Главное меню

Выбор арматуры для фундамента


Как выбрать арматуру для фундамента: виды, марки, расчет

Важный элемент фундамента — арматура

Строительство многих стационарных построек связано с необходимостью установки фундамента того или иного вида. Все их можно разделить на два типа – бетонные и кирпичные. Для обеспечения максимальной прочности первого вида оснований обязательным элементом является присутствие каркаса из стержней круглого сечения, называемых арматурой. Их наличие обеспечивает стойкость к изгибающим и растягивающим нагрузкам. О том, какая бывает арматура для фундаментов, правилах ее выбора и расчета и пойдет речь в дальнейшем.

Виды фундаментной арматуры

Наличие арматуры для фундамента в бетонной заливке позволяет значительно увеличить прочностные характеристики конструкции. Связано это с наличием внутренних элементов жесткости, прочно связанных между собой. В настоящее время в строительстве нашли применение следующие виды арматуры:

Разновидности арматуры

  1. Пластиковая – современный аналог, активно распространяющийся на строительном рынке. Отсутствие длительного опыта использования не позволяет однозначно судить о преимуществах и недостатках этого материала. Ниже остановимся на них подробнее.
  2. Стальная – традиционный вариант, прошедший испытание временем и веками эксплуатации, которые и выявили основные преимущества данного материала. В свою очередь, данный вид подразделяется на два подвида:

Гладкая и пластиковая арматура

Каждый материал имеет свои преимущества и недостатки. Для сравнения аналогов рассмотрим их эксплуатационные качества.

к оглавлению ↑

Стальная арматура

Сталь является достаточно прочным черным сплавом, что позволяет в конечном итоге получить высокую прочность ленточного фундамента и других видов оснований дома. Применение прутков достаточного диаметра гарантирует нивелирование отрицательного воздействия вертикальных деформаций почвы, возникающих в межсезонье или при изменении уровня грунтовых вод. Наибольшее применение получила арматура 12 для фундамента с рифленой поверхностью.

Наличие в сплаве железа оказывает негативное воздействие на химическую стойкость материала. Особенно это проявляется при контакте арматуры с водой, что приводит к коррозионному разрушению. Чтобы стальная арматура для фундамента дольше сохраняла свою механическую прочность, при укладке необходимо обеспечивать зазор от нее до опалубки не менее 50-60 мм. Слой бетона предотвратит контакт с водой и образование ржавчины.

к оглавлению ↑

Пластиковая арматура

Достаточно новый материал на российском строительном рынке, еще не получивший широкого признания. Строителей и инженеров настораживает высокий коэффициент продольного удлинения материала. Гибкая арматура для фундамента, в отличие от стальной предшественницы, может растягиваться. Это негативно сказывается и на прочности всего основания дома.

Из положительных аспектов арматуры из стеклопластика можно выделить следующие:

По общему мнению, такой вид арматуры можно применять лишь для малонагруженных фундаментов, например под каркасными строениями. Под домами из бруса, бревна, блоков и особенно кирпича инженеры-проектировщики опасаются устанавливать такие стержни.

к оглавлению ↑

Классификация арматуры

Особое внимание уделяют и такой характеристике, как класс арматуры для фундамента. При выполнении расчета конструкции и ее прочности следует уточнить конкретный состав стали и ее эксплуатационные характеристики. Не зависимо от наличия ребер на поверхности выделяют виды стальных стержней от С1 до С8. Увеличение класса говорит о росте прочностных характеристик благодаря использованию легирующих элементов в составе сплава.

Характеристики арматуры

Зная особенности каждой группы не сложно определиться, какая марка арматуры нужна для ленточного фундамента дома. Достаточно лишь рассчитать массу сооружения, уточнить почвенные условия участка проведения работ, особенности грунтовых вод и т.д. Более подробно о выборе диаметра арматуры и расчете ее количества остановимся ниже.

к оглавлению ↑

Выбор арматуры для ленточного фундамента

Прочность основания дома и целостность самого сооружения напрямую зависят от правильного выбора арматуры и качества ее установки. Основной характеристикой в данном случае служат материал и диаметр прутьев. Чаще всего, на запрос пользователей, какую арматуру лучше выбрать и использовать для ленточного фундамента дома специалисты рекомендуют именно стальные стержни.

Диаметр арматуры зависит от расчетной нагрузки на фундамент в целом. Так, для легких каркасных построек небольшой этажности можно использовать стержни сечением 10-12 мм, для более мощных строений – 14 и даже 16 мм. Для достижения максимальных прочностных характеристик армирование ленточного фундамента лучше выполнить в два уровня с установкой промежуточных вертикальных стержней.

Производители стеклопластиковых аналогов заявляют о возможности уменьшения диаметра арматуры из композитного материала по сравнению со стальной при сохранении прочности. Инженеры и практикующие строители с недоверием относятся к данным заявлениям и не решаются полностью заменить металлические прутки в ленточных и плитных основаниях. Поэтому, все рекомендации на тему, какая арматура нужна для строительства ленточного фундамента дома, сводятся именно к насеченным стержням из стали.

к оглавлению ↑

Выбор арматуры для плитного фундамента

Планируя строительство дома на активных неспокойных грунтах, строители отдают предпочтение монолитным основаниям в виде плоской плиты определенной толщины. Преимущества этого типа перед ленточным аналогом в данном случае более чем очевидны, несмотря на значительное увеличение общего бюджета работ. При этом неизбежен вопрос, какую арматуру использовать для плитного фундамента.

Поскольку, нагрузка на основание в данном случае значительна, и масса возводимых строений, как правило, велика, то применяют исключительно металлические стержни. Аналогично, для преодоления действующих на фундамент нагрузок лучше выбирать арматуру увеличенного по сравнению с ленточным типом сечения. Наиболее распространен для плитных оснований диаметр арматуры 14 и 16 мм.

к оглавлению ↑

Определяем требуемое количество материалов

Выше мы выяснили, какие бывают виды арматуры для фундамента и рассмотрели особенности использования каждого из них. Прежде чем перейти к описанию расчета количества требуемых для армирующего каркаса материалов, остановимся подробнее на его устройстве.

Мы уточнили, для чего нужна арматура в фундаменте. Она образует внутренние элементы жесткости, препятствующие разрушению основания строений. Для того, чтобы она выполняла свою задачу с максимальной отдачей, необходимо правильно изготовить армирующий каркас.

Расчет арматуры

Он представляет собой уложенные в два ряда прутья. При этом каркас ленточного фундамента состоит из двух параллельных рядов стержней, соединенных поперечными и вертикальными обрезками арматуры. В основе плитного основания стержни образуют две сетки, расположенные друг над другом. Обязательным условием является углубление стержней внутрь бетонной заливки.

к оглавлению ↑

Расчет ленточного основания

Для примера определим требуемое количество арматуры ленточного фундамента под дом 6х6 метров с одной перегородкой. Исходя из параметров здания, общий периметр стен будет равен 6х4+6=30 метров. Стержни укладываем в четыре полосы, следовательно, длину стен умножаем на 4, получая 120 метров.

Для сохранения высокой прочности армирующего каркаса отдельные стержни в углах дома должны перекрывать друг друга не менее чем на 1 метр. Исходя из этого, общий метраж стержней должен быть увеличен на 16 метров и с последующим округлением в итоге получим количество арматуры 140 метров.

Схема расчета арматуры для ленточного основания

Поперечные горизонтальные и вертикальные вставки при размере сечения ленты 1,5х0,5 метра равны соответственно 1,4 и 0,4 метра. Их устанавливаем с шагом 1 метр попарно. Следовательно, длина таких стержней будет равна 60х1,4+60х0,4=80,4+24=105 метров. Из-за отсутствия нагрузки на них диаметр можно уменьшить до 6-8 мм, взяв гладкую проволоку.

Для соединения элементов каркаса применяют мягкую вязальную проволоку. На каждое соединение ее требуется 0,3 – 0,5 метра в зависимости от диаметра арматуры. Точек соединения для нашего варианта потребуется 30х4=120. Выполнив расчет количества вязальной проволоки, получим необходимую длину 120х0,3=36 метров. Добавив несколько метров для соединения по углам, округлим метраж до 50.

к оглавлению ↑

Расчет плитного основания

Выше нами были даны рекомендации, из какой арматуры делать фундамент. Расчет ее количества зависит от конкретного типа. Так, плитный фундамент того же размера 6х6 потребует гораздо большего количества арматуры. Стандартный размер ячеек сетки 25 см. Следовательно, количество стержней определяем по формуле: 6/0,25х4=96, а общая длина 96х6=576 метров.

Вертикальные стойки при толщине плиты в 25 см будут равны 0,15 метра. А их общая длина определится как 24х24х0,15=86,4 метра. Округлив, получим дополнительно 90 метров арматуры на стойки, что даст общее количество 666 метров.

Количество соединений стержней верхней и нижней сетки к стойкам будет определяться как произведение точек вязки на 4, так как каждая арматура крепится к вертикальным проставкам: 24х24х4=2304, а общая требуемая длина 2304х0,15=345,6 метра.

Приведенные расчеты наглядно показывают значительное превышение плитного основания дома перед ленточным по материалоемкости. Перед тем, как выбрать арматуру для фундамента необходимо выполнить расчеты финансовых затрат на всю конструкцию.

к оглавлению ↑

Монтаж армирующего каркаса

Выбрав, какой арматурой армировать фундамент, необходимо правильно изготовить армопояс. Для этого закупается необходимое количество стержней и непосредственно на площадке режется на куски нужной длины. Так, для ленточного основания 6х6 продольные стержни должны иметь длину 8 метров с учетом угловых загибов.

С помощью приспособлений арматуру сгибают в размер и опускают в предварительно выкопанный котлован, подложив под нижний ряд половинки кирпича для обеспечения необходимого зазора. Связывают проволокой стержни между собой и закрепляют горизонтальные обрезки с шагом 1 метр. В углах расстояние можно уменьшить до 0,5 метра.

Далее крепим проволокой вертикальные куски и привязываем к их верхним торцам второй слой каркаса. Стержни для него можно предварительно связать на земле и укладывать готовую конструкцию. Угловую вязку проволокой удобно выполнять специальным ручным приспособлением или насадкой на шуруповерт.

Таким образом, мы выяснили, какая арматура идет на ленточный фундамент, привели пример выполнения расчета количества материалов. Технология изготовления армирующего каркаса не сложна, но требует высокой ответственности и качества работ. Не всегда можно однозначно утверждать, чем лучше армировать фундамент. Необходимо уточнить все параметры строения и условий места строительства.

    

какая нужна толщина прутков для одноэтажного и двухэтажного дома, как рассчитать?

Ленточный фундамент – это самый распространенный вариант основания здания. В большинстве случаев он применяется с усилением арматурой.

Армирование необходимо для защиты бетона от изгибающих и растягивающих нагрузок, которые его разрушают. Характеристики фундамента и всего здания во многом зависят от точности расчета диаметра арматуры.

Арматура какого диаметра применяется для возведения ленточного фундамента, как ее выбрать, как правильно рассчитать, расскажем в статье.

Правила выбора

В строительстве фундаментов применяется два вида арматуры – композитная и металлическая. Традиционно используются металлические прутки. Они выпускаются с диаметром от 5 до 32 мм.

Композитный материал для усиления фундаментов применяется относительно недавно, но он уверенно вытесняет металлический аналог. Преимущества композитного материала – отсутствие электропроводности и  устойчивость к коррозийным процессам.

При выборе необходимо учитывать основные характеристики строящегося здания – площадь, этажность, вид стеновых материалов, вариант кровли, тип грунта и степень его пучинистости.

Каркас состоит из продольных прутков, вертикальных и поперечных. Поперечные и вертикальные элементы необходимы для придания конструкции жесткости. Основную нагрузку берут на себя продольные прутки. Они изготавливаются обычно из рифленой арматуры 12-14 см.

Благодаря рифленой поверхности прутки лучше сцепляются с бетоном, что обеспечивает фундаменту сопротивляемость растягивающим нагрузкам. Поперечины могут быть выполнены из гладких прутьев толщиной от 4 до 10 мм.

Требования по СНиП

Установленные правила СНиП определяют толщину и количество продольных арматурин. Согласно принятым требованиям, суммарное сечение всех основных элементов каркаса должно составлять не менее 0,1% от сечения всей фундаментной ленты (СНиП 52-01-2003).

Применять можно прутки любой толщины от 10 мм. Количество продольных прутков должно быть не меньше 4, так как иначе не получится сконструировать надежный устойчивый каркас.

Это означает, что самые легкие постройки требуют обустройства каркаса их 4 прутков 10 мм. Для более массивных зданий делаются индивидуальные расчеты.

Минимальный диаметр стержней в зависимости от назначения армирования

Поскольку нагрузку от постройки несут только продольные прутки, в СНИП указаны требования именно к ним.

Они должны быть толщиной не меньше 10 мм. Поперечные прутки нагрузку не несут, но выполняют функцию фиксации и придания конструкции жесткости.

Если длина основания меньше 3 м, то минимальный диаметр продольных прутьев должен быть 10 мм; если больше 3 м — 12 мм.

Расчет толщины сечения

Расчет поперечных и вертикальных прутков и продольных отличается из-за общей нагрузки и требований СНИП.

Поперечная и вертикальная

Для дополнительных поперечных и вертикальных элементов диаметр выбирается в соответствии с проектом. При этом учитываются его размеры, количество длинных арматурин, шаг установки поперечин. Обычно используют гладкие прутья 6-8 мм.

Диаметр поперечной и вертикальной арматуры необходимо подбирать согласно таблице:

Условия использования арматурыМинимальный диаметр арматуры в мм
Вертикальная при высоте поперечного сечения ленты менее 80 см6
Вертикальная при высоте ленты более 80 см8
Поперечная арматура6

Какой диаметр арматуры нужен для одноэтажного дома? В строительстве 1- 2-этажных частных домов обычно для вертикального и поперечного армирования используются 8-миллиметровые прутья.

Продольная

Для расчета нужно узнать площадь сечения фундамента. Для этого его высоту нужно умножить на ширину. Площадь сечения арматуры должна быть 0,1% от площади сечения основания, значит нужно полученный результат умножить на 0,1%.

Кроме этого необходимо понимать, по какой схеме будет собираться каркас. Обычно он состоит из 4 или 6 продольных прутков.

Рассмотрим примеры расчетов:

Пример

Рассчитаем толщину прутков для ленты с высотой 80 и шириной 30 см. Площадь сечения такой ленты составляет 2400 квадратных см, а 0,1% от него – 2,4 см.

80 * 30 * 0.1% = 2,4 см²

Допустим, планируется использовать арматуру 12 мм. Берем ее площадь поперечного сечения — 1,13 квадратных сантиметров.

Эту площадь можно посмотреть ниже в таблице или высчитать по формуле площади окружности: S=πR², где:

Считаем сколько прутьев (ниток) должно быть в каркасе. Делим 2,4 на 1,13, получаем 2 с остатком, значит, чтобы выполнить требования, нужно применить каркас с тремя нитями. 1,13 * 3 = 3,39 см², а это больше чем 2,4 см², которые рекомендует СНиП.

3 нитки на два пояса поделить не получится, а нагрузка будет значительной и с той и с другой стороны. Для обеспечения ему устойчивости нужно минимум 4 прута. При использовании 4 прутьев в 12 мм получается слишком большой запас прочности.

Оптимальный вариант здесь – взять 4 прута меньшего диаметра. Вполне будет достаточно 10-миллиметровой арматуры. Его площадь — 0,79 см². Если умножить на 4, получится 3,16 см², этого параметра будет достаточно.

Чтобы не высчитывать диаметр каждого прута по площади сечения, можно воспользоваться специальной таблицей:

Номинальный диаметр, ммПлощадь поперечного сечения, см2Масса 1 метра, теоретическая, кг
60,2830,222
70,3850,302
80,5030,395
100,7850,617
121,1310,888
141,541,21
162,011,58
182,642
203,142,47
223,802,98
254,913,85
286,164,83
328,046,31
3610,187,99
4012,589,87
4515,9012,48

Подобные расчёты очень удобно производить в Microsoft Excel.

Прутья разной толщины почти никогда не используются. Если по какой-то причине приходится это делать, более толстые арматурины применяют для нижней обвязки.

Почему важно правильно рассчитывать?

Диаметр прутьев должен быть правильно рассчитан. Если использовать материал меньшей толщины, фундамент получится недостаточно прочным.

Со временем бетон будет испытывать повышенные нагрузки, а арматурный каркас не сможет их сдерживать.

В результате бетонная лента будет растрескиваться и разрушаться. Исправить такую ошибку в процессе эксплуатации здания невозможно.

Более толстые прутья конструкции не повредят. Но излишний запас прочности – это неоправданные затраты, увеличивающие бюджет строительства.

Все самое важное об армировании ленточного фундамента найдете в этом разделе сайта.

Заключение

В армировании ленточного фундамента основное значении имеют параметры продольных прутьев, которые несут всю нагрузку конструкции. Их диаметр рассчитывается по значению площади сечения фундаментной ленты.

При правильном расчете основание дома получится достаточно надежным, но при этом не будет слишком затратным в обустройстве.

Вконтакте

Facebook

Twitter

Одноклассники

Мой мир

Как выбрать арматуру для фундамента?

Для повышения прочности бетонных элементов используют силовые каркасы, изготавливаемые из арматурных стержней и/или проволоки. Традиционный материал для изготовления этой продукции – арматурная сталь, достаточно новые – композитные полимеры.

Общие рекомендации по выбору стальной арматуры

Основная характеристика арматуры – диаметр, который согласно ГОСТу 5781-82 может составлять 6-80 мм. В индивидуальном строительстве при этажности не более двух используется материал с сечением 10-16 мм.

Внимание! На слабонесущих грунтах арматуру диаметром менее 16 мм использовать не рекомендуется.

Поверхность арматуры может быть гладкой или иметь периодический профиль.

Как выбрать арматуру для ленточного фундамента?

Для оснований этого типа обычно устраивают армирующий пояс, состоящий из двух горизонтальных уровней, в каждом – не менее двух продольных линий. Для ленты шириной до 400 мм достаточно двух стержней в одном горизонтальном ряду, более 400 мм – 3-4 прута.

Диаметр арматуры – 10-14 мм, поверхность – ребристая. Для соединения горизонтальных прутов одного уровня и обоих уровней между собой обычно используют более дешевую гладкую арматуру диаметром 6-8 мм. Шаг между перемычками составляет 0,3-0,5 м. Конкретная величина определяется массой здания.

Внимание! Расстояние от арматуры до поверхности бетона должно составлять примерно 5 см, внизу – не менее 3 см.

Как создать каркас в свайных основаниях?


Число вертикальных силовых стержней периодического профиля в свае составляет 2-4 и более. Диаметр – 10 мм, больше обычно не применяется. Точное количество стержней зависит от диаметра сваи, определяемого опалубкой. Ее функции может выполнять асбоцементная труба:

В буронабивных сваях соблюдается такое же правило, как и в ленточных фундаментах, – между арматурой и поверхностью бетонного элемента должно сохраняться небольшое расстояние.

Для горизонтальных перемычек используют пруты гладкого профиля диаметром 6 мм, шаг их установки – примерно 50 см.

Как правильно выбрать арматуру для монолитной фундаментной плиты?

Монолитный фундамент – дорогое, но во многих ситуациях самое надежное решение. Используемая арматура – стержни сечением 10-16 мм. Горизонтальные силовые пояса, представляющие собой клетки из прутов размером 200х200 мм, соединяются между собой вертикальными перемычками. Такие перемычки привариваются в точках пересечения горизонтальных стержней. По высоте каркас должен быть на 10 см меньше высоты плиты – по 5 см вверху и внизу.

Можно ли использовать композитную полимерную арматуру для фундамента?

Свойства арматуры этого типа регламентирует ГОСТ 31938-2012, согласно которому она разделяется по виду армирующего наполнителя на стекло- (АСК), угле- (АУК), арамидо- (ААК), базальтокомпозитную (АБК), комбинированную (АКК). Диапазон номинальных диаметров – 4-32 мм.

По характеристикам эти типы арматуры достаточно сильно различаются:

Внимание! ГОСТ 31938-2012 регламентирует только характеристики продукции, а рецептуру производители определяют самостоятельно.

Сравнение свойств полимерной композитной и стальной арматуры позволит определить, какая из них лучше в конкретном случае.

Вывод! Композитная арматура может использоваться для армирования фундаментов, но только в том случае, если в сопроводительной документации на продукцию есть указание такой возможности.

Как правильно выбрать стеклопластиковую арматуру для фундамента?


Этот вид строительной продукции производится в двух вариантах:

Особенности определения размера стеклокомпозитной арматуры

Совет! Если заявленный продавцом номинальный диаметр стержней совпадает с измеренным Вами наружным диаметром, то место покупки лучше изменить.

Изначально этот вариант арматуры представлял собой стержни различных оттенков желтого цвета, АБК (базальтовые) – черного. Сегодня производители выпускают разноцветную продукцию.

Внимание! Красящие пигменты в полимерной композитной арматуре не являются компонентами, повышающими качественные характеристики. Часто цветовое разнообразие изготовители используют для выделения изделий разного размера.

Диаметр или толщина арматуры для фундамента дома

Одним из самых важных показателей строительной арматуры является диаметр стержней. От него зависит не только прочность конструктивного элемента каркаса или сетки, но и качество совместной работы бетонного монолита и арматурного скелета. Если вы задумали своими руками возводить фундамент с нуля, то должны ориентироваться в вопросах, связанных с выбором арматуры по ее диаметру.

Принцип выбора арматуры по ее диаметру

Толщина (диаметр) арматуры для фундамента выбирается исходя из требуемого относительного содержания рабочей арматуры. Площадь сечения армирующих продольных элементов на срезе должна составлять не менее 0,1% – такое значение указано в нормативном документе СНиП 52-01-2003 «Бетонные и железобетонные конструкции». Что это значит?

Всего лишь то, что площадь арматуры по отношению к общей площади фундамента в разрезе (к площади сечения) должна соотноситься как 0,001 к 1.

В статье «Расчет арматуры для фундамента» мы приводили достаточно подробный разбор методики выбора армирующих элементов – их количества и диаметра – исходя из выбранных параметров фундамента дома. В расчетах используют таблицу, приведенную ниже.

Методика выбора диаметра арматуры

Предположим, мы задумали строительство ленточного фундамента шириной 300 мм (30 см) и высотой 1000 мм (100 см).

Площадь сечения ленты составит: 30×100=3000 см2
Умножаем полученное значение на 0,001 и получаем минимальную площадь поперечного сечения арматурных стержней: 3000×0,001=3 см2

По таблице выше видим, что данное значение соответствует 6 стержням диаметром 8 мм или 4 – диаметром 10 мм. Т.е. арматура ленточного фундамента закладывается в два пояса, либо по 3 стержня в каждом, либо по 2. Учитывая различие в цене на арматуру, выбор становится очевиден – экономичнее принять к установке 4 стержня диаметром 10 мм. Однако если длина каждой стороны фундамента превышает 3 метра, то минимальное значение диаметра (о нем говорится в пособии по проектированию «Армирование элементов монолитных железобетонных зданий») составит 12 мм. Поэтому тут уже нужно смотреть на конкретном примере. Если при указанных выше параметрах фундамента длина ленты превышает 3 м, то смело используем 12 мм стержни.

Для плитного фундамента порядок работы аналогичен, только в этом случае нужно учитывать не только поперечное, но и продольное сечение фундамента (необходимо ориентироваться как раз на последнее). Предположим, что нам необходимо армировать плиту 6000×8000×300 мм (600×800×30 см).
Площадь продольного сечения: 800×30=24000 см2

Расчетная величина поперечного сечения арматуры: 24000×0,001=24 см2
Количество стержней, установленных с шагом 20 см (оптимальные размеры ячеек, которые позволяют удобно заливать бетон для фундамента и обеспечивают полноценную работу железобетона) в две сетки: 2×800/20= 80 шт.

Умножаем значения для 10 стержней в столбце таблицы на 8 и выбираем вариант, который немного превышает 24 см2.
Видим, что ближе всего использование 80 шт. арматуры диаметром 8 мм. Т.к. размер стороны превышает 3 м, то принимаем к установке d=12 мм.

Толщина арматуры и ее функциональное назначение

В таблице ниже мы представили типы арматуры по ее диаметру, функциональному назначению и применению в индивидуальном строительстве. Как правило, элементы диаметром 6-8 мм используются в качестве монтажных. Все, что больше – стержни с периодическим профилем, которые уже работают на изгиб.

Как видите, тип подбираемой по толщине арматуры не зависит от того, какие пропорции бетона для фундамента мы используем и прочих параметров.

Диаметр арматуры, мм Профиль Назначение
6 гладкий монтажная/для формирования хомутов
8 монтажная/возможно применение в качестве армирующих элементов буронабивных свай
10 периодический (рифленый, ребристый) рабочая/используется для небольших построек с учетом параметров грунта
12 рабочая/самые распространенные варианты для возведения ленточного или плитного железобетонного основания
14
16 рабочая/используется для больших домов на сложном грунте
Загрузка...

Арматура для фундамента: выбираем правильно

Основой крепости и долговечности любой постройки является фундамент. И не просто фундамент, а надёжный и прочный, способный выдержать планируемые нагрузки и противостоять природным катаклизмам. На его качество влияют, во-первых, тип выбранного основания и марка бетона; во-вторых, хорошая гидро- и теплоизоляция, наличие дренажной системы и отмостки; в-третьих, правильное армирование фундамента.

Что такое армирование и для чего оно нужно

Армирование — метод увеличения мощности основного материала. Залили фундамент бетонным раствором — получили бетонную конструкцию. А вот насколько она будет прочной и какой вес способна выдержать, зависит от марки бетона, его качества, глубины фундамента и т. д.

Колизей, например, простоял века, причём в сейсмоопасной зоне, пока не был разрушен и то в основном благодаря человеческому фактору. А ведь об армировании тогда даже не слышали. Но там и фундамент был, по исследованиям археологов, уникальным бетонным монолитом толщиной 13 м и глубиной 9 м. Естественно, он мог выдерживать такую махину тысячелетиями.

Фундамент Колизея — бетонный монолит глубиной 9 м и толщиной 13 м, поэтому он выдерживает огромный вес тысячелетиями

Но мы такие фундаменты не возводим, иначе строительство обойдётся в кругленькую сумму. Поэтому с развитием металлургии в строительной отрасли начали применять более простые и эффективные инженерные решения — заливать бетонный раствор на металлический (арматурный) каркас, то есть делать армирование. В результате получалось уже не просто бетонное основание, а железобетонное. Более прочное, надёжное, долговечное, способное выдержать намного бóльшие нагрузки.

Ведь сам бетон — неэластичный материал и под влиянием неровной нагрузки или сил морозного пучения чисто бетонный фундамент начнёт деформироваться. А заложенная внутри арматурная сталь возьмёт практически всю нагрузку на себя.

Делать армирование необязательно, но отказ от использования арматуры непременно должен обосновываться конструкторскими расчётами и целесообразностью, а не одним желанием сэкономить. Да и в таких случаях нужно учитывать ряд факторов — особенности грунта, глубину промерзания, уровень подземных вод и прочее.

Обойтись без армирования допустимо при возведении строений на скальных грунтах и крупнообломочных, непучинистых песчаных, которые сами имеют хорошие несущие показатели.

Зачастую не армируют фундамент при сооружении лёгких конструкций из рубленых брёвен, деревянного бруса, щитовых домов.

При возведении лёгких деревянных строений иногда армирование фундамента делать не обязательно

Но это, пожалуй, и всё, а в остальных случаях армирование фундамента не только нужно, а неизбежно.

Арматура для фундамента и её виды

Производство фундаментной арматуры основано на использовании стали класса Ат400С– Ат1200С. Но в последнее время в гражданском строительстве пластиковые изделия активно вытесняют своих стальных собратьев, т. к. ничуть не уступают металлу по основным свойствам, но дешевле, да и работать с ними гораздо удобнее. Для пластиковых стержней используют стеклянное волокно, углеродное и базальтовое.

Арматура классифицируется по следующим признакам:

Рифлёную (ребристую) арматуру используют при создании продольных верхних и нижних звеньев арматурного остова, куда припадает самая большая нагрузка.

Металлическая рифлёная арматура имеет разные профили: кольцевой (верхний), серповидный (средний) и смешанный (нижний)

Множественные поперечные прутья могут быть меньшей толщины и с гладкой поверхностью.

Стальная арматура А1 12 мм — это прутки круглого сечения, гладко поверхностные, которые широко востребованы практично в каждом современном строительстве. Широкий спектр применения делает её незаменимым и универсальным строительным материалом

Изделия с квадратным сечением (5–200 мм) применяют при формировании угловых опор, но чаще при сооружении разнообразных заборов.

Любой тип арматуры имеет свой запас прочности, тем не менее все они должны соответствовать предъявляемым к ним требованиям ГОСТ, куда входят:

Пластиковая фундаментная арматура

Основным исходным сырьём для изготовления пластиковой арматуры служат минеральные волокна, а связующими элементами — полимеры на основании эпоксидной смолы. Так же, как и стальная, она проходит жёсткий контроль по проверке качества сырья, на соответствие типовым размерам и параметрам использования, с подтверждением точности процесса производства.

Композитные каркасы, прошедшие проверку, имеют необходимые характеристики:

Пластиковая арматура сегодня вытесняет стальную благодаря своему малому весу, низкой стоимости, удобной транспортировке и простоте в работе

Но вместе с преимуществами пластмассовые арматурные стержни имеют и свои недостатки:

Суммируя все преимущества и недостатки, учитывая постоянное удорожание сталепроката, можно сказать, что выбор композитной фундаментной арматуры вполне обоснован экономической рентабельностью.

Особенности стеклопластиковой арматуры

Это схема склеивания волокон стеклоровинга с помощью полимерных связующих. Используется для армирования бетонных конструкций. Стеклопластиковая фундаментная арматура, бесспорно, является лидером продаж, благодаря уникальным свойствам и доступности для рядовых застройщиков:

Особенности базальтопластиковой арматуры

Производится на основе волокон базальтовых и полимерных связующих материалов. Отличается долговечностью и необыкновенной прочностью. Выпускается в виде стержней Ø 4–16 мм, с характерной спиралевидной рельефностью.

Базальтопластиковая арматура имеет множество преимуществ в сравнении со стальной, в результате чего применение её становится наиболее выгодным по целому ряду факторов: надёжность, лёгкость, простота в доставке и монтаже

Высокие механико-технические показатели дают возможность её использования в широком диапазоне: для ремонта, реставрации, переделки и строительства как частных проектов, так и объектов массового назначения.

Базальтовая арматура дороже других пластиковых аналогов, но обусловлено это высокой стоимостью исходного сырья — экологически чистого природного базальта, в состав которого входит титаномагнетит.

Стальная фундаментная арматура

Классика вне времени — так можно назвать традиционную стальную арматуру. Самые распространённые её виды производятся из стального проката М35ГС и М25ГС, диаметр таких арматурных стержней колеблется в пределах 10–40 мм, длина 5,3–12 м. Если нужна арматура нестандартных размеров, то её изготавливают по заказу.

Стальные стержни используются для ленточного каркаса

Основные достоинства стальных изделий:

Из недостатков стоит отметить:

Возможно, традиционный путь порой не самый лучший, но опытные строители отмечают «резиновые» особенности композитной арматуры, особенно стеклопластиковой — её способность растягиваться при изгибе, предоставляя, таким образом, бетону самому работать на растяжение. Он же с этим справляется не лучшим образом. Так что решайте сами, заслуживают ли новинки вашего доверия или оптимальнее вечная классика.

Другие виды фундаментной арматуры

В качестве сырья для арматуры подойдёт любой состав, устойчивый к изгибающим нагрузкам. Сейчас строители охотно используют фибровые волокна вместо арматурных штифтов. Это модификация старого способа упрочнения строительных смесей, в которые когда-то добавляли шерсть, солому или камыш. Современные фибровые волокна изготавливаются из стекловолокна, низкоуглеродистой марки стали, полиамида и полипропилена.

Армированный таким методом бетон устойчив к истиранию, резким колебаниям температур, вибрации. Имеет высокую плотность, немалую прочность на изгиб и растяжение, не даёт усадочных трещин.

Сетка для заливки фундамента

Арматурная сетка — важный элемент армирования фундамента. Предназначена для укрепления кирпичной или блочной кладки и армирования бетонных блоков. В её функции входят:

Для чего нужна армирующая сетка

Это силовая опора для фундамента, без которой он будет недолговечным. Под действием жары, морозов, снегов, дождей, ультрафиолета, пучения, колебаний почвы и т. д. бетон со временем начнёт разрушаться, а вместе с ним и всё строение. Чтобы этого избежать, перед заливкой формы бетонным раствором внутрь закладывают армирующую сетку.

Арматурная сетка — силовая опора фундамента

При её создании нужно правильно выбрать сечение, шаг между поперечными выступами и высоту выступа.

Специалисты советуют при изготовлении армирующей сетки придерживаться следующих параметров:

Чем вязать арматурную сетку

Чаще всего делают связку пластиковыми хомутами или проволокой (мягкой, Ø 1,1–1,5 мм, заранее нарезанной кусками длиной 10–20 см).

Вязать пластиковыми хомутами быстрее, легче и удобнее проволоки, но ненадёжнее. При морозе они могут трескаться, поэтому в зимнее время хомуты не рекомендуется использовать. Они хороши для лёгких построек или для связки композитной арматуры.

Видео: простые советы как быстро и легко связать арматурный каркас хомутами

Способы крепления стыков

Для вязки сетки проволокой понадобятся инструменты:

Самый простой способ вязки — сложенная вдвое проволока заводится снизу в зонах пересечения. Её концы закручиваются плоскогубцами или кусачками и загибаются поближе к сетке.

Крепление крючками делается аналогично. Разница в том, что в точках загиба делают петлю и заводят в неё крючок. Затем свободными концами обхватывают стык, перегибая за петлю с крючком, и, вращая до упора, фиксируют соединение.

При больших объёмах понадобится вязальный пистолет, что значительно ускорит рабочий процесс, поскольку соединение происходит мгновенно.

С помощью вязального пистолета делают соединения поперечных и продольных штифтов при больших объёмах. К сожалению в труднодоступных местах его использовать невозможно

Армирование фундамента своими руками

Бетон устойчив лишь к определённым видам нагрузок. Самостоятельно он не переносит изломов и растяжений. Чтобы увеличить его сопротивляемость именно к таким нагрузкам, проводится горизонтальное или вертикальное армирование:

Максимальный результат достигается при одновременном использовании этих технологий.

Параметры арматуры для фундамента

Если вы будете делать армирование фундамента самостоятельно, то вначале определитесь с классом арматурных прутков и подходящим диаметром относительно полагаемой нагрузки, сложности грунта и разновидности фундамента.

Арматуру тоньше 10 мм, как правило, для укрепления фундамента не используют. При возведении лёгких деревянных построек, если делают армирование, то стержнями от Ø10 мм, а при постройке тяжёлых зданий или на пучинистом грунте не меньше Ø15–17 мм.

При средних размерах постройки на нейтральном грунте для усиления свайного основания используют арматуру Ø 10 мм, ленточного Ø 12 мм, а для плитного Ø 14 мм.

Выбор диаметра арматуры для фундамента зависит от типа грунта и массы здания

Шаг укладки арматуры

Размер шага рассчитывается по типу основания и сложности почвы.

При армировании столбчатой свайной основы ориентируются на диаметр фундаментных столбов. Очень важно выдержать расстояние от столба до арматуры, чтобы оно было не меньше 5 см. Горизонтальные направляющие укладывают в полуметре друг от друга.

В ленточных основаниях, где ключевая нагрузка приходится на горизонтальные составляющие, их укладывают по две снизу и сверху при стандартной ширине 30–40 см. Если ленты шире, то используют в каждом ряду 3–4 арматурных штифта. Обычно делают два горизонтальных ряда (отступая на 5 см от верхнего края и на столько же от нижнего). Соединяют шагом в 30–50 см секущими прутками.

Для фундамента плитного шаг меняется в пределах 20–30 см (чем увесистее здание и сложнее сама почва, тем шаг делают меньше).

Соединение арматуры

Есть два основных способа соединения поперечных составных частей каркаса и продольных: использование сварки и вязка арматурной проволокой.

Соединение сваркой делается быстро, однако в местах сваривания металл под действием высокой температуры становится более хрупким и подверженным коррозии, что очень плохо при укладке в бетон. А также точечное сварное соединение легко сломать при заливке раствора и утрамбовке.

Сварочное соединение делается быстро, но металл в местах сваривания становится более хрупким

Кроме того, сварное соединение каркаса довольно прочное, но само основание лишено подвижности, и не способно реагировать на колебание грунта. Это создаст дополнительное напряжение в бетоне и его растрескивание со временем.

Поэтому на сыпучих и пучинистых почвах лучше делать вязку проволокой. Вручную или с помощью облегчающих процесс механизмов по такой же схеме, как и вязка армирующей сетки, описанная выше.

Имеется ещё один вид соединения — резьбовое, но используется оно в частном домостроении крайне редко из-за необходимости наличия специального оборудования для нарезки резьбы и умения это сделать правильно.

Соединение арматуры с помощью резьбы, несмотря на свои хорошие показатели, редко используется частными застройщиками, поскольку предполагает наличие специального оборудования и определённых навыков

При этом такое соединение имеет свои достоинства:

Не используйте хомуты пластиковые для соединения стальной арматуры. Они не выдержат нагрузки при заливке, особенно если заливают раствор при низкой температуре.

Расчёт количества арматуры для разных фундаментов

При расчёте следует учесть, что количество армирующего материала зависит от типа основания и его размеров, а также от сложности грунта (чем состав почвы сложнее, тем больший объём арматуры понадобится).

Плитные основания

Понять методику расчёта лучше на примере.

Исходные данные: основание дома 7х5 м, плита перекрытия толщиной 30 см, возьмём шаг 20х20 см. Будем делать 2 армированных пояса (нижний пояс и верхний) и связывать их отвесными прутками.

  1. Рассчитываем, сколько арматурных прутков потребуется для укладки вдоль основания — 7 м : 20 см = 35 штук.
  2. Вычисляем, сколько арматурных прутков потребуется для укладки поперёк основания — 5 м : 20 см = 25 штук.
  3. Делаем подсчёт общего количества арматурных штифтов для создания двух горизонтальных поясов — 35 х 7 м + 25 х 5 м = 370 х 2 = 740 м + маленький резерв на соединение. Итого, нужно 750 м погонных ребристого прутка.
  4. Высчитываем, сколько понадобится арматурных стержней для отвесных стоек. Их количество, равное точкам пересечения — 35 х 25 = 875 штук. Высоту стоек нужно делать меньше на 10 см от толщины нашей плиты (по 5 см для отступа снизу и сверху). Значит — 875 х 20 см = 175 м погонных арматуры необходимо для вертикальных (отвесных) стоек. Округляем результат до 180 м.

Всего для усиления плитного фундамента размером 7х5 м надо закупить 920 м (740 м + 180 м) рифлёного прутка и около 1100 м проволоки для соединения.

Проволоку считают исходя из следующего:

Получается, что обвязка в каждом месте пересечения делается дважды. С учётом того, что для крепления вязкой в одной точке потребуется 25–50 см проволоки (в зависимости от диаметра арматуры), считаем её количество — 875 х 30 см (взято в среднем на 1 точку) х 2 = 525 м для обвязки одного пояса. Умножаем надвое и получаем 1050 м. Округляем до 1100 м.

Для ленточных и плитных оснований расчёт выполняется аналогично с учётом их конструктивных особенностей.

Видео: как рассчитать расход арматуры и сделать армокаркас для бетонирования

Расчёт стоимости арматуры для фундамента

Исходя из того, что армирующие составляющие чаще продают в килограммах, расчётное количество материала в погонных метрах нужно перевести в массу. Поинтересуйтесь у продавца, сколько весит один метр погонный нужной вам арматуры и какова стоимость 1 кг (или тонны). Перемножив расчётный метраж на цену и вес, узнаете стоимость необходимого для армирования основания материала.

Технология укладки арматуры

Опишем методику армирования наиболее распространённого ленточного фундамента. Изготавливать армирующий каркас можно прямо в опалубке или поблизости на незанятом участке. Первый вариант предпочтительней, он даёт возможность контролировать правильность проведения работ. Но зато второй вариант проще, особенно если собирать остов самостоятельно.

  1. Приподнять до 5–7 см дно траншеи, используя кирпичи или плоские камни, на которые затем укладываются продольные арматурные штифты (ребристые).
  2. Сделать из гладкого прутка меньшего диаметра поперечины и положить их с выбранным шагом (не больше 60 см).
  3. Закрепить вертикальные стойки к продольным пруткам.
  4. Привязать арматурные компоненты верхнего пояса и зафиксировать на них пересекающие арматурные прутки.
  5. Уложить на дно траншеи готовые составляющие каркаса и связать долевые части внахлёст.

Второй и третий пункты можно заменить, если использовать единые хомуты, которые выполняют функции как поперечной арматуры, так и отвесной связки. Располагать их нужно на расстоянии шага равного 3/8 от высоты основания (но не ближе чем 25 см друг от друга).

Важно при армировании фундамента точно укрепить углы.

  1. Выгнутую под углом 90° арматуру в точке излома привязать к отвесной стойке.
  2. Затем концы арматурного штифта, которые находятся на соседних стенах, связать с прямыми отрезками внахлёст. Величина нахлёста равна сорока диаметрам самого прутка.
  3. Установить прутки с шагом вдвое меньшим, чем при увязке поясов на прямых участках.

Чтобы исключить возможное разрушение армирующего каркаса необходимо все его звенья надёжно изолировать слоем бетона. Для этого нужно проследить за тем, чтобы края арматуры не выходили за пределы фундамента и находились на расстоянии не меньше полуметра от земли и стен опалубки.

Видео: укладка арматуры в ленточный фундамент

Выбор арматуры зависит от массивности сооружения, вида грунта на участке, типа используемого фундамента и бетона. Правильно подобрав арматуру и рассчитав её количество и стоимость, можно своими руками создать надёжный армированный фундамент, который прослужит долгие годы.

Диаметр арматуры для ленточного фундамента: какую использовать

Фундамент — наиболее ответственная конструкция здания. После обратной засыпки котлована доступ к нему ограничен, и исправление каких-либо недостатков становится сложной задачей. Важно обеспечить достаточную прочность конструкции еще на стадии проектирования.

Содержание статьи

Зачем армируется ленточный фундамент

Бетон отлично работает на сжатие, но плохо справляется с изгибом. Грунт считается упругим основанием, которое не предотвращает небольшие прогибы ленты фундамента. Для увеличения прочности конструкции при воздействии поперечной нагрузки закладывают продольные стальные стержни.

Вся арматура в конструкции делится на два типа: рабочая и конструктивная. В ленточном фундаменте рабочим армированием становятся продольные пруты. Они подбираются расчетом. Конструктивное армирование назначается из минимальных требований нормативных документов, расчет не проводится. Они устанавливаются для совместной работы отдельных продольных стержней.

Классы арматуры и марки стали

Арматура отличается не только диаметром. Очень важно правильно выбрать класс изделий. Стержневая сталь обозначается маркировкой А, а проволочная Вр. Для фундамента используют металл класса по пределу текучести А400 (Аlll — устаревшая маркировка). Пруты легко отличают визуально:

Разрешается применять армирование более высоких классов, но в большинстве случаев это экономически не выгодно. Понижение класса арматуры не допускается.

При изготовлении стержней руководствуются ГОСТ «Сталь горячекатаная для армирования железобетонных конструкций. Технические условия». По этому документу арматура класса А400 изготавливается из стали с марками 5ГС, 25Г2С, 32Г2Рпс. Потребитель сам выбирает, какое сырье применять. При отсутствии в заказе марки стали, ГОСТ разрешает производителю назначать ее самостоятельно.

Помимо всего в нормативном документе указаны правила приемки арматуры, методы испытаний, условия транспортировки и хранения.

Минимальные диаметры арматуры

При расчете вычисляется суммарная площадь всей рабочей арматуры, а количество и сечение отдельных стержней уже подбирается по сортаменту.

Для удобства ограничения по диаметрам сводятся в одну таблицу.

Назначение армирования Минимальный диаметр стержней
Рабочее продольное при стороне менее 3 м суммарное сечение всего армирования — 0,1% от общего поперечного сечения ленточного фундамента, каждый стержень диаметром не менее 10 мм
при стороне более 3 м то же, каждый стержень диаметром не менее 12 мм
Конструктивное поперечное 6 мм
Конструктивное вертикальное при высоте ленты менее 80 см 6 мм
Конструктивное вертикальное при высоте ленты более 80 см 8 мм

Требование по подбору рабочей арматуры приведены в СП «Бетонные и железобетонные конструкции. Основные положения». Этот документ 2012 года является актуализированной редакцией одноименного СНиП, выпущенного в 2003 году. Основная информация в документах идентична, внесены лишь небольшие изменения. Более подробные указания представлены в Пособии по проектированию бетонных и железобетонных конструкций без предварительного напряжения арматуры.

Диаметр более 40 мм нельзя использовать для бетонных конструкций.

Расчет рабочего армирования

При возведении серьезных сооружений требуются подробные расчеты ленточного фундамента, которые с точностью определят какую арматуру использовать для данной конструкции. Все расчеты в строительстве проводятся по предельным состояниям, то есть определяются минимальные условия, в которых элемент будет выполнять свою функцию.

  1. Первая группа предельных состояний — расчет по прочности. Обеспечивается надежность и безопасная эксплуатация конструкции.
  2. Вторая группа предельных состояний — расчет по жесткости. Предотвращает чрезмерное раскрытие трещин, перекосы, большие прогибы.

Вычисления по данным формулам трудоемки и требуют наличия технического образования. Для упрощения проектирования небольших частных зданий, армирование ленточного фундамента принимают исходя из минимальных значений.

Пример расчета стержней для ленточного фундамента

Исходные данные:

Требуется сконструировать каркас для индивидуального жилого дома. Используется продольная, поперечная и вертикальная арматура. Вертикальная принимается сечением 8 мм и устанавливается с шагом 25 см. Поперечная горизонтальная монтируется с таким же шагом, но диаметром 6мм.

Для того, чтобы определить какая нужна рабочая арматура выполняют простое вычисление

  1. Площадь поперечного сечения фундамента = ширина*высота = 100 см * 40 см = 4000 см².
  2. Требуемая площадь сечения стержней арматуры = 0,1% * 4000 см² = 4 см².

Далее чтобы определить, какую арматуру использовать, необходимо обратиться к сортаменту. Число прутов принимается четное, чтобы равномерно распределить их в нижнем и в верхнем горизонтальном слое.

Диаметр арматуры, мм Суммарная расчетная площадь поперечного сечения арматурных стержней, см2 Масса 1 метра арматуры, кг
2 стержня 4 стержня 6 стержней 8 стержней 10 стержней
8 применяется только при высоте фундамента 15 см и менее, что не подходит для ленточных конструкций 2,01 3,02 4,02 5,03 0,395
10 3,14 4,71 6,28 7,85 0,617
12 4,52 6,79 9,05 11,31 0,888
14 6,16 9,23 12,37 15,39 1,21
16 8,04 12,06 16,08 20,11 1,58
18 10,18 15,27 20,36 25,45 2,0
20 12,56 18,85 25,13 31,42 2,47

Для данного ленточного фундамента минимальный диаметр равняется 12 мм согласно документу «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию» , его и принимаем. По сортаменту потребуется 4 стержня: 2 располагаются снизу и 2 сверху.

Если применяются стержни разных диаметров (те, которые имеются в наличии), пруты больших размеров располагают снизу.

Расчет количества арматуры на фундамент

Исходные данные:

  1. материалы указаны в предыдущем пункте;
  2. длина стен ленточного фундамента — 40 м.

Требуется рассчитать массу арматуры всех диаметров для ленточного фундамента.
Рабочее горизонтальное армирование

  1. Длина: периметр здания*количество стержней в сечении + запас на нахлест при сварке прутов = 40*6+5 = 245 м.
  2. Анкеровка углов: количество стержней в сечении*количество углов*минимальная длина анкеровки (50 диаметров арматуры) = 6*4*(50*12) = 14,4 м.
  3. Масса: длина*массу одного метра = (245+14,4)*0,617 = 230,3 кг прутов диаметром 12 мм.

Конструктивное горизонтальное армирование
Длина стержней принимается в зависимости о ширины стенки ленты за вычетом защитного слоя бетона — по 2-3 см с каждой стороны. Принимаем продольные пруты 34 см.

  1. Количество стержней: периметр здания/шаг хомутов(в предыдущем пункте принято 25 см) = 40/0,25 = 160 шт.
  2. Общая длина: количество*длина одного прута = 160*0,34 = 54,4 м.
  3. Масса: 54,4*0,222 (в таблице выше не указано, но имеется в полном сортаменте) = 12,1 кг стержней диаметром 6 мм.

Конструктивное вертикальное армирование
Все как в предыдущем пункте, стержни устанавливаются длинной равной:
Высота ленточного фундамента минус 3 см*2 = 100 — 3*2 = 94 см.

  1. Количество стержней: периметр здания/шаг хомутов(в предыдущем пункте принято 25 см) = 40/0,25 = 160 шт.
  2. Общая длина: количество*длина одного прута = 160*0,94 = 150,4 м.
  3. Масса: 150,4*0,395 = 59,41 кг стержней диаметром 8 мм.

Для удобства полученные цифры можно свести в таблицу.

Назначение Диаметр Общая масса
Рабочая 12 мм 230,3 кг
Поперечная 6 мм 12,1 кг
Вертикальная 8 мм 59,41 кг

Рекомендуем прочитать:

Можно ли использовать стеклопластиковую арматуру для ленточного фундамента.

Как правильно армировать ленточный фундамент.

Расчет диаметра арматуры занимает не больше 10 минут, но позволит избежать перерасхода материала или затрат на ремонт ленточных фундаментов. Полученную в последнем пункте таблицу удобно использовать при покупке материала.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Как сделать правильное армирование фундамента своими руками, описание, технология, инструкция и отзывы

Бетон имеет высокую прочность на сжатие, но фундамент не способен передавать нагрузки при растяжении и изгибе. Если реализовать фундамент, который выполнен в виде монолитной конструкции, армирующий каркас, то упомянутый выше недостаток полностью устраняется. Армирование фундамента своими руками осуществить достаточно просто.Первым делом нужно решить, какие конструктивные особенности будут положены в основу, а также создать каркас.

Правила армирования

Компоненты арматурного каркаса должны иметь чистую поверхность для обеспечения хорошего сцепления с бетоном. Чтобы выбрать, какого типа будет переплет и фурнитура, нужно рассчитать нагрузку, оказываемую на фундамент. Если удар по основанию будет незначительным, можно использовать некую проволочную обвязку. Тогда как, если постройка будет достаточно тяжелой стеной, рекомендуется использовать сварку.

Армирование фундамента своими руками должно производиться проволокой, имеющей переменное сечение, т.е. в ребрах. Имеется в виду приспособление, которое возьмет на себя основную нагрузку. Этот каркас будет характеризоваться более высоким уровнем сцепления с бетоном. Гладкую арматуру следует использовать в качестве опорных элементов, задачей которых является распределение нагрузок на фундамент дома.

Выбор инструмента

Армирование фундамента своими руками следует проводить с помощью специального инструмента.Его следует выбирать, исходя из ожидаемого объема работы. Обвязка арматурного каркаса для фундамента меньшего размера должна выполняться традиционным ручным или автоматическим крючком, тогда как при более объемных работах рекомендуется использовать специализированный инструмент для того типа пистолета, который предназначен для обвязки.

Рекомендуется

Наиболее эффективные методы проращивания семян

Несмотря на то, что метод рассады в овощеводстве является очень трудоемким процессом, его использует большинство садоводов.Посадка семян в открытый грунт - простой и удобный метод, но он эффективен только в определенных климатических зонах. I ...

Светоотражающая краска. Сфера применения

Когда машины начали заполнять дороги, их популярность начала набирать светоотражающая краска. Благодаря этой краске как водителям, так и пешеходам становится намного легче избегать аварий в темноте. Назначение краски Светоотражающая краска - лакокрасочный материал, который ...

Технологии работают

Для манипуляции используйте кусок проволоки длиной 30 см. Заготовку следует сложить вдвое.Контурная проволока вводится по диагонали, пересекает арматурный стержень, а затем опускается до концов. Получившуюся петлю продеваем на крючок, следовать ей необходимо методом прокрутки. Мастер должен соединить концы провода, таким образом создав желаемое соединение. Перед началом работ следует помнить, что ленточный монолитный фундамент в процессе эксплуатации будет подвергаться нагрузке на изгиб, особенно в продольном направлении. Его армирование необходимо производить, укладывая каркасную сетку в два и более слоев.Все это будет зависеть от размера самой ленты.

Фурнитура для ленточного фундамента

Если будет армирование фундамента своими руками, следует учесть некоторые моменты. Среди них можно выделить тот факт, что при ленточной конструкции продольные элементы каркаса возьмут на себя наибольшую нагрузку. В связи с этим на их место следует разместить ребристые стержни, диаметр которых равен параметру от 10 до 14 миллиметров.

Что касается вертикальных и поперечных элементов каркаса, то они будут выполнять распределительную, то есть вспомогательную функцию.Поэтому в этом случае можно использовать гладкую арматуру диаметром от 6 до 8 миллиметров. Шаг их установки будет варьироваться от 100 до 300 миллиметров. От этого показателя зависит количество используемых стержней. При минимальной нагрузке этот показатель мог равняться 500 миллиметрам. Готовый каркас следует монтировать в кожух, соблюдая зазор до 50 миллиметров. Отступление необходимо обезопасить от дна траншеи и досок опалубки. Это позволит утопить металлические стержни в бетоне, исключив риск возникновения коррозии.При этом следует помнить, что наибольший уровень натяжения находится в верхних областях основания.

Рекомендации по армированию ленточного фундамента

Если предполагается армирование ленточного фундамента своими руками, рекомендуется обратить внимание на технологию подключения арматуры. Следует подготовить провод класса В1. При работе с углами арматуру можно укладывать под прямым углом или с помощью изогнутых элементов.

Что нужно усвоить к началу работы

Если предстоит армирование ленточного фундамента под баню своими руками, особое внимание следует уделить усилению углов.Это связано с тем, что довольно часто деформируется не центральная часть, а зона углов. Работать на этих участках следует так, чтобы один конец гнутого элемента каркаса уходил в одну сторону, а другой - в противоположную.

Специалисты советуют использовать технологию стыковки, отказавшись от сварочного аппарата, по той причине, что не каждый тип арматуры подходит для проведения подобных работ. Кроме того, сварка довольно часто приводит к проблемам, которые выражаются в нагреве стали, что вызывает изменение качественных характеристик материалов, также может наблюдаться утонение стержня в сварочной промышленности.Поэтому можно получить достаточно прочный сварной шов.

Технические работы

Правильная арматура ленточного фундамента начинается с установки опалубки. Внутренняя поверхность должна быть покрыта пергаментом, что упрощает снятие конструкции. В грунт следует забивать арматурные стержни, длина которых должна быть эквивалентна глубине основания. Снизу нужно установить подставку высотой от 80 до 100 миллиметров. В них умещается примерно две-три нитки нижнего ряда каркаса системы.В качестве подстаканников часто используют кирпичи, которые ставят на край.

Если будет арматурный ленточный фундамент, схемы, советы по проведению этих манипуляций, представленные в статье, помогут осуществить работы. Верхний и нижний ряды необходимо прикрепить вместе поперечинами к вертикально ориентированным штифтам. В тех местах, где элементы перекрываются, должна быть связка или использовать способ сварки. Над уровнем земли штанги должны быть подняты не менее чем на 8 см. После установки клапана необходимо сформировать вентиляционные отверстия, а затем залить бетонный раствор.Вентиляция поспособствует большему ухудшению качества фундамента и предотвратит гниение.

Усиление плиты фундамента

Требования к работе с монолитной плитой выше, чем те, которые применяются к основанию ленты. В последнем случае ширина меньше высоты, поэтому конструкция испытывает нагрузку при изгибе только в продольном направлении. Что касается монолитной плиты, то она имеет противоположные конструктивные особенности, за счет этого поверхность подвергается нагрузкам при изгибе не только поперек, но и вдоль.

Если вы задумываетесь, как сделать армирование фундамента своими руками, используйте арматуру диаметром от 12 до 16 миллиметров. Все элементы выполнены из оребрения. Средний размер ячеек, расположенных вверху и внизу сетки, должен составлять 200 х 200 миллиметров. Расстояние между ремнями эквивалентно 100 миллиметрам. Если у вас есть утепляющий слой, сборку каркаса для усиления нервюр следует осуществлять вне основания. Это предотвратит повреждение изоляционного материала.

Укрепление свайного фундамента

Если вас интересует, как правильно делается арматура ленточного фундамента своими руками, возможно, вам будет интересно узнать об усилении свайного фундамента. Именно такой вид конструкции может лечь в основу конструкции, которую предполагается возвести. Технология в этом случае не будет отличаться от работ, рекомендованных при формировании фундамента пирса. В этом случае следует соблюдать один нюанс. Он заключается в том, что вертикальный стержень размещается по кругу, чтобы в системе не было углов и острых участков.Из одной сваи потребуется подготовить стержни, количество которых варьируется от 3 до 5.

Техника работ

После того, как схема армирования ленточного фундамента своими руками вам станет известна, можно ознакомиться с технология строительства столбчатого основания. Арматурный каркас необходимо собирать из нескольких вертикально ориентированных прутков, диаметр которых колеблется от 10 до 12 см. Следует использовать ребристую арматуру, которая относится к классу AIII. Для формирования горизонтальных элементов применять гладкую, тонкую, монтажную арматуру 6 мм.

.

Какие факторы влияют на выбор фундамента под здания?

Факторы, влияющие на выбор фундамента для здания, могут быть самыми разными: от условий почвы до типа конструкции и нагрузок от здания. Все факторы учитываются при выборе фундамента для строительства прочного здания.

Факторы, влияющие на выбор фундамента

Ниже перечислены факторы, влияющие на выбор подходящего фундамента для строительства здания:

  1. Грузы от дома
  2. Тип почвы
  3. Тип строения по соседству
  4. Тип фундамента

1.Грузы от дома

Первым учитываемым фактором являются нагрузки от здания на фундамент. Эта нагрузка представляет собой комбинацию статической нагрузки и нагрузки на здания. Другие нагрузки, такие как ветровые нагрузки, землетрясения, снеговые нагрузки и т. Д., Также учитываются в зависимости от местоположения.

Количество нагрузок зависит от типа конструкции, этажности и материала конструкции. С увеличением количества этажей увеличиваются статическая нагрузка и приложенные нагрузки.

Выбор материала для строительства, такого как железобетон или стальная конструкция, также влияет на фундамент. Здания из железобетона испытывают большие нагрузки на фундамент по сравнению со стальными конструкциями.

На основании допустимой несущей способности конструкции и количества нагрузок на фундамент рассчитывается тип фундамента и площадь его основания.

2. Тип почвы

Почва представляет собой смесь твердых частиц, влаги и воздуха. Почва может быть многих типов, например, глинистая или обширная, песчаная или рыхлая и т. Д.Грунт вблизи поверхности называется верхним слоем почвы, а глубина ниже 300 мм - грунтом. Обычно грунт используется как основание для небольших построек.

Тем не менее, исследование почвы должно проводиться, чтобы узнать характер почвы, глубину грунтовых вод, тип почвы, глубину различных слоев почвы и узнать несущую способность почвы на разных уровнях для больших конструкций.

Когда нагрузка передается от конструкции к грунту через фундамент, грунт имеет тенденцию к уплотнению и происходит оседание основания.Этот процесс уплотнения может быть быстрым в случае несвязных почв, таких как пески, и даже может занять годы для других почв.

Полная осадка фундамента в песчаной почве может произойти даже до завершения строительства здания. Глинистая почва может дольше удерживать воду, поэтому оседание происходит очень медленно и может занять годы. Глинистая почва удерживает большое количество воды, поэтому осадка фундамента на таких почвах большая.

Осадка фундамента вызывает трещины в стенах здания, балках, плитах и ​​т. Д.а в случае большого поселения здание может даже выйти из строя.

Исследование грунта необходимо, когда нагрузки от здания велики и несущая способность не может быть оценена на основе типа состояния грунта на площадке.

Исследование почвы необходимо провести для получения следующей информации:

3. Тип строения в микрорайоне

Выбор фундамента для строительства здания также может производиться на основе типа фундамента, выбранного для зданий в соседних зданиях того же типа. Исходя из успешности или неудачи фундамента для таких построек, можно принять решение о выборе фундамента.

4. Типы фундаментов

Типы фундаментов, такие как изолированные фундаменты, комбинированные фундаменты, свайные фундаменты, плотные или матовые фундаменты и т. Д.в зависимости от типа грунта и нагрузки от зданий могут быть выбраны в зависимости от пригодности и требований.

Подробнее:

Как спроектировать экономичный фундамент и предотвратить строительные проблемы на объекте?

Что такое фундамент в строительстве? Назначение и функции фондов

Стоимость свайного фундамента по сравнению с другими фондами для строительных проектов

Как защитить фундаментные конструкции от почв и грунтовых вод?

.

Определение выбора арматуры


Арматура - это стальные стержни, используемые в строительной конструкции, чтобы действовать внутри поддерживающего агента, такого как колонны, балки, плиты, фундамент и т. Д. Железобетонная конструкция представляет собой комбинацию бетона и стального стержня. Он спроектирован так, чтобы объединить прочную зону бетона, то есть прочность на сжатие, и прочную зону стали, которая является пределом прочности на растяжение.
Выбор арматуры выполняется в два этапа, как показано ниже.
• тип стальной арматуры и тип конструкций
Тип стальной арматуры:
Обычно существует четыре типа стальной арматуры, используемой для инженерных целей, как показано ниже.
• Прокат горячекатаный деформированный.
• Пруток гладкий из низкоуглеродистой стали
• Пруток стальной холоднодеформированный
• Предварительно напряженный стальной стержень
Пруток стальной горячекатаный с ребром по поверхности. Максимальный предел текучести горячекатаного проката составляет. Плоский пруток из мягкой стали не имеет ребер на поверхности.Максимальный предел текучести мягкой стали составляет. Для расчета предела текучести холоднодеформированного арматурного стержня используйте смещение 0,2%. Максимальный предел текучести стержня из холодной стали составляет.
Тип конструкции:
Есть так много бетонных конструкций, и каждая из них имеет разную-разную прочность. Прочность бетонных конструкций также зависит от марки стали. Выбор должен быть сделан на основе требований прочности на сдвиг, прочности на изгиб и прочности на скручивание.
Например, в конструкции колонны основная штанга имеет диаметр 12 мм, а поперечная штанга - диаметр 8 мм. Для фактической колонны RCC диаметр может увеличиваться в соответствии с требуемой расчетной прочностью. .

Обучение с подкреплением 101. Изучите основы подкрепления… | Швета Бхатт

Обучение с подкреплением (RL) - одна из самых актуальных тем исследований в области современного искусственного интеллекта, и ее популярность только растет. Давайте рассмотрим 5 полезных вещей, которые нужно знать, чтобы начать работу с RL.

Обучение с подкреплением (RL) - это метод машинного обучения, который позволяет агенту учиться в интерактивной среде методом проб и ошибок, используя обратную связь по своим действиям и опыту.

Хотя как контролируемое обучение, так и обучение с подкреплением используют сопоставление между вводом и выводом, в отличие от контролируемого обучения, где обратная связь, предоставляемая агенту, представляет собой правильный набор действий для выполнения задачи, обучение с подкреплением использует вознаграждений и наказаний в качестве сигналов положительного и отрицательное поведение.

По сравнению с обучением без учителя, обучение с подкреплением отличается с точки зрения целей. В то время как цель обучения без учителя состоит в том, чтобы найти сходства и различия между точками данных, в случае обучения с подкреплением цель состоит в том, чтобы найти подходящую модель действий, которая максимизирует общую совокупную награду агента .На рисунке ниже показан цикл обратной связи «действие-вознаграждение» типовой модели RL.

Вот некоторые ключевые термины, которые описывают основные элементы проблемы RL:

  1. Среда - Физический мир, в котором работает агент
  2. Состояние - Текущая ситуация агента
  3. Вознаграждение - Обратная связь от среда
  4. Политика - Метод сопоставления состояния агента действиям
  5. Значение - Будущее вознаграждение, которое агент получит, выполняя действие в определенном состоянии

Проблема RL лучше всего может быть объяснена с помощью игр.Давайте возьмем игру PacMan , где цель агента (PacMan) состоит в том, чтобы съесть еду в сетке, избегая при этом призраков на своем пути. В этом случае сеточный мир - это интерактивная среда для агента, в которой он действует. Агент получает награду за поедание еды и наказание, если его убивает призрак (проигрывает в игре). Состояния - это местоположение агента в мире сетки, а общая совокупная награда - это агент, выигравший игру.

Чтобы построить оптимальную политику, агент сталкивается с дилеммой исследования новых состояний, одновременно максимизируя свое общее вознаграждение.Это называется компромиссом между и эксплуатацией . Чтобы сбалансировать и то, и другое, лучшая общая стратегия может включать краткосрочные жертвы. Следовательно, агент должен собрать достаточно информации, чтобы принять наилучшее общее решение в будущем.

Марковские процессы принятия решений (MDP) - это математические основы для описания среды в RL, и почти все задачи RL могут быть сформулированы с использованием MDP. MDP состоит из набора конечных состояний S среды, набора возможных действий A (s) в каждом состоянии, действительной функции вознаграждения R (s) и модели перехода P (s ’, s | a).Однако в реальных условиях окружающей среды, скорее всего, не хватает каких-либо предварительных знаний о динамике окружающей среды. В таких случаях пригодятся безмодельные методы RL.

Q-Learning - это широко используемый подход без модели, который можно использовать для создания самовоспроизводящегося агента PacMan. Он вращается вокруг понятия обновления значений Q, которое обозначает значение выполнения действия a в состоянии s . Следующее правило обновления значения является ядром алгоритма Q-обучения.

Вот видео-демонстрация агента PacMan, который использует глубокое обучение с подкреплением.

Q-Learning и SARSA (State-Action-Reward-State-Action) - два широко используемых алгоритма RL без моделей. Они различаются своими стратегиями разведки, в то время как их стратегии эксплуатации схожи. В то время как Q-обучение - это метод вне политики, в котором агент изучает значение на основе действия a *, полученного из другой политики, SARSA - это метод на основе политики, при котором он изучает значение на основе своего текущего действия a , полученного из его текущая политика.Эти два метода просты в реализации, но им не хватает универсальности, поскольку они не позволяют оценивать значения для невидимых состояний.

Это можно преодолеть с помощью более совершенных алгоритмов, таких как Deep Q-Networks (DQNs) , которые используют нейронные сети для оценки Q-значений. Но DQN могут обрабатывать только дискретные низкоразмерные пространства действий.

Глубокий детерминированный градиент политики (DDPG) - это не связанный с политикой алгоритм, не связанный с политикой, алгоритм критика субъектов, который решает эту проблему путем изучения политик в многомерных пространствах непрерывных действий.На рисунке ниже представлена ​​архитектура "актер-критик" .

Так как RL требует большого количества данных, поэтому он наиболее применим в областях, где смоделированные данные легко доступны, например, игровой процесс, робототехника.

  1. RL довольно широко используется при создании ИИ для компьютерных игр. AlphaGo Zero - первая компьютерная программа, победившая чемпиона мира в древней китайской игре го. Другие включают игры ATARI, Backgammon и т. Д.
  2. В робототехнике и промышленной автоматизации RL используется, чтобы позволить роботу создать для себя эффективную адаптивную систему управления, которая учится на собственном опыте и поведении.Работа DeepMind над Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Policy updates является хорошим примером того же. Посмотрите это интересное демонстрационное видео.

Другие приложения RL включают механизмы резюмирования абстрактного текста, диалоговые агенты (текст, речь), которые могут учиться на взаимодействии с пользователем и улучшаться со временем, изучая оптимальные стратегии лечения в здравоохранении, и основанные на RL агенты для онлайн-торговли акциями.

Для понимания основных концепций RL можно обратиться к следующим ресурсам.

  1. Обучение с подкреплением - Введение , книга отца обучения с подкреплением - Ричарда Саттона и его научного руководителя Эндрю Барто . Онлайн-черновик книги доступен здесь.
  2. Учебные материалы из Дэвид Сильвер , включая видеолекции, - отличный вводный курс по RL.
  3. Вот еще один технический учебник по RL от Pieter Abbeel и John Schulman (Open AI / Berkeley AI Research Lab).

Чтобы приступить к созданию и тестированию агентов RL, могут быть полезны следующие ресурсы.

  1. Этот блог о том, как обучить агент нейронной сети ATARI Pong с помощью градиентов политики из необработанных пикселей, автор Андрей Карпати поможет вам запустить и запустить свой первый агент глубокого обучения с подкреплением всего за 130 строк кода Python.
  2. DeepMind Lab - это платформа с открытым исходным кодом, похожая на трехмерную игру, созданную для агентных исследований искусственного интеллекта в богатой моделируемой среде.
  3. Project Malmo - еще одна платформа для экспериментов с ИИ для поддержки фундаментальных исследований в области ИИ.
  4. OpenAI gym - это набор инструментов для создания и сравнения алгоритмов обучения с подкреплением.
.

Полный словарь по обучению с подкреплением | by Shaked Zychlinski

Функция значения действия: См. Q-Value .

Действия: Действия - это методы агента , которые позволяют ему взаимодействовать и изменять свою среду и, таким образом, переходить между состояниями . Каждое действие, совершенное Агентом, приносит награды от среды. Решение о том, какое действие выбрать, принимает политика .

Критик-исполнитель: При попытке решить задачу Reinforcement Learning можно выбрать один из двух основных методов: вычисление функций значений или Q-значений каждого состояния и выбор действий в соответствии с к ним, или непосредственно вычислить политику , которая определяет вероятности каждого действия, которое должно быть предпринято в зависимости от текущего состояния, и действовать в соответствии с ним. Алгоритмы Actor-Critic объединяют два метода, чтобы создать более надежный метод.Здесь можно найти отличное пояснение в виде иллюстрированных комиксов.

Функция преимущества: Обычно обозначается как A (s, a) , функция преимущества является мерой того, насколько определенное действие является хорошим или плохим решением при определенном состоянии - или более просто, в чем преимущество выбора определенного действия из определенного состояния. Математически он определяется как:

, где r (s, a) - ожидаемая награда действия a из состояния s , а r (s) - ожидаемая награда всего состояния . s , прежде чем было выбрано действие.Его также можно рассматривать как:

, где Q (s, a) - это Q Value и V (s) - это функция Value .

Агент: Обучение и действие часть задачи Reinforcement Learning , которая пытается максимизировать вознаграждений , которые дает среда . Проще говоря, Агент - это модель, которую вы пытаетесь создать.

Bandits: Формально названные «k-Armed Bandits» в честь прозвища «однорукий бандит», присвоенного игровым автоматам, они считаются простейшим типом Reinforcement Learning заданий.У бандитов нет разных состояний , а только одно - и рассматриваемая награда является лишь непосредственной. Следовательно, можно представить себе бандитов как имеющих одно государство эпизодов . Каждое из k-рычагов считается действием , и цель состоит в том, чтобы изучить политику , которая максимизирует ожидаемую награду после каждого действия (или вытягивания руки).
Контекстные бандиты - это немного более сложная задача, где каждое состояние может отличаться и влиять на результат действий - следовательно, каждый раз контекст отличается.Тем не менее, задача остается эпизодической задачей с одним состоянием, и один контекст не может влиять на другие.

Уравнение Беллмана: Формально уравнение Беллмана определяет отношения между заданным состоянием (или парой состояние- действие ) с его преемниками. Хотя существует множество форм, наиболее распространенной из них, обычно встречающейся в задачах Reinforcement Learning , является уравнение Беллмана для оптимального Q-Value , которое задается как:

или когда нет неопределенности (то есть вероятности 1 или 0):

, где звездочка означает оптимальное значение .Некоторые алгоритмы, такие как Q-Learning , основывают свою процедуру обучения на нем.

Непрерывные задачи: Обучение с подкреплением задач, которые не состоят из эпизодов , а длятся вечно. У этой задачи нет терминала состояние с. Для простоты обычно предполагается, что они состоят из одного нескончаемого эпизода.

Deep Q-Networks (DQN) : см. Q-Learning

Deep Reinforcement Learning: Использование алгоритма Reinforcement Learning с глубокой нейронной сетью в качестве аппроксиматора для обучающей части.Обычно это делается для того, чтобы справиться с проблемами, когда количество возможных состояний и действий быстро масштабируется, и точное решение больше не представляется возможным.

Коэффициент дисконтирования (γ) : Коэффициент дисконтирования, обычно обозначаемый как γ, является коэффициентом, умножающим будущее ожидаемое вознаграждение , и варьируется в диапазоне [0,1]. Он контролирует важность будущих наград по сравнению с немедленными. Чем ниже коэффициент дисконтирования, тем менее важны будущие награды, и Агент будет, как правило, сосредоточиться на действиях , которые принесут только немедленные вознаграждения.

Среда: Все, что не является агентом ; все, с чем Агент может взаимодействовать прямо или косвенно. Среда меняется, когда Агент выполняет действий ; каждое такое изменение считается состоянием - переходом. Каждое действие, выполняемое агентом, дает награды , полученной агентом.

Эпизод: Все состояний , которые находятся между начальным и конечным состояниями; например: одна партия в шахматы. Agent цель - максимизировать общую сумму награды , которую он получает во время эпизода. В ситуациях, когда терминального состояния нет, мы рассматриваем бесконечный эпизод. Важно помнить, что разные эпизоды полностью независимы друг от друга.

Эпизодические задачи: Обучение с подкреплением задач, которые состоят из различных эпизодов (то есть каждый эпизод имеет терминал , состояние ).

Ожидаемая доходность: Иногда называемая «общей наградой» и иногда обозначаемая как G , это ожидаемая награда за весь эпизод .

Воспроизведение опыта: Поскольку задачи Reinforcement Learning не имеют заранее сгенерированных обучающих наборов, из которых они могут учиться, агент должен вести записи всех встреченных им переходов состояний - , чтобы он мог учиться их позже.Буфер памяти, используемый для его хранения, часто называется Experience Replay . Существует несколько типов и архитектур этих буферов памяти, но наиболее распространенными из них являются циклические буферы памяти (которые следят за тем, чтобы агент продолжал обучение своему новому поведению, а не вещам, которые могут больше не иметь значения) и память на основе выборки резервуаров. буферы (что гарантирует, что каждый записанный переход между состояниями имеет равную вероятность быть вставленным в буфер).

Эксплуатация и исследование: Обучение с подкреплением задач не имеют заранее сгенерированных обучающих наборов, из которых они могут учиться - они создают свой собственный опыт и учатся «на лету».Для этого агент должен попробовать множество различных действий во многих различных состояниях , чтобы попытаться изучить все доступные возможности и найти путь, который максимизирует его общую награду ; это известно как Exploration , поскольку агент исследует среду Environment . С другой стороны, если все, что агент будет делать, это исследовать, он никогда не максимизирует общую награду - он также должен использовать для этого информацию, которую он выучил.Это известно как Эксплуатация , поскольку агент использует свои знания для максимизации получаемого вознаграждения.
Компромисс между этими двумя аспектами - одна из величайших проблем в задачах обучения с подкреплением, поскольку они должны быть сбалансированы, чтобы позволить агенту как достаточно исследовать окружающую среду, так и использовать то, что он узнал, и повторять наиболее полезный путь. он нашел.

Жадная политика, ε -Жадная политика: Жадная политика означает, что агент постоянно выполняет действие , которое, как считается, принесет максимальную ожидаемую награду .Очевидно, такая политика вообще не позволит Агенту исследовать . Для того, чтобы все же позволить некоторое исследование, вместо этого часто используется жадная политика ε-: выбирается число (с именем ε ) в диапазоне [0,1], и перед выбором действия выбирается случайный выбирается число в диапазоне [0,1]. если это число больше ε , выбирается жадное действие, а если оно меньше, выбирается случайное действие. Обратите внимание, что если ε = 0, политика становится жадной политикой, а если ε = 1, всегда исследуйте.

k-Armed Bandits: См. Bandits .

Марковский процесс принятия решений (MDP): Свойство Маркова означает, что каждое состояние зависит исключительно от своего предыдущего состояния, выбранного действия , выполненного из этого состояния, и награды , полученной сразу после этого действия был казнен. Математически это означает: s '= s' (s, a, r) ​​, где s ' - будущее состояние, s - его предыдущее состояние и a и r - действие и награда. .Никаких предварительных знаний о том, что произошло до s , не требуется - свойство Маркова предполагает, что s содержит всю необходимую информацию. Марковский процесс принятия решений - это процесс принятия решений, основанный на этих предположениях.

На основе модели и без модели: На основе модели и без модели - это два разных подхода, которые агент может выбрать при попытке оптимизировать свою политику . Лучше всего это объяснить на примере: предположим, вы пытаетесь научиться играть в блэкджек.Вы можете сделать это двумя способами: во-первых, вы рассчитываете заранее, до начала игры, вероятности выигрыша для всех состояний и всех вероятностей перехода между состояниями с учетом всех возможных действий , а затем просто действуете в соответствии с вами расчеты. Второй вариант - просто играть без каких-либо предварительных знаний и получать информацию методом проб и ошибок. Обратите внимание, что при использовании первого подхода вы в основном моделируете вашу среду , в то время как второй подход не требует никакой информации о среде.В этом и заключается разница между модельным и безмодельным; первый метод основан на модели, а второй - без модели.

Монте-Карло (MC): Методы Монте-Карло - это алгоритмы, которые используют повторную случайную выборку для достижения результата. Они довольно часто используются в алгоритмах Reinforcement Learning для получения ожидаемых значений; например - вычисление состояния Функция значения путем возврата в одно и то же состояние снова и снова и усреднения по фактическим совокупным вознаграждениям , полученным каждый раз.

В соответствии с политикой и вне политики: Каждые Обучение с подкреплением Алгоритм должен следовать некоторой политике , чтобы решить, какие действий выполнять в каждом состоянии . Тем не менее, процедура обучения алгоритма не должна учитывать эту политику во время обучения. Алгоритмы, которые касаются политики, которая давала прошлые решения о действиях состояния, называются алгоритмами на основе политики, а те, которые игнорируют его, известны как вне политики .
Хорошо известным алгоритмом вне политики является Q-Learning , поскольку его правило обновления использует действие, которое даст наивысшее значение Q-Value , в то время как фактическая используемая политика может ограничить это действие или выбрать другое. Вариант Q-Learning, связанный с политикой, известен как Sarsa , где правило обновления использует действие, выбранное соответствующей политикой.

Однорукие бандиты: См. Бандиты .

One-Step TD: См. Temporal Difference .

Политика (π): Политика, обозначенная как π (или иногда π (a | s) ), является отображением некоторого состояния s на вероятности выбора каждого из возможных действие с учетом этого состояния. Например, жадная политика выводит для каждого состояния действие с наивысшим ожидаемым значением Q-Value .

Q-Learning: Q-Learning - это алгоритм вне политики Обучение с подкреплением , который считается одним из самых базовых.В своей наиболее упрощенной форме он использует таблицу для хранения всех Q-значений из всех возможных состояний - действий возможных пар. Он обновляет эту таблицу, используя уравнение Беллмана , в то время как выбор действия обычно выполняется с помощью политики ε-жадности .
В своей простейшей форме (отсутствие неопределенностей в состоянии -переходов и ожидаемых наград ) правило обновления Q-Learning:

Более сложная его версия, хотя и гораздо более популярная, - это Deep Q -Сетевой вариант (который иногда даже называют просто Deep Q-Learning или просто Q-Learning ).В этом варианте таблица состояние-действие заменяется нейронной сетью, чтобы справиться с крупномасштабными задачами, где количество возможных пар состояние-действие может быть огромным. Вы можете найти руководство по этому алгоритму в этом блоге.

Значение Q (функция Q): Обычно обозначается как Q (s, a) (иногда с нижним индексом π, а иногда как Q (s, a; θ) в Deep RL ), Q Значение является мерой общей ожидаемой награды при условии, что агент находится в состоянии с и выполняет действие a , а затем продолжает играть до конца эпизода после некоторого политика π.Его название представляет собой аббревиатуру слова «Качество» и математически определяется как:

, где N - это количество состояний от состояния с до конечного состояния, γ - коэффициент дисконтирования , а r⁰ - немедленное вознаграждение, полученное после выполнения действия a в состоянии s .

Алгоритмы REINFORCE: Алгоритмы REINFORCE - это семейство из алгоритмов обучения с подкреплением алгоритмов , которые обновляют свою политику параметров в соответствии с градиентом политики относительно параметров политики [paper] .Имя обычно пишется только заглавными буквами, так как изначально оно использовалось как аббревиатура для оригинального дизайна группы алгоритмов: « RE ward I ncrement = N onnegative F Актер x O ffset R einforcement x C haracteristic E ligibility »[источник]

Обучение с подкреплением (RL): Обучение с подкреплением, как и контролируемое обучение и неконтролируемое обучение, является одной из основных областей машинного обучения и искусственного интеллекта.Он связан с процессом обучения произвольного существа, формально известного как Агент , в окружающем его мире, известном как Environment . Агент стремится максимизировать вознаграждений , которые он получает от Окружающей среды, и выполняет различных действий , чтобы узнать, как Окружение реагирует на них, и получить больше вознаграждений. Одна из самых сложных задач RL - связать действия с отложенными вознаграждениями - вознаграждениями, получаемыми Агентом спустя много времени после того, как действие, генерирующее вознаграждение, было выполнено.Поэтому он активно используется для решения различных типов игр, от Tic-Tac-Toe, Chess, Atari 2600 и до Go и StarCraft.

Награда: Числовое значение, полученное агентом из среды как прямой ответ на действия агента . Цель агента - максимизировать общую награду, которую он получает в эпизоде ​​ , и поэтому награды - это мотивация, необходимая агенту для того, чтобы вести себя желаемым образом.Все действия приносят награды, которые можно условно разделить на три типа: положительных наград, , подчеркивающих желаемое действие, отрицательных наград, , подчеркивающих действие, от которого агент должен отклониться, и 0, , что означает, что агент этого не сделал. Не делаю ничего особенного или уникального.

Sarsa: Алгоритм Sarsa в значительной степени является алгоритмом Q-Learning с небольшой модификацией, чтобы сделать его алгоритмом на основе политики .Правило обновления Q-Learning основано на уравнении Беллмана для оптимального Q-Value , поэтому в случае отсутствия неопределенностей в переходах состояния и ожидаемых вознаграждений , правило обновления Q-Learning имеет вид :

Чтобы преобразовать это в алгоритм, соответствующий политике, последний член изменен:

, когда здесь оба действия a и a ' выбираются одной и той же политикой . Название алгоритма происходит от его правила обновления, которое основано на ( s, a, r, s ’, a’ ), и все они происходят из одной и той же политики.

Состояние: Каждый сценарий, с которым сталкивается агент Agent в среде , формально называется состоянием . Агент переходит между разными состояниями, выполняя действий . Также стоит упомянуть, что терминал определяет состояние , которое знаменует конец серии . Нет возможных состояний после достижения конечного состояния и начала нового эпизода. Довольно часто конечное состояние представляется как особое состояние, в котором все действия переходят в одно и то же конечное состояние с наградой 0.

Функция значения состояния: См. Функцию значения .

Temporal-Difference (TD): Temporal Difference - это метод обучения, который сочетает в себе как динамическое программирование, так и принципы Монте-Карло ; он обучается «на лету» подобно Монте-Карло, но обновляет свои оценки, как динамическое программирование. Один из простейших алгоритмов временной разницы, известный как одноступенчатый TD или TD (0) . Он обновляет функцию значения в соответствии со следующим правилом обновления:

, где V - функция значения, с - состояние , r - награда , γ - скидка коэффициент , α - скорость обучения, t - временной шаг, а знак «=» используется в качестве оператора обновления, а не равенства.Термин, заключенный в квадратные скобки, известен как ошибка временной разницы .

Состояние терминала: См. Состояние .

Верхняя уверенная граница (UCB): UCB - это метод разведки , который пытается гарантировать, что каждое действие хорошо изучено. Рассмотрим политику исследования , которая является полностью случайной - это означает, что каждое возможное действие имеет одинаковый шанс быть выбранным.Есть шанс, что одни действия будут изучены гораздо больше, чем другие. Чем меньше выбрано действие, тем менее уверенно агент может быть уверен в своей ожидаемой награде , и его фаза эксплуатации может быть повреждена. Исследование UCB принимает во внимание количество раз, когда каждое действие было выбрано, и придает дополнительный вес менее изученным. Математически формализуя это, выбранное действие выбирается следующим образом:

, где R (a) - это ожидаемая общая награда за действие a , t - это количество сделанных шагов (сколько действий было выбрано в целом), N (a) - это количество раз, когда было выбрано действие и , а c - настраиваемый гиперпараметр.Этот метод также иногда называют «исследованием через оптимизм», поскольку он дает менее изученным действиям более высокую ценность, побуждая модель их выбирать.

Значение Функция: Обычно обозначается как В (с) (иногда с нижним индексом π), функция Value является мерой общего ожидаемого вознаграждения при условии, что агент находится в состоянии с а затем продолжает воспроизведение до конца эпизода , следуя некоторой политике π.Математически он определяется как:

Хотя это действительно похоже на определение Q Value , существует неявное, но важное отличие: для n = 0 вознаграждение r⁰ В (с) равно ожидаемая награда от простого нахождения в состоянии s , до было сыграно какое-либо действие, а в Q Value r⁰ - ожидаемая награда после определенного действия. Эта разница также дает функцию преимущества .

.

ᐉ Приложения обучения с подкреплением

Возможно, вы читали об обучении с подкреплением, просматривая истории об AlphaGo - алгоритме, который научился играть в игру GO и побеждать опытного игрока-человека - и, возможно, нашли эту технологию увлекательной.

Однако, поскольку предмет по своей природе сложен и не кажется многообещающим с точки зрения бизнеса, вы, возможно, не сочли полезным углубляться в его изучение.

Что ж, оказывается, отсутствие у RL практических преимуществ - заблуждение; на самом деле есть несколько способов, которыми компании могут его использовать прямо сейчас.

В этом посте мы перечислим возможные приложения для глубокого обучения с подкреплением и объясним без технического жаргона, как в целом работает RL.

Обучение с учителем, обучение без учителя и обучение с подкреплением

Итак, в обычном контролируемом обучении , согласно нашей недавней публикации, у нас есть пары ввода / вывода (x / y) (например, помеченные данные), которые мы используем для обучения машин. Зная результаты для каждого входа, мы позволяем алгоритму определять функцию, которая отображает Xs-> Ys, и мы продолжаем исправлять модель каждый раз, когда она делает ошибку прогноза / классификации (выполняя обратное распространение и подергивая функцию.Мы продолжаем такое обучение до тех пор, пока алгоритм не даст удовлетворительных результатов.

В обычном обучении без учителя у нас есть данные без меток, и мы вводим набор данных в наш алгоритм, надеясь, что он обнаружит в нем некую скрытую структуру.

Обучение с подкреплением решает другие задачи. В RL есть агент, который взаимодействует с определенной средой, таким образом изменяя свое состояние, и получает вознаграждение (или штрафы) за свой ввод.Его цель - найти шаблоны действий, попробовав их все и сравнив результаты, которые принесут наибольшее количество очков вознаграждения.

Одна из ключевых особенностей RL заключается в том, что действия агента могут не влиять на непосредственное состояние среды, но влияют на последующие. Так что иногда машина не узнает, эффективно ли то или иное действие, гораздо позже в эпизоде.

Кроме того, существует так называемая дилемма компромисса эксплуатация / разведка .

Стремясь максимизировать числовое вознаграждение, агент должен склоняться к действиям, которые, как он знает, приводят к положительным результатам, и избегать тех, которые не дают результатов. Это называется эксплуатацией знаний агента.

Однако, чтобы выяснить, какие действия являются правильными, в первую очередь он должен их опробовать и рискнуть получить штраф. Это известно как разведка .

Уравновешивание эксплуатации и исследования - одна из ключевых проблем в обучении с подкреплением и проблема, которая вообще не возникает в чистых формах обучения с учителем и без учителя.

Помимо агента и среды, в каждой системе RL есть также эти четыре элемента :

Политика. Как действует агент при определенном состоянии окружающей среды; они могут быть определены простой функцией или включать в себя некоторые обширные вычисления. Думайте о них как о правилах или ассоциациях машинных стимулов и реакций.

Сигналы вознаграждения определяют, следует ли изменять политику или нет. Как мы уже упоминали, единственная цель агента - максимизировать числовое вознаграждение, чтобы на основе этого сигнала он мог делать выводы о том, какие действия являются хорошими или плохими.

Функции ценности также играют решающую роль в формировании поведения агента, но, в отличие от сигналов вознаграждения, которые оценивают действия в непосредственном смысле, они определяют, является ли событие хорошим в долгосрочной перспективе, с учетом следующих состояний.

Наконец, модели имитируют среду, в которой находится агент, и, таким образом, позволяют делать выводы о его будущем поведении. Методы обучения с подкреплением, использующие модели для планирования, называются модельными, а методы, полностью основанные на методе проб и ошибок, называются безмодельными.

Хорошо, как на самом деле работает RL?

Давайте в качестве примера возьмем игру в Понг (старинные игры Atari часто используются для объяснения внутренней работы обучения с подкреплением) и представим, что мы пытаемся научить агента играть в нее.

В настройке контролируемого обучения первое, что мы делаем, это записываем игровые сеансы человека-игрока и создаем помеченный набор данных, в который мы записываем каждый кадр, отображаемый на экране (ввод), а также каждое действие игрока. (вывод).

Затем мы скармливаем эти входные кадры нашему алгоритму и заставляем его предсказывать правильные действия (нажатие вверх или вниз) для каждой ситуации (правильность определяется нашими выходными данными). Мы использовали бы обратное распространение, чтобы настроить функцию, пока машина не получает правильные прогнозы.

Несмотря на высокий уровень точности, которого мы могли достичь с его помощью, у этого подхода есть несколько серьезных недостатков. Во-первых, у нас должен быть помеченный набор данных для любого вида контролируемого обучения, а получение данных (и аннотирование меток) может оказаться довольно дорогостоящим и трудоемким процессом.Кроме того, применяя такой вид обучения, мы не даем машине шанса когда-либо обыграть человека; по сути, мы просто учим его подражать им.

Однако в обучении с подкреплением таких ограничений нет.

Мы начинаем так же, то есть пропускаем входные кадры через наш алгоритм и позволяем ему выполнять случайные действия. У нас нет целевых меток для каждой ситуации, поэтому мы не указываем агенту, когда он должен нажимать вверх, а когда вниз.Мы даем ему возможность самостоятельно исследовать окружающую среду.

Мы предоставляем только обратную связь с табло. Каждый раз, когда модели удается набрать очко, она получает награду +1, а каждый раз, когда она теряет очко, получает штраф -1. Исходя из этого, он будет итеративно обновлять свои политики, чтобы действия, приносящие вознаграждение, были более вероятными, а действия, приводящие к штрафу, отфильтровывались.

Здесь нужно немного терпения: сначала агент, необразованный, будет постоянно проигрывать игру.Однако по мере того, как он продолжает изучать игру, в какой-то момент он случайно наткнется на выигрышную последовательность действий и соответственно обновит свою политику.

Проблемы обучения с подкреплением

Не все так хорошо в стране RL. Даже сценарий, который вы только что прочитали, когда агент становится хорошо разбирающимся в игре Atari, может быть довольно проблематичным.

Предположим, алгоритм какое-то время играл в понг с человеком и довольно умело перебрасывал мяч взад и вперед.Но затем он скользит к концу эпизода и теряет очко. Вознаграждение за всю последовательность будет отрицательным (-1), поэтому модель будет предполагать, что каждое совершенное действие было неправильным, что не так.

Это называется проблемой присвоения кредита и связано с тем, что наш агент не получает обратную связь сразу после каждого действия. В Pong он может увидеть результат только после того, как эпизод закончился, на табло. Таким образом, он должен каким-то образом установить, какие действия привели к конечному результату.

Из-за этого скудного количества приложений для установки вознаграждения с алгоритмами обучения с подкреплением обычно очень неэффективны. Для обучения им требуется много данных, прежде чем они станут эффективными.

Кроме того, в некоторых случаях, когда последовательность действий, необходимых для получения награды, слишком длинная и сложная, система дефицитного вознаграждения полностью выйдет из строя. Агент, который не может получить вознаграждение, совершая случайные шаги, никогда не научится правильному поведению.

Чтобы бороться с этим, специалисты по RL вручную проектируют функции вознаграждения, чтобы они могли направлять политику агента в отношении получения вознаграждения.Как правило, эти функции выдают серию мини-наград на пути к большой выплате, таким образом предоставляя агенту необходимые предложения. Процесс создания этой функции известен как формирование награды .

Примеры использования обучения с подкреплением

Робототехника. RL можно использовать для решения больших задач управления, а также для различных промышленных приложений. Например, Google, как сообщается, сократил потребление энергии примерно на 50% после внедрения технологий Deep Mind.В космосе есть инновационные стартапы (бонсай и т. Д.), Которые распространяют глубокое обучение с подкреплением для эффективной настройки машин и оборудования.

Анализ текста. Исследователи из Salesforce, известной компании, занимающейся облачными вычислениями, использовали RL вместе с продвинутой моделью генерации контекстного текста для разработки системы, способной создавать легко читаемые резюме длинных текстов. По их словам, можно обучать их алгоритм на разных типах материалов (новостные статьи, блоги и т. Д.).).

Оформление сделки. Крупные компании финансовой индустрии уже какое-то время используют алгоритмы машинного обучения для улучшения торговли и капитала, и некоторые из них, такие как JPMorgan, уже бросили свои шляпы в кольцо RL. В 2017 году компания объявила, что начнет использовать робота для выполнения торговых операций с крупными ордерами. Их модель, обученная на миллиардах исторических транзакций, позволила бы выполнять торговые процедуры быстро, по оптимальным ценам и снимать огромные ставки, не создавая рыночных колебаний.

Здравоохранение. Недавние статьи предлагают множество приложений для RL в отрасли здравоохранения. Среди них - дозирование лекарств, оптимизация политики лечения для страдающих хроническими заболеваниями, клинические испытания и т. Д.
Заключение

RL обещает компаниям, это само собой разумеющееся, но важно, чтобы вы не поддавались шумихе вокруг технологии и реалистично оценивали ее сильные и слабые стороны и преимущества, которые она может принести вашему бизнесу.Мы предлагаем сначала найти несколько простых вариантов использования, чтобы проверить, как работает RL.

Если вы хотите узнать больше о том, что такое обучение с подкреплением и как оно может помочь вашей компании, свяжитесь с нашим экспертом, чтобы получить бесплатную консультацию.

.

Смотрите также