторов, которые профессионалы отрасли должны учитывать при проектировании и выборе теплообменника:
- Тип жидкостей, поток жидкости и их свойства
- Требуемая тепловая мощность
- Ограничения по размеру
- Стоимость
Тип жидкости, поток и свойства
Определенный тип жидкостей - e.г., воздух, вода, масло и т. д. - задействованные, а также их физические, химические и термические свойства - например, фаза, температура, кислотность или щелочность, давление и скорость потока и т. д. - помогают определить конфигурацию потока и наиболее подходящую конструкцию. для этого конкретного приложения теплопередачи.
Например, если речь идет о коррозионных жидкостях, жидкостях с высокой температурой или под высоким давлением, конструкция теплообменника должна выдерживать условия высокого напряжения в процессе нагрева или охлаждения. Одним из методов выполнения этих требований является выбор конструкционных материалов, обладающих желаемыми свойствами: графитовые теплообменники обладают высокой теплопроводностью и коррозионной стойкостью, керамические теплообменники могут работать при температурах выше, чем точки плавления многих обычно используемых металлов, а пластиковые теплообменники обеспечивают высокую теплопроводность и устойчивость к коррозии. недорогая альтернатива, которая сохраняет умеренную степень коррозионной стойкости и теплопроводности.

Изображение предоставлено: CG Thermal
Другой метод заключается в выборе конструкции, подходящей для свойств жидкости: пластинчатые теплообменники могут работать с жидкостями от низкого до среднего давления, но с более высокими расходами, чем другие типы теплообменников, а двухфазные теплообменники необходимы при работе с жидкостями, которые требуют фазового перехода в процессе теплопередачи. Другие свойства текучей среды и потока текучей среды, которые профессионалы отрасли могут учитывать при выборе теплообменника, включают вязкость текучей среды, характеристики загрязнения, содержание твердых частиц и присутствие водорастворимых соединений.
Тепловые выходы
Тепловая мощность теплообменника относится к количеству тепла, передаваемому между жидкостями, и соответствующему изменению температуры в конце процесса теплопередачи. Передача тепла внутри теплообменника приводит к изменению температуры в обеих текучих средах, понижая температуру одной текучей среды по мере удаления тепла и повышая температуру другой текучей среды по мере добавления тепла. Желаемая тепловая мощность и скорость теплопередачи помогают определить оптимальный тип и конструкцию теплообменника, поскольку некоторые конструкции теплообменников предлагают более высокие скорости теплопередачи через нагреватель и могут выдерживать более высокие температуры, чем другие конструкции, хотя и с более высокой стоимостью.
Ограничения размера
После выбора оптимального типа и конструкции теплообменника распространенной ошибкой является покупка слишком большого для данного физического пространства. Часто более разумно приобрести теплообменное устройство такого размера, который оставляет место для дальнейшего расширения или добавления, чем выбирать устройство, которое полностью охватывает пространство. Для применений с ограниченным пространством, например, в самолетах или автомобилях, компактные теплообменники предлагают высокую эффективность теплопередачи в меньших и более легких решениях.Эти теплообменные устройства характеризуются высоким отношением площади поверхности теплообмена к объему, поэтому доступны несколько вариантов этих теплообменников, включая компактные пластинчатые теплообменники. Как правило, эти устройства имеют соотношение ≥700 м 2 / м 3 для газ-газовых приложений и ≥400 м 2 / м 3 для жидкостей и газов. газовые приложения.
Стоимость
Стоимость теплообменника включает не только начальную цену оборудования, но также затраты на установку, эксплуатацию и техническое обслуживание в течение срока службы устройства.Несмотря на то, что необходимо выбрать теплообменник, который эффективно удовлетворяет требованиям приложений, также важно учитывать общие затраты на выбранный теплообменник, чтобы лучше определить, стоит ли оно вложенных средств. Например, изначально дорогой, но более прочный теплообменник может привести к более низким затратам на техническое обслуживание и, следовательно, к меньшим общим расходам в течение нескольких лет, в то время как более дешевый теплообменник может быть изначально менее дорогим, но потребовать нескольких ремонтов и замен. в течение того же периода времени.
Оптимизация конструкции
Проектирование оптимального теплообменника для данного применения (с конкретными спецификациями и требованиями, указанными выше) включает определение изменения температуры жидкостей, коэффициента теплопередачи и конструкции теплообменника и их соотнесение со скоростью теплопередачи. . Две основные проблемы, которые возникают при достижении этой цели, - это расчет номинальных характеристик и размеров устройства.
Рейтинг относится к расчету тепловой эффективности (т.е. эффективность) теплообменника заданной конструкции и размера, включая скорость теплопередачи, количество тепла, передаваемого между жидкостями и соответствующее изменение температуры, а также общий перепад давления на устройстве. Определение размеров относится к расчету требуемых общих размеров теплообменника (т. Е. Площади поверхности, доступной для использования в процессе теплопередачи), включая длину, ширину, высоту, толщину, количество компонентов, геометрию и расположение компонентов, и т.п., для приложения с заданными техническими характеристиками и требованиями. Расчетные характеристики теплообменника - например, конфигурация потока, материал, конструктивные элементы, геометрия и т. Д. - влияют как на номинальные характеристики, так и на расчет размеров. В идеале, оптимальная конструкция теплообменника для конкретного применения находит баланс (с факторами, оптимизированными в соответствии с указаниями разработчика) между номинальными характеристиками и размерами, которые удовлетворяют технологическим спецификациям и требованиям при минимально необходимых затратах.
Области применения теплообменников
Теплообменники - это устройства, используемые в промышленности как для нагрева, так и для охлаждения.Доступны несколько вариантов теплообменников, которые находят применение в самых разных отраслях промышленности, в том числе:
В таблице 1 ниже указаны некоторые из общих отраслей и областей применения ранее упомянутых типов теплообменников.
Таблица 1 - Отрасли и области применения теплообменников по типам
Тип теплообменника | Общие отрасли промышленности и приложения |
Кожух и трубка |
|
Двойная труба |
|
Пластина |
|
Конденсаторы |
|
Испарители / Котлы |
|
с воздушным охлаждением / вентиляторным охлаждением |
|
Адиабатическое колесо |
|
Компактный |
|
Сводка
Это руководство дает общее представление о теплообменниках, доступных конструкциях и типах, их применениях и особенностях использования. Дополнительную информацию о приобретении теплообменников можно найти в Руководстве по покупке теплообменников Thomas.
Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим руководствам и официальным документам Thomas или посетите платформу Thomas Supplier Discovery Platform, где вы найдете информацию о более чем 500 000 коммерческих и промышленных поставщиков.
Источники
- https://www.engr.mun.ca/~yuri/Courses/MechanicalSystems/HeatExchangers.pdf
- http://sky.kiau.ac.ir
- http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node131.html
- http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node30.html
- https://www.thomasnet.com/knowledge/white-paper/speciality-heat-exchangers-101
- https://www.livescience.com/50833-zeroth-law-thermodynamics.html
- https: // курсы.lumenlearning.com/introchem/chapter/the-three-laws-of-thermodynamics/
- https://chem.libretexts.org
- http://physicalworld.org
- https://link.springer.com
- https://thefreeanswer.com/question/regenerative-heat-exchanger-static-type-regenerative-heat-exchanger-differ-dynamic-type/
- http://hedhme.com
- https://www.kau.edu.sa/Files/0052880/Subjects/GuideLinesAndPracticeForThermalDesignOfHeatExchangersN2.pdf
- https: // www.scribd.com/doc/132/Boilers-Evaporators-Condensers-Kakac
Прочие изделия из теплообменников
Больше из Технологическое оборудование
.Теплоснабжение | Статья о теплоснабжении по The Free Dictionary
( теплоснабжение ), теплоснабжению жилых, общественных и промышленных зданий и сооружений для удовлетворения бытовых (отопление, вентиляция, горячее водоснабжение) и промышленных нужд. Различают теплоснабжение зданий и централизованное теплоснабжение. Системы теплоснабжения зданий обслуживают одно или несколько зданий; районные системы обслуживают жилую или промышленную зону. В СССР центральное теплоснабжение оказалось наиболее важным; поэтому российский термин теплоснабжение обычно используется в отношении систем централизованного теплоснабжения.Основными преимуществами централизованного теплоснабжения перед теплоснабжением зданий являются значительное снижение расхода топлива и эксплуатационных расходов (например, за счет автоматизации и повышения эффективности котельных), возможность использования низкокачественного топлива, снижение загрязнения воздуха и улучшение состояния здоровья в населенных пунктах.
Система централизованного теплоснабжения включает в себя источник тепла, систему теплоснабжения и теплопотребляющие установки, которые подключены к системе через пункты распределения тепла.При централизованном теплоснабжении источниками тепла могут быть централизованные теплоэлектростанции, сочетающие производство электроэнергии и тепловой энергии; большие котельные, вырабатывающие только тепловую энергию; устройства по переработке термических отходов промышленности; или установки для использования тепла геотермальных источников. При теплоснабжении зданий источниками тепла могут быть печи, водогрейные котлы или водонагреватели, в том числе солнечные.
В системах централизованного теплоснабжения теплоносителем обычно является вода с температурой до 150 ° C или пар под давлением 0.7–1,6 меганьютон на м 2 (7–16 технических атмосфер). Вода обычно используется в коммунальных и бытовых целях, а пар используется в промышленных целях. Температура и давление в системах теплоснабжения определяются требованиями заказчика и экономическими соображениями. Стоимость более высоких температур и давлений транспортной среды становится более оправданной, чем больше расстояние, на которое переносится тепло. Расстояния, на которые передается тепло в современных системах централизованного теплоснабжения, достигают нескольких десятков километров.Расход условного топлива на единицу отпущенного тепла в основном определяется эффективностью источника теплоснабжения. Текущее развитие систем теплоснабжения сосредоточено на увеличении мощности источника тепла и единичной мощности установленного оборудования. Тепловая мощность современных ТЭЦ достигает 2–4 теракалорий в час, а региональных котельных - 300–500 гигакалорий в час. В некоторых системах теплоснабжения несколько источников тепла используются вместе для питания общей теплосети; этот метод увеличивает надежность, гибкость и экономичность.
Системы теплоснабжения классифицируются по способу подключения тепловых пунктов как зависимые или независимые. В зависимых системах теплоноситель проходит напрямую из системы теплоснабжения в тепловые пункты потребителя. В автономных системах он проходит в промежуточный теплообменник, установленный в пункте распределения тепла, и нагревает вторичный теплоноситель, который циркулирует в тепловом узле потребителя; Таким образом, блоки потребителей гидравлически изолированы от системы теплоснабжения.Автономные системы используются преимущественно в крупных городах для повышения надежности теплоснабжения; они также используются в тех случаях, когда давление в системе теплоснабжения превышает номинальное давление тепловых узлов потребителей или статическое давление, создаваемое установками потребителей, неприемлемо для системы теплоснабжения (например, в системах отопления для многоэтажных зданий). ).
Различают закрытые и открытые системы теплоснабжения в зависимости от способа подключения узлов горячего водоснабжения.В закрытых системах вода на горячее водоснабжение идет из водопровода. Эта вода нагревается до необходимой температуры (обычно 60 ° C) водой из системы теплоснабжения в теплообменниках, установленных в точках распределения тепла. В открытых системах вода подается напрямую из системы теплоснабжения. Потери воды из-за протечек в системе и нормального водоснабжения восполняются за счет подачи дополнительной воды в систему теплоснабжения. Вода, подаваемая в систему теплоснабжения, очищается и деаэрируется для предотвращения коррозии и образования отложений на внутренних поверхностях труб.В открытых системах вода также должна соответствовать требованиям для питьевой воды. Выбор системы в основном определяется наличием достаточного количества воды питьевого качества, а также ее коррозионными и отложениями. Оба типа систем распространены в СССР.
В зависимости от количества труб, по которым транспортируется теплоноситель, системы теплоснабжения классифицируются как однотрубные, двухтрубные или многотрубные. Однотрубные системы используются в тех случаях, когда теплоноситель полностью используется заказчиком и не возвращается (например, в паровых системах без возврата конденсата и в открытых водных системах, где вся вода из источника распределяется для горячего водоснабжения). водоснабжение потребителей).В двухтрубных системах теплоноситель полностью или частично возвращается к источнику тепла, где пополняется и нагревается. Многотрубные системы устанавливаются там, где необходимо разделить отдельные типы тепловых нагрузок, например, в системах горячего водоснабжения. Это упрощает регулирование отпуска тепла, условий эксплуатации и способов подключения потребителей к системам теплоснабжения. Двухтрубные системы теплоснабжения - самый распространенный вид в СССР.
Отвод тепла в системах теплоснабжения регулируется ежедневно и сезонно как на источнике тепла, так и на теплопотребляющих установках.В системах водяного теплоснабжения обычно предусмотрено центральное регулирование температуры подачи тепла в соответствии с основным видом тепловой нагрузки: только отопление или сочетание отопления и горячего водоснабжения. Регулирование заключается в изменении температуры теплоносителя, подаваемого от источника тепла в систему теплоснабжения, в соответствии с установленным соотношением между необходимой температурой воды в системе подачи и температурой наружного воздуха. Регулирование температуры в районе дополняется местным количественным регулированием в точке распределения тепла; это чаще всего применяется для горячего водоснабжения и обычно выполняется автоматически.В системах парового теплоснабжения обычно используется местное количественное регулирование. Давление пара в источнике теплоснабжения поддерживается постоянным, а расход пара регулируется потребителями.
СПИСОК ЛИТЕРАТУРЫ
Громов Н.К. Городские теплофикационные системы . М., 1974.Сафонов А.П. Автоматизация системы централизованного теплоснабжения . Москва, 1974.
Соколов Е.Я. Теплофикация и тепловые сети , 4-е изд.М., 1975.
Зингер Н. М. Гидравлические и тепловые режимы теплофикационных систем . Москва, 1976.
Большая Советская Энциклопедия, 3-е издание (1970-1979). © 2010 The Gale Group, Inc. Все права защищены.
.Описание типов котлов| Комби, только нагрев и система
Как работает отопительный котел?
Котел, работающий только на нагрев (также называемый «обычным» или «обычным» бойлером) обеспечивает нагрев непосредственно радиаторов и работает с водонагревателем для подачи горячей воды. Они часто работают с так называемой системой отопления с открытой вентиляцией, то есть на чердаке есть питающий и расширительный бак, но они также могут работать и с герметичной системой.(Чтобы узнать, есть ли у вас открытая вентилируемая система, а также плюсы и минусы, прочтите наше Руководство по открытым вентилируемым и герметичным системам).
Для сравнения моделей котлов, работающих только на обогрев, и помощи в поиске лучшего котла, работающего только на обогрев, по цене, гарантии и эффективности, посетите наше блестящее руководство по котлам только для обогрева.
Что такое задний котел? Задний котел - это тип котла, работающего только на тепло, который расположен в дымоходе с огнем спереди. В настоящее время невозможно заменить задний котел в том же месте.Тем, у кого уже есть задний котел, которые хотели бы заменить его новым, вам нужно будет выбрать настенный отопительный котел в другом месте дома или рассмотреть вариант комбинированного котла. Для получения дополнительной помощи прочтите наше специальное руководство: Задние котлы: советы по замене, ремонту и обслуживанию
Преимущества отопительного котла
- Хорошо работают со старыми радиаторами. Старые радиаторные системы, которые находятся под высоким давлением воды, создаваемой системными или комбинированными котлами, могут протекать.
- Низкая стоимость замены, так как отопительные котлы - самый дешевый тип котла для покупки
Недостатки теплового котла
- Гарантия производителя распространяется только на котел. При этом в системе остается множество других компонентов (например, резервуар для горячей воды, насосы и клапаны), которые подлежат замене и поломке
Как работает системный котел?
Как и обычные котлы, системные котлы работают с накопителем горячей воды.В отличие от обычных котлов, система не имеет открытой вентиляции, то есть на чердаке нет резервуаров, и все компоненты, которые обычно находятся вне котла, работающего только на тепло (насосы, клапаны и т. Д.), Интегрированы в котел. Это современная версия обычного бойлера, которую часто устанавливают рядом с невентилируемыми водонагревателями.
Для сравнения моделей системных котлов и помощи в поиске лучшего системного котла по цене, сроку гарантии и эффективности прочтите наше специальное Руководство по системным котлам.
Преимущества системного котла
- Подходит для домов с высоким спросом на горячую воду, т. Е. С большим количеством душевых, так как бак без вентиляции может подавать хороший поток горячей воды к нескольким выходам одновременно
- Хорошая защита от гарантии производителя, так как в котел встроено больше компонентов системы
Недостатки системного котла
- Хороший расход горячей воды зависит от хорошего давления поступающей воды в водопроводной сети, при низком давлении внутренний расход будет низким
- Они требуют больше места, чем пароконвектомат.Если вы меняете комбинированный котел на системный котел, вам нужно будет найти подходящее место для водонагревателя, обычно на первом этаже
Установите или измените тип котла: наши лучшие советы
- Если у вас старые радиаторы или трубы, закопанные в стяжку - используйте котел с открытой вентиляцией, только обогреватель
- Если вы и ваша семья принимаете много душа одновременно - подумайте о переходе на системный бойлер с невентилируемым резервуаром для горячей воды (если у вас хороший напор воды)
- При ограниченном бюджете - замените существующий котел на котел того же типа в том же месте
- Хотите низкие затраты на техническое обслуживание - установите комбинированный бойлер с 10-летней гарантией / гарантией от производителя (при хорошем давлении воды).
- Расширение вашей собственности и добавление ванных комнат - рассмотрите системный котел с невентилируемым резервуаром для горячей воды (если давление воды хорошее)
.
Что такое управление цепочкой поставок и почему это важно?
Управление изменениями в поставках - это детализированная система, используемая как небольшими, так и крупными организациями для доставки продукции потребителям, начиная с получения сырья, производства и доставки конечного продукта покупателю. Хорошо организованная система управления цепочкой поставок предполагает оптимизацию операционных функций, чтобы они были быстрыми и эффективными.
Что такое управление цепочкой поставок?
Управление цепочкой поставок - это не только процесс, служащий для сокращения расходов в бюджете или задача по повышению операционной эффективности внутри организации.Несмотря на то, что они являются частью всей экосистемы, современное управление изменениями предложения включает в себя стратегическое согласование сквозных бизнес-процессов для реализации рыночной и экономической ценности, а также предоставление фирме конкурентных преимуществ перед их бизнес-конкурентами.
В последнее время с наступлением эпохи цифровых технологий мир коммерции полностью изменился. Всего двадцать лет назад эти процессы были тяжелыми, трудоемкими, длительными и неорганизованными. Сейчас это может показаться древней историей, время доставки сократилось с двух недель до месяца, а в некоторых случаях - до нескольких часов.Автоматизированные системы и высокоскоростная связь проложили путь к управлению цепочкой поставок и ее возросшему спросу.
Почему управление цепочкой поставок так важно?
Сегодня, более чем когда-либо, управление цепочкой поставок стало неотъемлемой частью бизнеса и имеет важное значение для успеха любой компании и удовлетворения потребностей клиентов. Управление цепочкой поставок может повысить качество обслуживания клиентов, снизить операционные расходы и улучшить финансовое положение компании, но как это работает?
Улучшение обслуживания клиентов
- Клиенты ожидают своевременной доставки правильного ассортимента и количества продукции. Например, если вы покупаете пять книг на Amazon, и поступают только два настоящих названия, одна - совершенно другая книга, а две отсутствуют, покупатель потеряет веру в Amazon, что побудит его оставить плохой отзыв и помешать ему возвращаясь на платформу.
- Товары должны быть под рукой в нужном месте. Удовлетворенность клиентов ухудшается, если тормозные колодки вашего автомобиля выходят из строя, а ремонтная мастерская задерживает ремонт из-за отсутствия запасных частей на месте.
- Последующая поддержка после продажи должна выполняться быстро. Когда в магазине бытовой техники продается печь с гарантией и она выходит из строя при температурах ниже нуля, покупатель с большой вероятностью разозлится, если нагревательный элемент не может быть отремонтирован немедленно.
Снижение эксплуатационных расходов
- Снижает затраты на закупку - Розничные торговцы зависят от цепочек поставок, чтобы быстро распределять дорогостоящие продукты, чтобы не сидеть на дорогих запасах.
- Снижение производственных затрат - Любая задержка производства может стоить компании десятки тысяч долларов. Этот фактор делает управление цепочкой поставок еще более важным. Надежная доставка материалов на сборочные предприятия позволяет избежать дорогостоящих задержек в производстве.
- Снижение общей стоимости цепочки поставок - Оптовые производители и розничные поставщики зависят от умелого управления цепочкой поставок при разработке сети, которая отвечает целям обслуживания клиентов. Это дает предприятиям конкурентное преимущество на рынке.
Улучшение финансового положения
- Увеличить прибыль - Менеджеры цепочки поставок создают добавленную стоимость, поскольку они помогают контролировать и сокращать расходы цепочки поставок.
- Уменьшение основных средств - Менеджеры цепочки поставок сокращают использование крупных основных средств, таких как заводы, склады и транспортные средства, что существенно снижает затраты.
- Увеличивает денежный поток - Фирмы ценят добавленную стоимость, управление цепочкой поставок способствует ускорению потока продуктов к клиентам.
Степень магистра в области управления операциями и цепочками поставок предназначена для того, чтобы дать студентам фундаментальное понимание управления цепочкой поставок компании с глобальной точки зрения с упором на усиление влияния операций и управления цепочкой поставок на эффективность и цели бизнеса. Программа подготовит менеджеров цепочки поставок, которые смогут работать в Европе, Азии, Латинской Америке и других регионах по всему миру. Выпускники смогут помочь компаниям в создании конкурентных преимуществ на основе высокого уровня технических и управленческих навыков, полученных на работе и в классе.
Курсы на получение степени магистра в области управления операциями и управления цепочками поставок в Глобальной бизнес-школе GBSB нацелены на высокий уровень интеграции между методами управления и технологиями, которые они контролируют, с упором на принятие стратегических решений и управление международной цепочкой поставок через границы. Темы включают проектирование и управление глобальной цепочкой поставок, глобальное управление проектами, управление качеством и финансовое управление.
Студенты, которые выбрали степень магистра в области управления операциями и цепочками поставок, часто занимают руководящие или консультационные должности в Европе и по всему миру в области управления цепочками поставок, управления операциями, производства, закупок или в смежных областях.
Вы заинтересованы в получении дополнительной информации о возможностях карьерного роста в управлении цепочками поставок и о том, подходит ли вам эта дисциплина? Прочтите этот пост или свяжитесь с нами.
Автор Эмили Доун Шайда, менеджер по контенту GBSB
.