Главное меню

Защита от перенапряжения в сети 380 вольт


Реле контроля напряжения в трехфазной сети 380В

Здравствуйте, уважаемые читатели сайта elektrik-sam.info!

В этой публикации мы рассмотрим, как обезопаситься от перепадов и скачков напряжения в трехфазных электрических сетях 380В.

О том, как влияют перепады напряжения на электропроводку и подключенные к ней приборы я уже подробно рассматривал. Напомню вкратце.

Повышение напряжения выше допустимого приводит к выходу из строя бытовой техники – она просто сгорает.

Снижение напряжения ниже допустимого уровня опасно для бытовой техники с электродвигателями, поскольку увеличиваются пусковые токи, что может привести к повреждению их обмоток.

Поэтому, с целью защиты электропроводки и подключаемых к ней электроприборов, применяют реле контроля напряжения, которые также еще называют реле перенапряжения, «барьерами» или реле максимального и минимального напряжения.

Эти реле осуществляют контроль действующего значения напряжения в электрической сети и, в случае выхода его за установленный диапазон, отключают внешнюю питающую электрическую сеть от внутренней сети, защищаю саму внутреннюю электропроводку и подключенные к ней электрические приборы.

В этой статье мы рассмотрим две различные схемы и два различных варианта использования реле напряжения в трехфазных электрических сетях 380В на примере реле напряжения DigiTOP.

Цель этой статьи – показать схематичное решение по защите от перепадов напряжения в трехфазных электрических сетях. Можно применять реле других производителей, принцип остается такой же.

Подробно описание принципа работы самого реле напряжения и схемы я рассматривал в статье по реле напряжения в однофазных сетях. Подробную инструкцию на само реле вы можете скачать в интернете, здесь напомню вкратце, что реле имеет две уставки:

— первая при превышении напряжением максимального значения, по умолчнию 250В;
— вторая уставка при снижении напряжения ниже 170В (по умолчнию).

Эти параметры выставляются на передней панели самого реле с помощью кнопок.

При выходе напряжения за этот диапазон, реле размыкает свой силовой контакт и отключает внешнюю электрическую сеть от внутренней.

Также можно задать время задержки на повторное подключение. После того, как реле отключилось, схематехника реле отслеживает значение напряжения, и когда оно снова возвращается в рабочий диапазон, спустя задержку времени реле снова замыкает свой силовой контакт и подключает внешнюю электрическую сеть к внутренней.

В тех квартирах и домах, где электропроводка трехфазная, все равно в основном используются однофазные потребители – обычные бытовые приборы и техника.

Потребители группируются по фазам, чтобы по возможности была равномерная нагрузка по каждой из фаз.

Давайте рассмотрим все это на конкретном примере.

Трехфазное напряжение подводится через вводной автоматический выключатель, трехфазный счетчик электрической энергии к электропроводке квартиры.

Потребители сгруппированы по каждой из трех фаз следующим образом:

— в первую фазу LA подключена электроплита;
— во вторую фазу LB подключены кондиционер, стиральная машина и розетки одной из комнат;
— в третью фазу LC подключены розетки кухни, розетки другой комнаты и освещение.

Для того, чтобы при выходе напряжения за свои допустимые значения при срабатывании реле контроля напряжения не обесточивалась сразу вся квартира, вместо одного общего устанавливают три отдельных реле напряжения в каждую фазу.

Если в одной из фаз напряжение выйдет за свой рабочий диапазон, сработает соответствующее реле и отключит внутреннюю проводку только в этой фазе. В оставшихся фазах, если величина напряжения находится в заданном диапазоне, потребители останутся подключенными и работоспособными.

Подробно пошаговую работу этой схемы смотрите в видео внизу этой статьи.

В случае подключения трехфазных потребителей применяется несколько другая схемотехника.

Для этого применяют специальное трехфазное реле напряжения, которое позволяет контролировать напряжение в каждой отдельной фазе, последовательность чередования фаз и контроль перекоса фаз.

Схема подключения в этом случае будет выглядеть следующим образом.

К реле напряжения подключаются все три фазы и ноль, чтобы контроллер реле контролировал напряжение отдельно по каждой из фаз, правильность чередования фаз и контроль перекоса фаз.

Через силовые контакты реле контроля напряжения подключен контактор К1. Один конец обмотки контактора подключен к нулевому проводу, второй через силовые контакты реле подключен к одной из фаз. На нашей схеме к фазе LA.

Силовые нормально-разомкнутые контакты К1.1, К1.2, К1.3 контактора подключают внешнюю трехфазную электрическую сеть к трехфазной нагрузке. Это могут быть электродвигатели, мощные калориферы, проточные водонагреватели и др.

Реле напряжения контролирует уровень действующих напряжений во всех трех фазах и, если они находятся в допуске, то через силовой контакт реле подается питание на контактор К1. Контакты контактора находятся в замкнутом состоянии и трехфазное напряжение внешней сети подается к нагрузке.

Если в одной из фаз напряжение выходит за установленный диапазон, реле напряжения размыкает свой силовой контакт, снимая питание с обмотки контактора К1. Контакты контактора размыкаются, отключая нагрузку от внешней трехфазной сети.

Когда напряжение вернется в свой рабочий диапазон, реле напряжения, спустя выдержку времени, вновь замкнет свой силовой контакт, подавая питание на обмотку контактора.

Контакты контактора замкнутся и нагрузка снова подключится к питающей сети.

Таким вот образом работает эта схема. В быту эта схема применяется редко, это больше промышленный вариант, чаще всего применяется первая схема.

Более подробно пошагово смотрите работу этих схем в видео:

Реле контроля напряжения. Защита от скачков напряжения в трехфазных сетях


Рекомендую материалы по теме:

Реле контроля напряжения. Защита от скачков напряжения.

Схема подключения нескольких реле напряжения.

Стабилизатор или реле напряжения — что выбрать?

Автоматические выключатели УЗО дифавтоматы — руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

УЗО — стратегия выбора.

Автоматические выключатели — стратегия выбора.

Автоматические выключатели — конструкция и принцип работы.

Расчет сечения кабеля.

Расчет сечения кабеля. Ошибки.

Как рассчитать номинальный ток автоматического выключателя?

Устройство УЗО и принцип действия.

Как выбрать УЗО.

Защита от перенапряжения сети для дома (220 и 380 вольт)

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

https://www.youtube.com/watch?v=e86nhzDoncM

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Категория Применение
В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

Пример организации трехуровневой защиты продемонстрирован ниже.

Организация трехуровневой защиты от перенапряжения

Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

УЗИП Finder (категория II)

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

РКН можно подключать после счетчика

Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

РКН в виде удлинителя и розеточного модуля

Данные устройства могут произвести только защитное отключение сети, при выходе напряжения за указанные пределы (устанавливается кнопками управления), после нормализации электросети производится ее подключение. Стабилизация и фильтрация не производятся.
https://www.youtube.com/watch?v=AyTLz6G9Ul8

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

Список использованной литературы

Схема подключения УЗИП - 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

УЗИП или реле напряжения

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • TV 
  • видеонаблюдение 
  • охранная сигнализация 

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком - вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом - УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог 
  • УЗО 100-300мА – защита от пожара
  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий
  • красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.



Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Ошибки при подключении

1Самая распространенная ошибка - это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

3Использование УЗИП не соответствующего класса.

Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.

Статьи по теме

Защита от перенапряжения сети 🔌 220в, 380в и скачков напряжения для дома и квартиры

Современная жизнь приводит к появлению все большего количества сложной бытовой техники, оборудования и электроники в наших домах и квартирах. При этом качество электроснабжения желает быть лучшим по различным причинам. С другой стороны, промышленность предлагает целый ряд электротехнических приборов, позволяющих решать обозначенные проблемы своими руками в собственном жилье. Давайте познакомимся с ними и сделаем свой выбор.

Контроль уровня напряжения в сети

Виды скачков напряжения в сети электроснабжения

Трудно выбрать правильную систему защиты от перепадов напряжения, не зная их природу и характер. При этом все они имеют природный или техногенный характер:

  1. Зачастую напряжение в сети становится стабильно низким. Причина – перегрузка устаревшей линии электропередачи (ЛЭП), например, в результате массового подключения электронагревателей или кондиционеров в соответствующий сезон.
  2. В этих же условиях напряжение может оказаться завышенным длительное время при недостаточной нагрузке.
  3. Возможна ситуация, когда при стабильном общем уровне питания в линии электроснабжения появляются импульсы и скачки высокого напряжения. Причиной бывает работа сварочного аппарата, мощного электроинструмента, технологического оборудования или некачественного контакта в ЛЭП.
  4. Довольно неприятной неожиданностью является обрыв нулевого провода в сети 380 В питающей подстанции. В результате различной нагрузки по трем фазам возникает перекос напряжения, то есть на Вашей линии оно окажется слишком низким или завышенным.
  5. Удар молнии в ЛЭП вызывает огромный скачок перенапряжения, что приводит к выходу из строя и бытовой техники, и внутренней проводки зданий, что приводит к пожару.

Как защищают бытовую технику пробки и автоматы

Долгое время в наших домах и квартирах универсальным средством обороны от перечисленных выше неприятностей оставались плавкие предохранители под названием пробки. На смену им пришли современные автоматические выключатели (автоматы), и бесшабашный народ перестал ставить «жучки», восстанавливая сгоревшие пробки. Сегодня во многих квартирах автоматические выключатели остаются практически единственным средством защиты от проблем в домашней электросети.

Автоматические выключатели приходят на смену плавким предохранителям

Во время работы автоматический выключатель срабатывает, когда протекающий через него ток превышает значение, указанное на его корпусе. Это позволяет защитить электропроводку от перегрева, короткого замыкания и возгорания в случае перегрузки. При этом перенапряжение успевает вывести из строя электронику, а при коротком скачке автомат даже не сработает.

Таким образом, мощный импульс, вызванный ударом молнии, проходит через автоматический выключатель и может пробить проводку с перечисленными последствиями.

Иными словами, от повышенного напряжения и его скачков или перепадов автомат не спасает.

Зачем в домашней сети подключают УЗИП

Специально для организации системы защиты от ударов молнии и возникающих при этом импульсов перенапряжения разработаны УЗИП – устройства защиты от импульсных помех. Отметим, что ЛЭП имеют определенные средства компенсации ударов молнии. Также в блоках питания современных электронных устройств имеются УЗИП класса III.

Модульные УЗИП для монтажа в электрощите

Однако этого недостаточно, если Вы живете в частном доме, запитанном от воздушной линии электропередачи. Методика выбора и подключения УЗИП приводится в статье «Устройство защиты от импульсных грозовых перенапряжений, схема подключения». В любом случае для защиты от молнии поможет громоотвод, о котором рассказано в статье «Как правильно сделать громоотвод и молниезащиту в частном доме своими руками».

Функции УЗО в схеме электроснабжения дома

В схеме электроснабжения современного дома обязательно присутствует УЗО – устройство защитного отключения. Его основное предназначение – защита людей от удара электрическим током, а также защита электропроводки от пробоя и утечки, что может привести к пожару. Методика выбора и подключения УЗО приводится в специальной статье.

Однофазное и трехфазное УЗО

Несомненно, если в Вашем доме еще не установлено УЗО, это нужно обязательно сделать. При этом от перепадов напряжения устройство защитного отключения спасает лишь в некоторой степени и косвенным образом.

Защита электроприборов с помощью стабилизатора напряжения

Электрический стабилизатор — это прибор, который поддерживает на выходе стабильное напряжение при его изменении на входе в допустимых пределах. Прибор может иметь различную мощность и обеспечивать стабильное электропитание всего дома, либо отдельных потребителей.

Стабилизаторы напряжения различной мощности

Стабилизатор прекрасно справляется с коррекцией медленно меняющегося пониженного или повышенного напряжения. В зависимости от принципа работы он компенсирует резкие скачки или импульсы перенапряжения в разной степени.

В современных агрегатах имеется функция отключения подачи питания, когда его уровень в сети принимает предельные значения. После возвращения входного напряжения к допустимой величине электроснабжение восстанавливается.

При этом прибор не защищает от грозового перенапряжения.

Из рассмотренных нами устройств стабилизатор является наиболее дорогим. Читайте статью «Как правильно выбрать бытовой стабилизатор напряжения 220в для дачи и частного дома».

Альтернативный вариант — реле контроля напряжения в сети

Бюджетной альтернативой стабилизатору является реле контроля напряжения, которое выполняет оговоренную нами функцию отключения электропитания при выходе напряжения в сети за допустимые пределы. В зависимости от исполнения, устройство срабатывает при перенапряжении, либо контролирует и его нижний уровень.

Варианты модульных реле напряжения

Существуют модификации реле, которые восстанавливают питание автоматически при его возвращении к допустимым пределам, или это нужно делать вручную. Наиболее совершенные устройства предоставляют возможность установки уровней напряжения, при которых наступает отключение потребителей и времени задержки при возвращении питания. Например, холодильник нельзя включать в сеть повторно в течение пяти минут, чтобы не повредить компрессор. Именно такое значение можно задать на реле.

Реле напряжения ASV-3M после срабатывания необходимо включить вручную

При этом реле не обеспечивает стабильное напряжение, не компенсирует импульсные скачки и не защищает от грозового перенапряжения. Иными словами, такой способ защиты подходит в ситуации, когда напряжение в сети нормальное, но возможны его редкие и значительные отклонения, в том числе, в результате аварии в сети электроснабжения.

Реле напряжения для маломощных потребителей

Существуют варианты исполнения для защиты отдельных потребителей в виде удлинителя или моноблока с вилкой и розеткой. Эти устройства рассчитаны на ток нагрузки 6-16А. Аналогичные приборы в модульном исполнении монтируются на электрощите.

Реле модульного типа может иметь на выходе переключающую группу контактов, нормально разомкнутые контакты, а также две отдельные группы нормально разомкнутых или нормально замкнутых контактов. Это позволяет реализовать разные варианты управления питанием потребителей.

Монтажная схема подключения реле напряжения в сети 220В

Электромонтаж реле напряжения модульного типа можно выполнить по вышеприведенной иллюстрации. В любом случае устройство подключается после входного автомата. Нулевой провод подсоединяется к клемме N, а провода фазы — к нормально разомкнутым контактам реле.

Для защиты более дорогого устройства его номинальный рабочий ток выбирается на ступень выше, чем значение, указанное на корпусе входного автомата. Например, если перед реле установлен автомат на 40А, выбирают прибор с номинальным значением 50А.

Если устройство с необходимым значением рабочего тока отсутствует, либо стоит слишком дорого, его можно заменить реле напряжения с минимальным параметром нагрузки. При этом к его выходу подключается контактор необходимой мощности или пускатель, который подает напряжение на потребители.

Схема подключения реле напряжения с применением контактора

Электромонтаж реле напряжения в паре с контактором приведен на схеме. В данном примере собственно реле напряжения подключается также после входного автомата, счетчика и УЗО. Провод фазы с выходного контакта реле подключается к клемме управляющей обмотки контактора, а к ее второй клемме подсоединяется нулевой провод (выступающая часть корпуса). На выходные клеммы контактора (дальняя часть корпуса) сверху подаются фаза питания и ноль, а снизу подключаются провода фазы и нуля потребителей.

При наличии нормального уровня напряжения в сети реле контроля замыкает выходные контакты и подает питание на обмотку контактора. Он, в свою очередь, замыкает выходные контакты и подает питание потребителям. При отсутствии напряжения в сети или выходе его за допустимые пределы цепи последовательно разрываются и питание нагрузки отключается.

Схема подключения нескольких реле напряжения в однофазной сети

В ряде случаев удобно использовать несколько реле напряжения для разных типов потребителей. При этом для наиболее дорогих электронных потребителей, как, например, компьютеры, можно задать с помощью соответствующего реле допустимый диапазон входного питания в пределах 200-230В.

Бытовым электроприборам с электродвигателями, как, например, холодильник или стиральная машина, можно установить диапазон напряжения 185-235В. Потребители типа утюга, обогревателя или водонагревателя могут питаться напряжением 175-245В. Внутренние таймеры реле можно настроить на разное время задержки возобновления питания.

Как работает реле контроля фаз в сети 380В

В сети 380В может быть установлено трехфазное реле напряжения. Это имеет смысл, если в доме имеется оборудование с трехфазным питанием.

Подключение реле напряжения в сети 380В

В этом случае реле срабатывает при отклонении напряжения на любой фазе и отключает нагрузку по всем трем линиям. При отсутствии потребителей с питанием 380В удобнее и дешевле подключить три отдельных реле напряжения. В этом случае мы получаем три группы потребителей 220В, для которых могут быть установлены различные предельные значения напряжения и время задержки.

Схема подключения реле напряжения на каждой фазе в сети 380В

От чего защищает ИПБ

Основная задача источника бесперебойного питания (ИПБ) – обеспечение потребителей электроэнергией при отсутствии напряжения в сети. Наиболее часто этот прибор используют для питания компьютеров. Хотя ИПБ обеспечивает напряжение 220 вольт непродолжительное время, имеется возможность сохранить информацию и выключить компьютер. Актуально применение источника бесперебойного питания при использовании малогабаритной электростанции для беспрерывной подачи энергии в момент ее запуска.

Распространенный источник бесперебойного питания

Очевидно, что применение ИПБ функционально, если в сети электроснабжения дома установлено реле напряжения. При использовании аккумулятора достаточной емкости к источнику бесперебойного питания может быть подключен газовый котел. Аккумулятора на 60 АЧ хватит для обеспечения напряжением котла мощностью 160Вт примерно в течение суток.

ИПБ с двойным преобразованием работает при изменении напряжения на входе в широких пределах, однако стоит очень дорого.

Вероятно, в большинстве случаев, в бытовых целях практичнее использовать одновременно недорогой источник бесперебойного питания и стабилизатор или реле напряжения.

Чем поможет сетевой фильтр

Чаще всего бытовые сетевые фильтры выполнены в виде удлинителя. Таким образом, к нему может быть подключено сразу несколько единиц бытовой техники. Фильтры отличаются количеством розеток и длиной кабеля. Обычно устройство снабжается собственным выключателем с индикацией подачи питания. Фильтр может иметь индивидуальные выключатели питания для каждой розетки.

Популярные сетевые фильтры

Ряд моделей имеют защиту от короткого замыкания и перегрузки. Общий ток нагрузки устройств такого рода не превышает 6-16А. Собственно фильтр таких устройств состоит из нескольких конденсаторов и катушек индуктивности. Таким образом, обеспечивается защита электроники от маломощных и коротких импульсов помех. Последние могут создаваться, в том числе, бытовой техникой, подключенной в домашней сети.

Заметим, что блоки питания большинства современных электронных приборов уже имеют аналогичные схемы в своем составе. Иными словами, подобные сетевые фильтры можно рассматривать как удлинители с дополнительной фильтрацией и сервисными возможностями.

Система защиты от скачков напряжения своими руками

Ознакомившись с вышеизложенной информацией, Вы сможете подобрать систему с защиты домашней сети от нестабильности напряжения разного рода. При этом важно правильно оценить характер угрозы. В зависимости от обстоятельств может быть обеспечена защита от скачков напряжения как всей сетевой проводки в доме, так и отдельных приборов. В статье «Как выбрать стабилизатор для защиты холодильника от перепадов и скачков напряжения 220в» мы рассказываем о том, как можно сделать импровизированный стабилизатор для холодильника своими руками.

Как защитить технику от перепадов напряжения | Сетевые фильтры | Блог

Внезапные перепады напряжения грозят плачевными последствиями для бытовой техники: выход из строя без надежды на ремонт. А для загородного дома в период летних гроз эта проблема становится наиболее актуальной. Почему происходят перепады и чем они опасны для техники? Как надежно защититься от скачков напряжения?

Чем опасны перепады напряжения

Перепад напряжения может быть вызван одновременным отключением нескольких мощных устройств, аварией на электросетях, нестабильной работой подстанции из-за перегрузки, эксплуатацией сварочного аппарата, низким качеством материалов электропроводки или ее монтажа. Нередко к существенному скачку напряжения приводит и удар молнии по линии электропередач.

Большинство перепадов незначительны и остаются незамеченными нами, но не техникой. Любой скачок, из-за которого напряжение в сети становится выше 250 Вольт, снижает срок службы подключенных устройств или дестабилизирует их работу. Даже несущественные отклонения на 5-10 %, происходящие регулярно, приводят к сбоям в управляющих блоках, сбросу настроек, возникновению помех. Перепады на 10-25 % сокращают срок службы приборов почти вдвое. А скачки напряжения до 300 Вольт выводят из строя блоки питания, управляющие и сенсорные панели, электродвигатели, сетевое оборудование.

В большинстве многоквартирных домов качество электропроводки оставляет желать лучшего, они не выдерживают нагрузки, ведь в каждой квартире одновременно работают десятки приборов. Безусловно, лучше поменять в квартире проводку, чтобы минимизировать вероятность перепадов и не довести до пожара. Но даже если нет такой возможности, обезопасить себя и родных можно.


Основной параметр при выборе устройств, способных защитить от перепадов напряжения, — это  выходная мощность, которая берется из силы тока (указывается в амперах А) умноженной на напряжение (указывается в вольтах В). Ее величина, указываемая в вольт-амперах (ВA), должна соответствовать общей мощности, потребляемой приборами. Поэтому перед приобретением нужно посчитать общую мощность техники, которую вы планируете подключить. 

Сетевые фильтры

Так называемый сетевой фильтр — это зачастую просто разветвитель/удлиннитель, защитные функции у которого либо фактически отсутствуют, либо являются минимальными и способны защитить только от перегрузки или короткого замыкания.

Однако среди «обманок» прячутся и настоящие сетевые фильтры, которые с помощью LC-контура фильтруют высокочастотные помехи в сети. Стоимость таких устройств, естественно, выше, но для некоторых видов техники наличие полноценной фильтрации необходимо. У приборов с LC-контуром есть характеристика «Подавление электромагнитных / радиочастотных шумов». Если вам нужен такой вариант, обращайте на нее внимание.

Стабилизаторы напряжения

Если подаваемое напряжение в сети не соответствует заданным нормам, стабилизатор нормализует его. К тому же стабилизатор повторяет функции хорошего сетевого фильтра: защита от короткого замыкания, от перенапряжения и высоковольтных импульсов, а также фильтрация помех. Маломощные стабилизаторы можно устанавливать для отдельного электроприбора, например, для холодильника, так как этот прибор наиболее болезненно реагирует на скачки напряжения. Супермощные стабилизаторы устанавливаются для всей сети, такие модели наиболее полезны для загородных домов или в районах, где с напряжением постоянные проблемы.

В сетях 220 Вольт используются однофазные стабилизаторы, в сетях 380 Вольт — три однофазных либо один трехфазный. Хороший стабилизатор хоть и стоит в разы дороже сетевого фильтра, однако он реально защищает технику от серьезных перепадов напряжения и обеспечивает стабильную работу.

Источники бесперебойного питания (ИБП)

ИБП объединяет в себе функции сетевого фильтра и стабилизатора (кроме резервного типа), но помимо этого позволяет технике работать еще какое-то время после отключения электропитания. Бесперебойники бывают трех типов: резервные, интерактивные и с двойным преобразованием.

Резервный вариант — самое простое и дешевое решение. Он пропускает ток через LC-контур, как в хороших сетевых фильтрах, а если необходимое напряжение отсутствует, осуществляется переключение на аккумуляторы. К недостаткам резервных бесперебойников можно отнести задержку при переключении на батареи (5 – 15 миллисекунд).

Интерактивные ИБП оснащены ступенчатым стабилизатором, позволяющим поддерживать надлежащее напряжение на выходе без использования батарей, что увеличивает срок их службы. Такие источники бесперебойного питания годятся для ПК и значительной части бытовой техники.

Бесперебойникис двойным преобразованиемпреобразуют полученный переменный ток в постоянный, а на выходе подают снова переменный с необходимым напряжением. Аккумуляторные батареи при этом все время подключены к сети, переключение не производится. ИБП данного типа отличаются более высокой стоимостью, в то же время создают больший шум при эксплуатации и сильнее нагреваются. Применяются в основном для требовательного к надежности питания оборудования: серверов, медицинское оборудования.

Реле напряжения

Реле напряжения, также называемые реле-прерывателями, производят размыкание электрических цепей при перепадах напряжения. После отключения питания реле через небольшие временные интервалы проверяет состояние напряжения, и при нормальных значениях возобновляет подачу тока.

Некоторые модели оснащения регуляторами, позволяющие настраивать реле под разные приборы, устанавливая верхний и нижний предел перепадов для отключения, а также время последующей активации. Существуют модели реле-прерывателей как для монтирования в электрощиток, так и для отдельной установки в розетку.

Как защитить дом от импульсных перенапряжений / Статьи и обзоры / Элек.ру

В техподдержке интернет-магазина «АСберг АС» клиенты часто задают вопросы о том как защитить дом от перепадов напряжения, что такое устройства защиты от перенапряжения, какие они бывают и как их подбирать. Класс продукции УЗИП известен покупателям значительно меньше чем автоматические выключатели или УЗО и игнорирование защиты от перенапряжения часто служит причиной пожаров и выхода из строя дорогостоящего электронного оборудования в частных домах. Хотелось бы восполнить этот пробел в знаниях покупателей и рассказать более подробно о том, что такое УЗИП, для чего он нужен и как его подобрать.

УЗИП: особенности выбора и применения

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

Что такое УЗИП и для чего оно нужно?

Широкое распространение получили УЗИП
с быстросъемным креплением для установки на DIN-рейку

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено Где применяется
I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта.
Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.
Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ).
Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты.
Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.
Монтируются и подключаются к сети в распределительных щитах.
Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью.
Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.
Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются.
Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S.
В системе заземления TN-C применяется трехполюсное УЗИП.
В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

Оценка значимости защищаемого оборудования

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

Группа Что включает Где определяется
Первая Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей МЭК 62305-3
Вторая Меры защиты для минимизации отказов электрических и электронных систем МЭК 62305-4
Третья Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии) МЭК 62305-5
Оценка риска воздействия на объект

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (электроустановки зданий):

  • МЭК 60364-4-443 (защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).
  • МЭК 60364-4-443-4 (выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.
Выбор оборудования по МЭК 6036

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ. Это тот уровень, который должна выдерживать техника.
Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

Выбор защитной аппаратуры: чувствительное оборудование и оборудование зданияВыбор защитной аппаратуры: бытовая техника и электроникаВыбор защитной аппаратуры: производственное оборудованиеВыбор защитной аппаратуры: ответственное оборудование

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

Повышенное напряжение источника питания »Примечания по электронике

Защита от перенапряжения блока питания действительно полезна - некоторые отказы блока питания могут привести к повреждению оборудования большим напряжением. Защита от перенапряжения предотвращает это как на линейных регуляторах, так и на импульсных источниках питания.


Пособие по схемам источника питания и руководство Включает:
Обзор электронных компонентов источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Хотя современные блоки питания сейчас очень надежны, всегда есть небольшая, но реальная вероятность того, что они могут выйти из строя.

Они могут выйти из строя по-разному, и одна особенно тревожная возможность заключается в том, что элемент последовательного прохода, то есть транзистор главного прохода или полевой транзистор, может выйти из строя так, что произойдет короткое замыкание. Если это произойдет, в цепи, на которую подается питание, может появиться очень большое напряжение, часто называемое перенапряжением, что приведет к катастрофическому повреждению всего оборудования.

Добавив небольшую дополнительную схему защиты в виде защиты от перенапряжения, можно защитить от этой маловероятной, но катастрофической возможности.

В большинстве источников питания, предназначенных для очень надежной работы дорогостоящего оборудования, предусмотрена защита от перенапряжения в той или иной форме, чтобы гарантировать, что любой отказ источника питания не приведет к повреждению оборудования, на которое подается питание. Это относится как к линейным источникам питания, так и к импульсным источникам питания.

Некоторые источники питания могут не иметь защиты от перенапряжения, и они не должны использоваться для питания дорогостоящего оборудования - можно немного спроектировать электронную схему и разработать небольшую схему защиты от перенапряжения и добавить ее в качестве дополнительного элемента. .

Основы защиты от перенапряжения

Есть много причин, по которым блок питания может выйти из строя. Однако, чтобы понять немного больше о защите от перенапряжения и проблемах схемы, легко взять простой пример линейного регулятора напряжения, использующего очень простой стабилитрон и транзистор с последовательным проходом.

Базовый последовательный стабилизатор с использованием стабилитрона и эмиттерного повторителя

Хотя более сложные источники питания обеспечивают лучшую производительность, они также используют последовательный транзистор для передачи выходного тока.Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора.

Обычно входное напряжение таково, что на элемент последовательного регулятора напряжения падает несколько вольт. Это позволяет последовательному транзистору адекватно регулировать выходное напряжение. Часто падение напряжения на последовательном транзисторе является относительно высоким - для источника питания 12 вольт входное напряжение может составлять 18 вольт и даже больше, чтобы обеспечить необходимое регулирование и подавление пульсаций и т. Д.

Это означает, что в элементе регулятора напряжения может быть значительное количество тепла, рассеиваемого в сочетании с любыми всплесками переходного процесса, которые могут появиться на входе, это означает, что всегда существует вероятность отказа.

Устройство последовательного прохода транзистора чаще всего выходит из строя в состоянии разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером. Если это произойдет, то на выходе регулятора напряжения появится полное нерегулируемое входное напряжение.

Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем в цепи питания. В этом случае ремонт схемы может оказаться невозможным.

Принцип работы импульсных регуляторов сильно отличается, но бывают обстоятельства, при которых полный выходной сигнал может появиться на выходе источника питания.

Как для источников питания с линейным стабилизатором, так и для импульсных источников питания всегда рекомендуется какая-либо защита от перенапряжения.

Виды защиты от перенапряжения

Как и во многих электронных технологиях, существует несколько способов реализации той или иной возможности. Это верно для защиты от перенапряжения.

Можно использовать несколько различных техник, каждая из которых имеет свои особенности. При определении того, какой метод использовать на этапе проектирования электронной схемы, необходимо взвесить производительность, стоимость, сложность и режим работы.

  • Лом SCR: Как следует из названия, цепь лома вызывает короткое замыкание на выходе источника питания, если возникает состояние перенапряжения.Обычно для этого используются тиристоры, то есть тиристоры, поскольку они могут переключать большие токи и оставаться включенными до тех пор, пока не рассеется какой-либо заряд. Тиристор может быть снова подключен к предохранителю, который перегорает и изолирует регулятор от дальнейшего воздействия на него напряжения.

    Схема защиты от перенапряжения тиристорного лома

    В этой схеме стабилитрон выбран так, чтобы его напряжение было выше нормального рабочего напряжения на выходе, но ниже напряжения, при котором может произойти повреждение. В этой проводимости ток через стабилитрон не протекает, потому что его напряжение пробоя не было достигнуто, и ток не течет на затвор тиристора, и он остается выключенным.Блок питания будет работать нормально.

    При выходе из строя последовательного транзистора в блоке питания напряжение начинает расти - развязка в блоке гарантирует, что оно не будет повышаться мгновенно. Когда он поднимается, он поднимается выше точки, в которой стабилитрон начинает проводить, и ток будет течь в затвор тиристора, вызывая его срабатывание.

    Когда тиристор срабатывает, он замыкает выход источника питания на землю, предотвращая повреждение схемы, которую он питает.Это короткое замыкание также можно использовать для перегорания предохранителя или другого элемента, отключая питание регулятора напряжения и изолируя устройство от дальнейшего повреждения.

    Часто некоторая развязка в виде небольшого конденсатора помещается от затвора тиристора к земле, чтобы предотвратить резкие переходные процессы или высокочастотные помехи от источника питания, которые поступают на соединение затвора и вызывают ложный запуск. Однако его не следует делать слишком большим, так как это может замедлить срабатывание цепи в реальном случае отказа, а защита может сработать слишком медленно.

    Примечание по защите от перенапряжения тиристорного лома:

    Тиристор или SCR, выпрямитель с кремниевым управлением, может использоваться для защиты от перенапряжения в цепи источника питания. Обнаружив высокое напряжение, схема может активировать тиристор, чтобы поместить короткое замыкание или лом на шину напряжения, чтобы гарантировать, что оно не поднимется до высокого напряжения.

    Подробнее о Схема защиты тиристорного лома от перенапряжения.

  • Фиксация напряжения: Другая очень простая форма защиты от перенапряжения использует метод, называемый фиксацией напряжения. В простейшей форме это может быть обеспечено с помощью стабилитрона, установленного на выходе регулируемого источника питания. Если напряжение на стабилитроне выбрано немного выше максимального напряжения шины, в нормальных условиях он не будет проводить. Если напряжение поднимается слишком высоко, оно начинает проводить, ограничивая напряжение на значении, немного превышающем напряжение шины.

    Если для регулируемого источника питания требуется более высокий ток, можно использовать стабилитрон с транзисторным буфером. Это увеличит пропускную способность по току по сравнению с простой схемой на стабилитроне в коэффициент, равный коэффициенту усиления по току транзистора. Поскольку для этой схемы требуется силовой транзистор, вероятные уровни усиления по току будут низкими - возможно, 20-50.

    Зажим перенапряжения на стабилитроне
    (а) - простой стабилитрон, (б) - повышенный ток с транзисторным буфером
  • Ограничение напряжения: Когда для импульсных источников питания требуется защита от перенапряжения, методы SMPS с зажимом и ломом используются менее широко из-за требований к рассеиваемой мощности, а также из-за возможных размеров и стоимости компонентов.

    К счастью, большинство импульсных регуляторов выходят из строя из-за низкого напряжения. Однако часто бывает целесообразно использовать возможности ограничения напряжения в случае возникновения перенапряжения.

    Часто этого можно достичь, определив состояние повышенного напряжения и отключив преобразователь. Это особенно применимо в случае преобразователей постоянного тока в постоянный. При реализации этого необходимо включить измерительную петлю, которая находится за пределами основного регулятора IC - многие импульсные регуляторы и преобразователи постоянного тока используют микросхему для создания большей части схемы.Очень важно использовать внешний контур считывания, потому что, если микросхема регулятора режима переключения повреждена, вызывая состояние перенапряжения, механизм считывания также может быть поврежден.

    Очевидно, что для этой формы защиты от перенапряжения требуются схемы, специфичные для конкретной схемы, и используемые микросхемы импульсного источника питания.

Используются все три метода, которые могут обеспечить эффективную защиту от перенапряжения источника питания. У каждого есть свои преимущества и недостатки, и выбор техники должен зависеть от конкретной ситуации.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем. . .

.

Что такое защита от перенапряжения? - Устройства защиты от перенапряжения

Когда напряжение в системе превышает номинальное, это называется перенапряжением. Это перенапряжение может быть кратковременным или постоянным. Основную причину, из-за которой возникает перенапряжение в энергосистеме, можно удобно сгруппировать в две категории: внутреннюю и внешнюю. Внутреннее перенапряжение возникает внутри самой системы, тогда как внешнее перенапряжение возникает из-за молнии на линиях.

Это перенапряжение может вызвать повреждение изоляторов и оборудования подстанции. Следовательно, необходимо обеспечить средства защиты изоляторов и других устройств от вредного воздействия перенапряжения. Доступны некоторые устройства для уменьшения амплитуды и крутизны фронта выбросов. Следующее будет описано здесь

  1. Зазор стержня
  2. Перенапряжение
  3. Воздушный провод заземления

Воздушный провод заземления

Воздушный заземляющий провод или заземляющий провод - одно из наиболее распространенных устройств, используемых для защиты линий от молнии.Это провод, который проходит через опоры линии и проходит по фазным проводам. Заземляющий провод предназначен для блокирования прямых ударов молнии, которые в противном случае могли бы поразить фазные проводники. Волны молний достигают соседних башен, которые безопасно спускают их на землю.

В случае, если сопротивление электрической опоры или заземления небольшое, освещение будет повышено до очень высокого напряжения, что вызовет мигание от опоры к одному или нескольким фазным проводам. Такое перекрытие известно как черная вспышка.Обратную вспышку на линии можно свести к минимуму, уменьшив сопротивление опоры мачты с помощью приводных стержней и противовеса в местах с высоким удельным сопротивлением грунта.

Зазор стержня

Штанговый зазор - одна из самых распространенных рам защитных устройств. Это воздушный зазор между концами двух стержней. Настройка зазора должна быть такой, чтобы он разрывался при любых условиях до того, как будет повреждено защищаемое оборудование. Главные достоинства этого устройства - простота, надежность и дешевизна.

Зазор стержня имеет некоторые ограничения, например, они не могут предотвратить поток энергии, который течет в зазоре после пробоя. Применяется там, где бесперебойность электроснабжения не имеет большого значения. В таких случаях (когда важна непрерывность) используются автоматические выключатели с повторным включением.

Прерыватели перенапряжения

Ограничители перенапряжения или грозозащитный разрядник - это устройство, используемое для отвлечения аномально высокого напряжения на землю без нарушения непрерывности электроснабжения.Делители перенапряжения бывают трех типов

  1. Переключатель перенапряжения вытеснительного типа
  2. Клапанный переключатель перенапряжения
  3. Металлооксидный переключатель перенапряжения

Название устройства защиты от перенапряжения кажется более правильным, чем грозозащитный разрядник.

.

Защита от перенапряжения на входе операционного усилителя

Метод защиты от перенапряжения Условия перенапряжения могут быть вызваны рядом различных ситуаций. Рассмотрим систему, в которой удаленный датчик расположен в поле - например, он измеряет поток жидкости на нефтеперерабатывающем заводе и отправляет свой сигнал по кабелю в электронику сбора данных, которая находится в другом физическом месте. Первым каскадом в сигнальном тракте электроники сбора данных часто может быть операционный усилитель, сконфигурированный как буфер или усилитель усиления.Вход этого операционного усилителя подвергается воздействию внешнего мира и, следовательно, может быть подвержен инцидентам перенапряжения, таким как короткое замыкание из-за поврежденного кабеля или неправильное подключение кабеля к электронике сбора данных.

Точно так же ситуация, которая может вызвать состояние перенапряжения, - это когда входной сигнал, который обычно находится в диапазоне входного напряжения усилителя, внезапно получает внешний стимул, вызывающий скачок напряжения, превышающий напряжение питания операционного усилителя.

Третий сценарий, который может привести к состоянию перенапряжения на входе, связан с последовательностью включения операционного усилителя и других компонентов в тракте прохождения сигнала. Например, если источник сигнала, такой как датчик, получает питание до того, как это сделает операционный усилитель, выход источника может начать выдавать напряжение, которое затем будет подаваться на вход операционного усилителя, даже если операционный усилитель контакты питания еще не имеют питания и по существу находятся на земле. Это создаст ситуацию перенапряжения и, вероятно, вызовет чрезмерный ток через вход операционного усилителя на землю (контакты питания без питания).

Зажим: классический метод защиты от перенапряжения

Очень популярный способ добавления OVP показан на рисунке 1. Когда амплитуда входного сигнала (V IN ) превышает одно из напряжений питания плюс прямое напряжение диода, диод (D OVPP или D OVPN ) будет направлять смещение и отправлять ток на шины питания, а не на входы операционного усилителя, где избыточный ток может повредить операционный усилитель. В этом приложении мы используем ADA4077, операционный усилитель чрезвычайно высокой точности с максимальным диапазоном питания 30 В (или ± 15 В).

Ограничивающие диоды представляют собой диоды Шоттки 1N5177, поскольку они имеют прямое напряжение приблизительно 0,4 В, что меньше прямого напряжения входных диодов защиты от электростатического разряда (ESD) операционного усилителя; таким образом, ограничивающие диоды начнут проводить ток раньше, чем диоды ESD. Резистор защиты от перенапряжения R OVP ограничивает прямой ток через ограничивающие диоды, чтобы поддерживать их на уровне ниже максимального номинального тока, предотвращая их повреждение чрезмерным током.Резистор R FB в контуре обратной связи присутствует, потому что любой входной ток смещения на неинвертирующем входе может вызвать ошибку входного напряжения на R OVP - добавление R FB аннулирует ошибку, генерируя аналогичное напряжение на инвертирующий вход.

Рис. 1. Классическая схема зажима для защиты от перенапряжения.

Компромисс схемы зажима диода - снижение точности

Хотя классическая схема на рис. 1 защищает входы операционного усилителя, она вносит значительную ошибку в тракт прохождения сигнала.Прецизионные усилители обычно имеют входное напряжение смещения (V OS ) в диапазоне микровольт. Например, максимальное напряжение V OS для ADA4077 составляет 35 мкВ во всем диапазоне рабочих температур от –40 ° C до + 125 ° C. Добавление внешних диодов и резистора перенапряжения приводит к ошибке смещения входа, которая может быть во много раз больше, чем низкое смещение, присущее прецизионному операционному усилителю.

Диоды с обратным смещением обладают обратным током утечки, который течет от катода через анод к источнику питания.Когда напряжение входного сигнала (V IN ) находится между шинами питания, диоды D OVPP и D OVPN имеют на себе обратное напряжение. При V IN на земле (середина диапазона входного напряжения) обратный ток через D OVPN примерно равен обратному току утечки через D OVPP . Однако, когда V CM движется над или под землей, через один диод протекает больший обратный ток, чем через другой. Например, когда V CM находится в верхней части диапазона входного напряжения операционного усилителя, который составляет 2 В от положительного источника питания или 13 В в этой цепи, диод D OVPN будет иметь обратное напряжение 28 В. .Согласно паспорту диода 1N5177, это может вызвать обратный ток утечки, близкий к 100 нА. Поскольку обратный ток утечки течет от входного сигнала (V IN ) через R OVP , он создает падение напряжения на R OVP , которое выглядит точно как увеличенное входное напряжение смещения на пути прохождения сигнала.

Дополнительную озабоченность вызывает то, что ток обратной утечки диода экспоненциально возрастает с повышением температуры, вызывая увеличение штрафа напряжения смещения цепи ограничения O VP .В качестве основы для сравнения точности операционного усилителя без внешней схемы защиты от перенапряжения на рисунке 2 показано измеренное напряжение смещения ADA4077 в диапазоне входного напряжения от -13 В до +13 В. Измерения проводились при трех температурах: 25 ° C. , 85 ° С и 125 ° С. Обратите внимание, что при 25 ° C V OS ADA4077, используемого в этом тесте, достигал только 6 мкВ; даже при 125 ° C напряжение V OS составляет всего около 20 мкВ. Когда мы добавляем внешнюю схему ограничения OVP к тому же устройству ADA4077 и подаем вход на V IN , мы видим результаты, показанные на рисунке 3.При комнатной температуре V OS подскакивает до 30 мкВ, что в пять раз превышает погрешность пути прохождения сигнала только от ADA4077. При 125 ° C напряжение V OS превышает 15 мВ - в 750 раз больше, чем 20 мкВ ADA4077! Точность ушла.

Рис. 2. Зависимость входного напряжения смещения от входного напряжения для ADA4077. Рис. 3. Зависимость входного напряжения смещения от входного напряжения для схемы ограничения OVP, добавленной к ADA4077.

Резистор 5 кОм отлично защищает ограничивающие диоды, а также операционный усилитель в условиях перенапряжения, но добавляет немало ошибок смещения во время нормальной работы, когда диоды пропускают ток через него (не говоря уже о шумах Джонсона от резистор).Нам нужно динамическое входное сопротивление, которое имеет низкое сопротивление во время работы в указанном диапазоне входного напряжения, но высокое сопротивление в условиях перенапряжения.

Комплексное решение дает ответ

ADA4177 - это высокоточный операционный усилитель со встроенной защитой от перенапряжения. Встроенные диоды ESD действуют как фиксаторы перенапряжения для защиты детали. Полевые транзисторы режима обеднения включены последовательно на каждом входе перед диодами ESD. Они обеспечивают динамическое сопротивление, которое увеличивается, когда входное напряжение (V CM ) превышает напряжения питания.По мере увеличения входного напряжения сопротивление сток-исток (R DSON ) внутреннего полевого транзистора увеличивается, тем самым ограничивая протекание тока экспоненциально с увеличением напряжения (показано на рисунке 4). Поскольку в ADA4177 на входах используются полевые транзисторы, работающие в режиме обеднения, а не последовательный защитный резистор, операционный усилитель не страдает от потери напряжения смещения на резисторе, как это происходит в схеме ограничения OVP.

Рис. 4. Входной ток смещения ADA4177 ограничивается по мере увеличения перенапряжения.

ADA4177 может выдерживать напряжения на своих входах до 32 В сверх напряжения питания. Он ограничивает ток перенапряжения в пределах от 10 до 12 мА, защищая операционный усилитель без использования каких-либо внешних компонентов. Как показано на Рисунке 5, даже при 125 ° C этот испытанный блок показывает напряжение смещения всего 40 мкВ. Это менее 3% погрешности, которую показала цепь зажима при этой температуре. Точность сохраняется!

Рис. 5. Зависимость входного напряжения смещения от входного напряжения для ADA4177 со встроенным OVP.

Что это значит для производительности системы

При анализе влияния изменения входного напряжения на точность пути прохождения сигнала разработчик системы должен учитывать коэффициент подавления синфазного сигнала усилителя (CMRR). Это мера того, какая часть входного синфазного напряжения отклоняется от отображения на выходе (или насколько мало проходит). Поскольку операционные усилители часто конфигурируются для обеспечения усиления между входом и выходом, мы нормализуем характеристику CMRR, ссылаясь на изменение входного напряжения смещения, которое представляет собой изменение выходного сигнала, деленное на коэффициент усиления с обратной связью усилителя.Коэффициент подавления синфазного сигнала представляет собой положительное значение, выраженное в дБ, и рассчитывается по следующей формуле:

CMRR = 20 log (ΔV CM / ΔV OS )

Исходя из этого соотношения, мы видим, что желательно, чтобы VOS был как можно меньше. ADA4177 должен иметь гарантированный минимальный предел CMRR 125 дБ при полной рабочей температуре. Используя результаты испытаний устройств, измеренных в этом эксперименте, мы можем рассчитать и сравнить CMRR схемы ограничения и ADA4177.Таблица 1 показывает крайнюю потерю точности при использовании классической схемы ограничивающего диода и превосходного CMRR ADA4177 со встроенной защитой от перенапряжения на полевых транзисторах.

Таблица 1. Сравнение CMRR ADA4177 с дискретным OVP с фиксирующими диодами

Метод защиты от перенапряжения 25 ° С 85 ° С 125 ° С
ADA4177 143 дБ 145 дБ 142 дБ
ADA4077 и зажим OVP 113 дБ 78 дБ 58 дБ
.

% PDF-1.3 % 36 0 объект > endobj xref 36 53 0000000016 00000 н. 0000001407 00000 н. 0000001759 00000 н. 0000002007 00000 н. 0000002143 00000 п. 0000002279 00000 п. 0000002417 00000 н. 0000002554 00000 н. 0000002781 00000 н. 0000002991 00000 н. 0000003460 00000 н. 0000004041 00000 н. 0000004262 00000 н. 0000004284 00000 п. 0000005727 00000 н. 0000005749 00000 н. 0000007114 00000 п. 0000007199 00000 н. 0000007431 00000 н. 0000007627 00000 н. 0000007913 00000 п. 0000008452 00000 п. 0000008839 00000 н. 0000008914 00000 н. 0000009088 00000 н. 0000009310 00000 п. 0000009331 00000 п. 0000010024 00000 п. 0000010281 00000 п. 0000010363 00000 п. 0000010592 00000 п. 0000010774 00000 п. 0000010795 00000 п. 0000011371 00000 п. 0000011392 00000 п. 0000012097 00000 п. 0000012314 00000 п. 0000012385 00000 п. 0000012425 00000 п. 0000012667 00000 п. 0000012955 00000 п. 0000013006 00000 п. 0000013045 00000 п. 0000013066 00000 п. 0000013650 00000 п. 0000013671 00000 п. 0000014273 00000 п. 0000014829 00000 п. 0000014850 00000 п. 0000015726 00000 п. 0000015804 00000 п. 0000001500 00000 н. 0000001738 00000 н. трейлер ] >> startxref 0 %% EOF 37 0 объект > endobj 87 0 объект > поток Hb``c`` "

.

% PDF-1.7 % 2386 0 объект > endobj xref 2386 131 0000000016 00000 н. 0000004343 00000 п. 0000004520 00000 н. 0000004558 00000 н. 0000005381 00000 п. 0000005419 00000 н. 0000005560 00000 н. 0000005701 00000 п. 0000005799 00000 н. 0000006371 00000 п. 0000007013 00000 н. 0000007415 00000 н. 0000007740 00000 н. 0000008009 00000 н. 0000008698 00000 п. 0000009045 00000 н. 0000009409 00000 п. 0000009518 00000 н. 0000009631 00000 н. 0000009746 00000 н. 0000010030 00000 п. 0000010069 00000 п. 0000010292 00000 п. 0000010607 00000 п. 0000010954 00000 п. 0000011592 00000 п. 0000012007 00000 п. 0000012347 00000 п. 0000013072 00000 п. 0000015780 00000 п. 0000015895 00000 п. 0000016793 00000 п. 0000019842 00000 п. 0000022718 00000 п. 0000025232 00000 п. 0000025601 00000 п. 0000025922 00000 п. 0000026628 00000 п. 0000026851 00000 п. 0000029002 00000 п. 0000032072 00000 п. 0000032489 00000 н. 0000032872 00000 н. 0000036086 00000 п. 0000036382 00000 п. 0000036714 00000 п. 0000036976 00000 п. 0000037315 00000 п. 0000039965 00000 п. 0000040363 00000 п. 0000046473 00000 п. 0000048878 00000 н. 0000050477 00000 п. 0000057362 00000 п. 0000058493 00000 п. 0000064157 00000 п. 0000064274 00000 н. 0000064699 00000 н. 0000064722 00000 н. 0000064745 00000 п. 0000064768 00000 п. 0000064844 00000 п. 0000064920 00000 п. 0000065305 00000 п. 0000065748 00000 п. 0000066070 00000 п. 0000066146 00000 п. 0000066222 00000 п. 0000066410 00000 п. 0000066828 00000 п. 0000067150 00000 п. 0000067226 00000 п. 0000067540 00000 п. 0000067965 00000 п. 0000068041 00000 п. 0000068117 00000 п. 0000068381 00000 п. 0000068826 00000 п. 0000069148 00000 п. 0000069225 00000 п. 0000069573 00000 п. 0000069649 00000 п. 0000069725 00000 п. 0000070015 00000 п. 0000070447 00000 п. 0000070769 00000 п. 0000070845 00000 п. 0000070921 00000 п. 0000071085 00000 п. 0000071499 00000 п. 0000071575 00000 п. 0000071751 00000 п. 0000072167 00000 п. 0000072505 00000 п. 0000072581 00000 п. 0000072657 00000 п. 0000072821 00000 п. 0000073234 00000 п. 0000073310 00000 п. 0000073486 00000 п. 0000073904 00000 п. 0000074243 00000 п. 0000074319 00000 п. 0000074395 00000 п. 0000074559 00000 п. 0000074975 00000 п. 0000075051 00000 п. 0000075231 00000 п. 0000075648 00000 п. 0000075988 00000 п. 0000076064 00000 п. 0000076140 00000 п. 0000076304 00000 п. 0000076720 00000 п. 0000076796 00000 п. 0000076976 00000 п. 0000077392 00000 п. 0000077731 00000 п. 0000077807 00000 п. 0000077883 00000 п. 0000078169 00000 п. 0000078604 00000 п. 0000078927 00000 н. 0000079003 00000 п. 0000079079 00000 п. 0000079394 00000 п. 0000079814 00000 п. 0000080136 00000 п. 0000080212 00000 п. 0000080288 00000 п. 0000002916 00000 н. трейлер ] / Назад 827902 >> startxref 0 %% EOF 2516 0 объект > поток h ޔ Uole o] ۻ mu] ٝ JL ٪ A; a (1VpuCt QPK8Cb $ {y ~ O "pRD! Y C & O # ErɌ # 2 f9: | X TvLj ^ Z & UXny /.l +% yEO! d ߳ ށ [\ # siT̐, e3ͽr9 ު # XǮ; D {6nf> IYeh LI3rU

ǭH @ liYAqu = _ | IF1bL = ~ sjz% p8 * [] 1yPU) $ 0

VĄO] \ IPC @ 0K [u87ƏUW; s`h

.

% PDF-1.3 % 1 0 obj > поток конечный поток endobj 2 0 obj > endobj 4 0 obj > поток h ޼ [rG) UBrlRk ٖ%> XsHMl ~ Pa! r ǯku9 +: t *> UaTUšҪ ۣ R] ͊, u ~ oG? E? 3WT || g "u, 7c ] n9 # g : y =? e'iL (^ mQMӨezq (^ 3PhTi \ _ ה sq | X ;.P. \ ISS] HV # Y ֡ / Ճ C yPZMQ; ej NiOȌw Ճ:>; 5 // OeK ծ ӥq [] eod, 59 [w7waTk ~ | rVWx: `WK8.oe

.

Смотрите также