Главное меню

Типы электрических автоматов


Электрические автоматы. Виды и работа. Характеристики

С самого начала возникновения электричества инженеры стали думать над безопасностью электрических сетей и устройств от токовых перегрузок. Вследствие этого было сконструировано много разных устройств, которые отличаются надежной и качественной защитой. Одними из последних разработок стали электрические автоматы.

Этот прибор называется автоматическим по причине того, что он оснащен функцией отключения питания в автоматическом режиме, при возникновении коротких замыканий, перегрузок. Обычные предохранители после срабатывания подлежат замене на новые, а автоматы после устранения причин аварии можно снова включить.

Такое защитное устройство необходимо в любой схеме электрической сети. Защитный автомат защитит здание или помещение от разных аварийных ситуаций:
Виды и конструктивные особенности

Необходимо знать информацию о существующих видах автоматических выключателей, чтобы во время приобретения правильно выбрать подходящее устройство. Имеется классификация электрических автоматов по нескольким параметрам.

Отключающая способность
Это свойство определяет ток короткого замыкания, при котором автомат разомкнет цепь, тем самым отключит сеть и приборы, которые были подключены к сети. По этому свойству автоматы подразделяются:

Срабатывание автоматического выключателя возникает при замыканиях, сопровождающихся возникновением определенной величины тока.

Автомат защищает электропроводку от повреждения изоляции большим током.

Число полюсов

Это свойство говорит нам о наибольшем количестве проводов, которые возможно подключить к автомату для обеспечения защиты. При аварии, напряжение на этих полюсах отключаются.

Особенности автоматов с одним полюсом

Такие электрические автоматы наиболее простые по своей конструкции, и служат для защиты отдельных участков сети. К такому автоматическому выключателю можно подсоединить два провода: вход и выход.

Задачей таких устройств является защита электрической проводки от перегрузок и КЗ проводов. Нейтральный провод подключается к нулевой шине, в обход автомата. Заземление подключается отдельно.

Электрические автоматы с одним полюсом не являются вводными, так как при его отключении разрывается фаза, а нулевой провод по-прежнему остается соединенным с питанием. Это не обеспечивает защиту на 100%.

Свойства автоматов с двумя полюсами

В случаях, когда при аварии требуется полное отсоединение от электрической сети, используют автоматические выключатели с двумя полюсами. Они используются как вводные. В аварийных случаях, либо при коротком замыкании вся электрическая проводка отключается в одно время. Это дает возможность осуществлять работы по ремонту и обслуживанию, а также проведения работ по подключению оборудования, так как гарантирована полная безопасность.

Двухполюсные электрические автоматы используют, когда необходимо наличие отдельного выключателя для устройства, работающего от сети 220 вольт.

Автомат с двумя полюсами подключают к устройству с помощью четырех проводов. Из них два приходят от сети питания, а другие два выходят из него.

Трехполюсные электрические автоматы

В электрической сети, имеющей три фазы, применяются 3-полюсные автоматы. Заземление оставляют незащищенным, а проводники фаз соединяют с полюсами.

Трехполюсный автомат служит вводным устройством для любых трехфазных потребителей нагрузки. Чаще всего такой вариант исполнения автомата применяют в промышленных условиях для питания электричеством электродвигателей.

К автомату можно подключить 6 проводников, три из которых – фазы электрической сети, а остальные три выходящие от автомата, и обеспеченные защитой.

Использование четырехполюсного автомата

Чтобы обеспечить защитой трехфазную сеть с четырехпроводной системой проводников (например, электродвигатель, включенных по схеме «звезды»), применяют 4-полюсный автоматический выключатель. Он играет роль вводного устройства четырехпроводной сети.

Имеется возможность подключения к устройству восьми проводников. С одной стороны – три фазы и ноль, с другой стороны – выход трех фаз с нолем.

Время-токовая характеристика

Когда устройства, потребляющие электроэнергию, и электрическая сеть работают в нормальном режиме, то происходит обычное протекание тока. Это явление касается и электрического автомата. Но, в случае повышения силы тока по разным причинам выше номинального значения, происходит срабатывание расцепителя автомата, и цепь разрывается.

Параметр этого срабатывания называется время-токовой характеристикой электрического автомата. Она является зависимостью времени сработки автомата и соотношения между реальной силой тока, проходящей через автомат, и номинальным значением тока.

Важность этой характеристики заключается в том, что обеспечивается наименьшее число ложных срабатываний с одной стороны, и осуществляется защита по току, с другой стороны.

В энергетической промышленности бывают ситуации, когда кратковременное повышение тока не связано с аварией, и защита не должна срабатывать. Также происходит и с электрическими автоматами.

Время-токовые характеристики определяют, через какое время сработает защита, и какие параметры силы тока при этом возникнут. Чем больше перегрузка тем быстрее сработает автомат.

Электрические автоматы с маркировкой «В»

Автоматические выключатели категории «В», способны отключаться за 5 — 20 с. При этом значение тока составляет от 3 до 5 номинальных значений тока ≅0.02 с. Такие автоматы используются для защиты бытовых устройств, а также всей электропроводки квартир и домов.

Свойства автоматов с маркировкой «С»

Электрические автоматы этой категории могут выключиться за время 1 — 10 с, при 5 — 10 кратной токовой нагрузке ≅0.02 с. Такие применяют во многих областях, наиболее популярны для домов, квартир и других помещений.

Значение маркировки «D» на автомате

С таким классом автоматы используются в промышленности и выполнены в виде 3-полюсных и 4-полюсных исполнений. Их применяют для того, чтобы защитить мощные электрические моторы и разные трехфазные устройства. Время их сработки составляет до 10 секунд, при этом ток срабатывания может превышать номинальное значение в 14 раз. Это дает возможность с необходимым эффектом использовать его для защиты различных схем.

Электродвигатели со значительной мощностью чаще всего подключают через электрические автоматы с характеристикой «D», т.к. пусковой ток высокий.

Номинальный ток

Имеется 12 вариантов исполнения автоматов, которые различаются по характеристике номинального тока работы, от 1 до 63 ампер. Этот параметр определяет скорость выключения автомата при достижении предельного значения тока.

Автомат по этому свойству выбирают с учетом поперечного сечения жил проводов, допускаемому току.

Принцип действия электрических автоматов
Обычный режим

При обычной работе автомата управляющий рычаг взведен, ток поступает через провод питания на верхней клемме. Далее ток идет на неподвижный контакт, через него на подвижный контакт и по гибкому проводу на катушку соленоида. После него по проводу ток идет на биметаллическую пластину расцепителя. От него ток проходит на нижнюю клемму и дальше на нагрузку.

Режим перегрузки

Этот режим возникает при превышении номинального тока автомата. Биметаллическая пластина нагревается большим током, изгибается и размыкает цепь. Для действия пластины требуется время, которое зависит от значения проходящего тока.

Автоматический выключатель является аналоговым устройством. При его настройке есть определенные сложности. Ток срабатывания расцепителя настраивается на заводе специальным регулировочным винтом. После остывания пластины автомат снова может функционировать. Температура биметаллической пластины зависит от окружающей среды.

Расцепитель действует не сразу, давая возможность току к возврату номинального значения. Если ток не снижается, то расцепитель срабатывает. Перегрузка может возникнуть из-за мощных устройств на линии, либо подключении сразу нескольких устройств.

Режим короткого замыкания

При этом режиме ток возрастает очень быстро. Магнитное поле в катушке соленоида движет сердечник, приводящий в действие расцепитель, и отключает контакты сети питания, тем самым снимает аварийную нагрузку цепи и защищает сеть от возможного пожара и разрушения.

Электромагнитный расцепитель действует мгновенно, чем отличается от теплового расцепителя. При размыкании контактов рабочей цепи появляется электрическая дуга, величина которой зависит от тока в цепи. Она вызывает разрушение контактов. Чтобы предотвратить это отрицательное действие, сделана дугогасительная камера, которая состоит из параллельных пластин. В ней дуга затухает и исчезает. Возникающие газы отводятся в специальное отверстие.

Похожие темы:

Типы автоматических выключателей - какие бывают автоматы

Автоматическими выключателями называются устройства, задача которых состоит в защите электрической линии от воздействия мощного тока, способного вызвать перегрев кабеля с дальнейшим оплавлением изоляционного слоя и возгоранием. Возрастание силы тока может быть вызвано слишком большой нагрузкой, что происходит при превышении суммарной мощностью устройств той величины, которую кабель может выдержать по своему сечению – в этом случае отключение автомата происходит не сразу, а после того, как провод нагреется до определенного уровня. При КЗ ток возрастает многократно в течение доли секунды, и устройство тут же реагирует на него, мгновенно прекращая подачу электричества в цепь. В этом материале мы расскажем, какими бывают типы автоматических выключателей и их характеристики.

Автоматические защитные выключатели: классификация и различия

Помимо устройств защитного отключения, которые не используются по отдельности, есть 3 типа автоматов защиты сети. Они работают с нагрузками разной величины и отличаются между собой по своей конструкции. К ним относятся:

Существует еще одна разновидность автоматов для защиты электросети – дифференциальные. Мы не рассматриваем их отдельно, поскольку такие устройства представляют собой обычные автоматические выключатели, в состав которых входит УЗО.

Типы расцепителей

Расцепители являются основными рабочими компонентами АВ. Задача их состоит в том, чтобы при превышении допустимой величины тока разорвать цепь, тем самым прекратив подачу в нее электроэнергии. Существует два основных типа этих устройств, отличающихся друг от друга по принципу расцепления:

Расцепители электромагнитного типа обеспечивают практически моментальное срабатывание автоматического выключателя и обесточивание участка цепи при возникновении в нем сверхтока короткого замыкания.

Они представляют собой катушку (соленоид) с сердечником, втягивающимся внутрь под воздействием тока большой величины и заставляющим срабатывать отключающий элемент.

Основная часть теплового расцепителя – биметаллическая пластина. Когда через автомат проходит ток, превышающий номинальную величину защитного устройства, пластина начинает нагреваться и, изгибаясь в сторону, касается отключающего элемента, который срабатывает и обесточивает цепь. Время на срабатывание теплового расцепителя зависит от величины проходящего по пластине тока перегрузки.

Некоторые современные устройства оснащаются в качестве дополнения минимальными (нулевыми) расцепителями. Они выполняют функцию выключения АВ, когда напряжение падает ниже предельного значения, соответствующего техническим данным устройства. Существуют также дистанционные расцепители, с помощью которых можно не только отключать, но и включать АВ, даже не подходя к распределительному щиту.

Наличие этих опций значительно увеличивает стоимость аппарата.

Количество полюсов

Как уже было сказано, автомат защиты сети имеет полюса – от одного до четырех.

Подобрать для цепи устройство по их числу совсем несложно, достаточно лишь знать, где используются различные типы АВ:

Применение автоматов различной полюсности – на следующем видео:

Характеристики автоматических выключателей

Существует еще одна классификация автоматов – по их характеристикам. Этот показатель обозначает степень чувствительности защитного прибора к превышению величины номинального тока. Соответствующая маркировка покажет, насколько быстро в случае возрастания тока среагирует устройство. Одни типы АВ срабатывают моментально, в то время как другим на это понадобится определенное время.

Существует следующая маркировка устройств по их чувствительности:

Особенности подбора автоматов

Некоторые люди думают, что самый надежный автоматический выключатель – это тот, который может выдерживать наибольший ток, а значит, именно он может обеспечить максимальную защиту цепи. Исходя из этой логики, к любой сети можно подключать автомат воздушного типа, и все проблемы будут решены. Однако это совсем не так.

Для защиты цепей с различными параметрами надо устанавливать аппараты с соответствующими возможностями.

 

Ошибки в подборе АВ чреваты неприятными последствиями. Если подсоединить к обычной бытовой цепи защитный аппарат, рассчитанный на высокую мощность, то он не будет обесточивать цепь, даже когда величина тока значительно превысит ту, которую может выдержать кабель. Изоляционный слой нагреется, затем начнет плавиться, но отключения не произойдет. Дело в том, что сила тока, разрушительная для кабеля, не превысит номинал АВ, и устройство «посчитает», что аварийной ситуации не было. Лишь когда расплавленная изоляция вызовет короткое замыкание, автомат отключится, но к тому времени может уже начаться пожар.

Приведем таблицу, в которой указаны номиналы автоматов для различных электросетей.

Если же устройство будет рассчитано на меньшую мощность, чем та, которую может выдержать линия и которой обладают подключенные приборы, цепь не сможет нормально работать. При включении аппаратуры АВ будет постоянно выбивать, а в конечном итоге под воздействием больших токов он выйдет из строя из-за «залипших» контактов.

Наглядно про типы автоматических выключателей на видео:

Заключение

Автоматический выключатель, характеристики и виды которого мы рассмотрели в этой статье, является очень важным устройством, которое обеспечивает защиту электрической линии от повреждений мощными токами. Эксплуатация сетей, не защищенных автоматами, запрещена Правилами устройства электроустановок. Самое главное – правильно подобрать тип АВ, который подойдет для конкретной сети.

Разновидности электрических автоматов и как сделать правильный выбор

Разработка средств безопасности электросетей стала актуальной с момента их появления. Различные перегрузки приводили не только к повреждению кабелей, но и к возникновению пожаров.

На сегодняшний день наиболее популярными устройствами данного типа стали автоматические выключатели.

Они позволяют предотвратить такие события, как пожары, повреждение электропроводки. Поскольку они автоматические, то и срабатывание происходит без участия человека. Выбор правильного выключателя поможет обезопасить помещение от возникновения аварий.

Конструкция и принцип действия

[rek_custom1]
Понимание механизма автоматического срабатывания выключателя поможет осуществить выбор правильной модели. Конструктивно автомат включает в себя следующие ключевые элементы:

В зависимости от вида перегрузки, срабатывает один из двух механизмов.

При возникновении перегрузка цепи током, превышающем номинал в разы, срабатывает биметаллическая пластина. Она нагревается в течение нескольких секунд, в результате чего происходит ее тепловое расширение. При достижении определенных размеров осуществляется ее существенный изгиб и цепь размыкается. Настройка параметров пластины осуществляется производителем. Для выключателей, применяемых в быту, время срабатывания занимает 5–20 с. На них, как правило, ставится маркировка литерами: B, C, D.

Режим короткого замыкания (КЗ) характеризуется лавинообразным возрастанием тока, превышающем не только номинал, но и его предельно допустимые нагрузки. Времени на нагрев пластины при скачке не остается, иначе проводка может оплавиться. Срабатывает в такой ситуации электромагнитный расцепитель. Магнитное поле приводит в движение сердечник, который осуществляет размыкание цепи. Мгновенное срабатывание позволяет обезопасить помещение от последствий КЗ.

Классификация

[rek_custom2]
Электрические автоматы различаются по следующим ключевым характеристикам:

Число полюсов

Данная характеристика соответствует числу линий электропроводки, которые можно напрямую подключить к автомату. Все выходные провода будут отключены одновременно при срабатывании автомата.

Однополюсный автомат. Это самый простой вид устройств защиты цепи. К нему подключается всего 2 провода: один идет к нагрузке, второй является питанием. Ставится он на стандартную din планку размером 18 мм. Провод питания подводится сверху, а нагрузка к нижней клемме. Он может работать в линиях электропроводки с одной, двумя или тремя фазами. Помимо проводов питания и нагрузки у него есть нейтраль и заземление, которые подключению на соответствующие шины. На входе такие автоматы не ставят, поскольку размыкаться цепь будет только по фазной линии. Нулевая же проводка остается замкнутой и при сбоях на ней может остаться потенциал.

Двухполюсный автомат, его отличие от однополюсного. Этот тип автоматических выключателей позволяет полностью обесточить электропроводку помещения. Он позволяет синхронизировать момент выключения двух своих выходных линий. Последнее приводит к более высокому уровню безопасности при проведении электромонтажных работ. Его можно использовать как отдельный тумблер таких приборов, как водонагреватель или стиральная машина. Подключение выполняется посредством 4 кабелей: по паре на входе и выходе.

Логичен простой вопрос: возможно ли подключение двух однополюсных автоматов вместо одного двухполюсного? Разумеется, нет. Ведь при автоматическом срабатывании отключения у двухполюсника отключаются все выходные линии. У пары независимых автоматов, перегрузка может не возникнуть на одной из линий и обесточка будет частичной. В обычных квартирах можно подключать к этому автомату линию фазы и нейтрали. При размыкании будет происходить полная обесточка всей группы устройств, которые запитаны от него.

Трех и четырехполюсные автоматы. Все три или четыре фазных провода подключаются к полюсам соответствующего автоматического выключателя. Используются они, при подключении звездой, когда фазные провода защищены от перегрузок, а средний провод остается все время коммутированным, или треугольником, когда среднего центрального кабеля нет, а фазные защищаются.

Если происходит перегрузка на одной из линий, отключение происходит сразу на всех остальных. К этим автоматам подключаются 6 (трехфазный автомат) или 8 проводов. По 3–4 на выходе и столько же линий на выходе. Монтируются они на din рейки длиной 54 (трехфазный автомат) и 72 мм, соответственно. Их используют чаще всего в промышленных установках, при подключении мощных электродвигателей.

Время токовый параметр

Характер потребления питания различными устройствами варьируется даже при совпадении значений мощности. Неравномерная динамика потребления при корректной работе, всплеск нагрузки во время включения — все эти явления приводят к существенным изменениям в таком параметре, как ток потребления. Разброс мощности может привести к ложному срабатыванию выключателя.

Чтобы исключить подобные ситуации вводятся динамические параметры работы, называемые время токовыми характеристиками автоматических выключателей. Автоматы по этому параметру разделяются на несколько типов. Время срабатывания автомата у каждой из групп свое. Лицевая панель выключателя маркируется соответствующей литерой из списка: A, B, C, D, K, Z.

Номинальный ток

Различия автоматов в зависимости номинальных значений тока разделяются на несколько групп (12 уровней тока). Он напрямую связан со временем срабатывания при превышенном энергопотреблении. Определить рабочее значение можно чисто теоретически, сложив суммы токов, потребляемых каждым из устройств отдельно. При этом следует брать незначительный запас. Также следует не забывать о возможностях электропроводки.

Автоматы предназначены, в первую очередь, для предотвращения ее повреждений. В зависимости от металла проводов и их сечения рассчитывается максимальная нагрузка. Номиналы автоматических выключателей по току позволяют сделать такое разделение.

Отключающая способность

Этот параметр зависит от максимальной величины тока при возникновении КЗ при условии, что автомат выполнит отключение сети. По величине тока КЗ все автоматы разделяются на три группы.

Как выбрать правильный автомат

[rek_custom3]
До недавнего времени были широко распространены фарфоровые предохранители с плавкими элементами. Они хорошо подходили для однотипной нагрузки советских квартир. Сейчас число бытовых приборов стало намного больше, в результате чего вероятность получения возгорания со старыми предохранителями возросла. Чтобы не допустить этого, необходимо тщательно подойти к выбору автомата с правильными характеристиками. Следует избегать избыточных запасов мощности. Окончательный выбор делается после выполнения нескольких простых действий.

Определение числа полюсов

При определении данного параметра выключателя следует руководствоваться простым правилом. Если планируется обезопасить участки цепи с устройствами, имеющими незначительное энергопотребление (например, приборами освещения), то лучше оставить свой выбор на однополюсном автомате (чаще класса B или C). Если планируется подключение сложного бытового устройства, обладающего существенной мощностью потребления (стиральная машина, холодильник), то следует устанавливать двухполюсной автомат (класса C, D). Если же осуществляется оборудование небольшого производственного цеха или гаража с многофазными двигательными установками, то выбирать стоит трехполюсный вариант (класса D).

Вычисление потребляемой мощности

Как правило, к тому времени, когда планируется осуществить подключение автомата, проводка в комнату уже подведена. Исходя из сечения жил и типа металла (медь или алюминий) можно определить максимальную мощность. К примеру, для медной жилы в 2,5 мм2 эта величина составляет 4–4,5 кВт. Но проводку часто подводят с большим запасом. Да и расчет стоит делать до начала выполнения всех монтажных работ.

В этом случае потребуется значение о том, какая суммарная мощность будет использоваться всеми приборами. Всегда возможен вариант их одновременно включения. Так, на обычной кухне, часто используются такие приборы:

Суммарная нагрузка составляет 4 кВт и для нее хватит автомата на 25 A. Но всегда есть потребители, которые включаются эпизодически и могут создать факторы, способствующие срабатыванию выключателя. Такими устройствами могут быть комбайн или миксер. Поэтому следует брать автомат с запасом в 500–1200 Вт.

Вычисление номинального тока

Поскольку мощность в однофазных сетях равна произведению напряжения на силу тока, то и ток легко определить как частное от мощности и напряжения. Для вышеприведенного примера эту величину легко вычислить, зная, что напряжение в сети составляет 220 В. Величина потребляемого тока составляет 18,8 A. Учитывая запас в 500–1200 В, она составит 20,4–23,6 A.

Для того чтобы работа не прекращалась даже при таких кратковременных превышениях нагрузки, номинальную силу тока для автомата можно взять равной 25 A. Приблизительно такому же значению соответствует и номинал, исходя из медного кабеля с сечением 2,5 мм2, которого хватит с запасом для такой нагрузки. Автомат с номинальным током 25 А сработает до того, как он начнет нагреваться.

Определение время токовой характеристики

Этот параметр определяется по специальной таблице, в которой перечислены пусковые токи и время их протекания. Например, для бытового холодильника кратность пускового тока составляет 5. При мощности в 500 Вт, рабочий ток составляет 2,2 A. Величина пускового тока составит 2,2*7 = 15,4 A. Данные о периодичности берутся также по специальной таблице.

Таблица № 1. Пусковые токи и длительности импульсов для бытовых приборов

устройство кратность тока пускового тока длительность импульса пускового тока, с
лампы накаливания 5–13 0,05–0,3
люминесцентные лампы 1,05–1,1 0,1–0,5
компьютеры, телевизоры 5–10 0,25–0,5
бытовая техника, офисная техника до 3 0,25–0,5
холодильники, кондиционеры, насосы 3–7 1–3

Для выбранного устройства эта характеристика не превышает 3 с. Выбор становится очевидным: для такого потребителя необходимо брать автоматический выключатель типа B. Допустимо делать выбор автомата по мощности нагрузки. Можно пропустить последний этап, остановив свой выбор на выключателе класса B. Для бытовых нужд чаще всего бывают достаточными характеристики электрических выключателей класса B и C.

Электрические автоматы: виды и принцип работы

В этой статье мы рассмотрим электрические автоматы: характеристики, виды и принцип работы.

Электрические автоматы

Появление электричества заставило умы придумывать способы безопасного использования устройств и электросетей, в частности, обеспечивая их защиту от перегрузок тока на линиях. Это подвигло инженеров на создание различного оборудования и механизмов с высоким уровнем защиты. Примером таких устройств являются электрические автоматы.

Приставку «автоматические» эти приборы получили потому, что при коротких замыканиях и высоких нагрузках в цепи они самостоятельно отключают питание. В отличие от обычных предохранителей, такие изделия после срабатывания не заменяются. Устранив причину отключения, электрический автоматический выключатель можно перезапускать.

Любая схема электросети нуждается в таком защитном устройстве. Оно обеспечит безопасность объекта, и предотвратит такие чрезвычайные ситуации, как пожар, поражение людей электрическим током или выход из строя электропроводки.


Типы автоматов и их конструкция

Для выбора подходящего автоматического выключателя, необходимо иметь представление о его разновидностях, которые различаются по следующим параметрам:

Способность к отключению при аварийных ситуациях

Параметр определяет ток замыкания, способный привести к срабатыванию автомата и отключению устройств от электрической сети. Типы автоматов по данному параметру делятся на:

Количество полюсов в электрических автоматах

Параметр определяет, какое количество электропроводов можно соединить к автомату при сохранении уровня защиты. В аварийных ситуациях подача тока на полюсах прекращается.


Особенности монополюсного автомата

Конструкция такого электрического автомата несложная; имеются всего два разъёма для провода – входа и выхода. Является защитником небольших участков сети.
Автоматы с одним полюсом защищают электропровод от высоких нагрузок и коротких замыканий. К нулевой шине подсоединяется нейтральный провод, обходящий сам автомат. Отдельное соединение имеет заземление.

Монополюсный автомат не является вводным. Отключение при авариях прерывает фазу, но нулевой электропровод остается подключённым к питанию. Данный факт не дает 100% гарантию безопасности.

Параметры двухполюсных электрических автоматов

Данные устройства выступают как вводные. При авариях безопаснее отключение от всей электросети, с чем и справляются автоматы с двумя полюсами. При коротких замыканиях или перегрузке устройство выключает всю линию одновременно. Такая функция позволяет электрикам проводить ремонтные работы или техническое обслуживание; подключать новое оборудование в безопасности.

Автоматы с двумя полюсами уместны, когда в цепи есть приборы с отдельным выключателем, питающиеся от сети 220 В.

Двухполюсный автомат соединяется с прибором 4-мя электропроводами: два провода идут от питания, остальные – выходят из него.


Автоматы с тремя полюсами

Подобные автоматы применяются в электросети с тремя фазами. Фазовые проводники подключают к полюсам. Тем временем, заземление остается без защиты.
В электросети с тремя фазами применяются 3-полюсные автоматы. Заземление оставляют незащищенным, а проводники фаз состыковывают с полюсами.
Автомат с тремя полюсами применяется в качестве вводного звена для различных пользователей питания с тремя фазами. Распространены в электросетях промышленных объектов, где потребителями являются электрические двигатели.

На таких автоматах возможно подключение уже 6 проводников: 3 фазы – электросети, оставшиеся 3 – защищённые выводящие от автомата.

Применение автоматов с четырьмя полюсами

Четырехполюсный автомат применяется для обеспечения безопасности трёхфазной электросети с 4-проводной системой проводников (к примеру, электрический двигатель, подключенный по схеме «звезды»). Выступает в качестве вводного механизма 4-проводной сети. Автомат может подключаться к приборам с восемью проводниками. Осуществляется это по следующей схеме: трёхфазный вход и ноль с одной стороны и трёхфазный выход + ноль с другой.

Автоматы с обозначением «B».

Такие автоматы обеспечивают безопасность бытовых приборов и электрических проводов домов и квартир. Механизм автомата данной категории выключает сеть в течение 5–20 с. В этот момент показатель тока равен 3–5 номинальных значений тока 0.02 с.


Электроавтоматы с обозначением «C».

Такие автоматы выключаются в промежутке 1-10 с, при 5-10 кратной нагрузке тока 0.02 с.
Они используются на различных объектах, однако, наиболее распространены в жилых квартирных и индивидуальных домах, других помещениях.

Автоматы категории «D».

Автоматы с таким указателем чаще применяются в промышленных объектах, в виде трёхполюсных и четырехполюсных вариантов, обеспечивая безопасность мощных электродвигателей и приборов трёхфазной схемы. При срабатывании ток способен превосходить номинальные значения в 14 раз; сроки отключения сети – в пределах 10 секунд. Таким образом, функция автоматов сводится к эффективной защите различных схем.

Из-за высоких значений пускового тока в мощных электродвигателях, применяются именно такие автоматы, с обозначением «D».

виды приборов, классы, технические характеристики

Автоматы электрические — удобные и практичные средства, которые позволяют защитить электрооборудование и пользователя от внезапных коротких замыканий. Что они собой представляют, какая есть классификация, как их выбрать, какие есть типы автоматических выключателей? Об этом и другом далее.

Общие характеристики

Автоматический электрический выключатель является коммутационным устройством, которое пропускает через свою структуру ток, имеющий номинальную силу. Во время необходимости делает отключение цепи, к примеру, при коротком замыкании или при повышении потребляемой мощности. В настоящее время есть однофазный, двухфазный и трехфазный прибор, отвечая на вопрос, какие существуют автоматы электрические разновидности. Отличаются они друг от друга числом тех элементов, которые разъединяют ток.

Как выглядит

Предназначен аппарат, для того чтобы защищать электрическую цепь, чтобы не происходили перегрузки и токи с коротким замыканием. Его можно многократно использовать. Срабатывает он стабильно всегда.

Обратите внимание! Главный параметр электроавтомата — число пропускания номинального тока, токовой энергии, которая нужна, чтобы нормально работали бытовые электрические приборы. В частном доме и городской квартире ставится автомат на 6-63 ампера. Специалистами рекомендуется разбитие электросети в домашних условиях на пару контурах и установку каждого на собственный выключатель.

Предохранение электрооборудования от сверхтока как основное предназначение

Принцип действия

Внешне аппарат имеет термостойкий пластмассовый корпус с рукояткой, ответственной за начало и окончание работы. Имеет в себе фиксатор-защелку сзади и винтовые виды клемм снизу.

Главным в автоматическом выключателе является конструктивный узел, а именно главная контактная система, дугогасительная система, привод с расцепителем и вспомогательным контактом. Контактная система бывает одно-, двух- или трехступенчатая. Дугогасительная система включает в себя камеры, имеющие дугогасительные решетки или узкие щели.

Независимо от исполнения, есть предельный ток действия, который не ломает автомат, поскольку из-за превышения напряжения подгорают или свариваются контакты.

Выполняется автоматический выключатель с дополнением ручного или двигательного привода. Бывает стационарным или передвижным. Привод нужен, чтобы включатель и автоматически отключать систему. Также в системе присутствует реле, имеющее прямое действие. Это электронный расцепитель, который включает в себя рычаги, защелки, коромысла и отключающие пружины.

Конструкция

Работает аппарат очень просто. Напряжение от сети идет к верхней клемме, которая соединена с неподвижным контактом. От него идет энергия на подвижный контакт. Он уже передает ее к медному проводнику и тепловому расцепителю. В конце ток подается в нижнюю клемму. При аварии, к примеру, при перегрузке или коротком замыкании, отключается защищаемая электроцепь за счет того, что начинает работать электромагнитный расцепитель.

Обратите внимание! Важно отметить, что электромагнитным расцепителем называется элемент с соленоидом, имеющий подвижный стальной сердечник, который удерживает пружина. Во время превышения токового напряжения, в катушке появляется электрополе. Сердечник попадает внутрь катушки и преодолевает пружинное сопротивление. В результате срабатывает расцепление. Без аварии силы электрополя недостаточно для наступления расцепления.

Принцип действия

Классификация

Согласно классификации ГОСТа 9098-78, в ответ на то, какие бывают автоматы, стоит указать, что аппарат бывает:

Бывает создан для работы с постоянным или переменным током, иметь в себе максимальный, независимый или нулевой токовый расцепитель. Также есть классификация по выдержке времени, по контактам, по внешним проводникам, по степени защиты и присоединению проводников.

Число полюсов

По числу полюсов бывает одно-, двух-, трех- и четырехполюсная модель. Чаще всего используется в работе одно- и двух-полюсная модель, несмотря на сниженный класс автоматических выключателей защиты.

Обратите внимание! Это характеристика показывает тот факт, сколько можно подключить проводов к аппарату, чтобы защитить сеть.

Однополюсная модель как одна из самых распространенных

Время токовый параметр

Время-токовая характеристика автомата — зависимость времени срабатывания устройства от энергии электричества, которая протекает через него. Прописывается на каждом устройстве буквой В, С и Д. В первом случае аппарат выключается за 20 секунд. Создан для домашнего использования. Во втором случае автомат выключается за 10 секунд. Применяется как в быту, так и в промышленной сфере. Автовыключатели, имеющие последнюю техническую характеристику, используются только в промышленности. Они работают с током в 14 ампер и выключаются за 10 секунд. Эту разновидность эффективно используют в проводке.

Номинальный ток

Всего на данный момент известно о двенадцати модификационных моделей автоматов, которые отличаются по номинальному току. Этот параметр ответственен за то, чтобы при превышении номинального напряжения срабатывал автомат. Аппарат с малым номиналом используется там, где малое количество электрооборудования. Выключатели в 16 ампер позволяют обеспечить бесперебойной работой всей квартиры. Автоматы с номиналом в 32 ампера защищают проводку квартиры. Аппараты, имеющие большое значение амперов, используются для силового оборудования, имеющего большую мощность.

Модель с номинальным током в 16 ампер

Отключающая способность

Отключающая способность — характеристика, при которой автомат срабатывает, если напряжение в сети выше установленного номинального токового значения.

Как выбрать

Выбирать аппарат нужно по количеству номинального тока, полюсов, характеристики времени срабатывания и отключающей способности. Также, конечно, необходимо смотреть на бренд, маркировку и цену устройства.

Обратите внимание! При выборе стоит отталкиваться от суммарного количества мощностей электрооборудования.

Определение мощности автомата

Определить, какая нужна мощность оборудования, можно, суммировав все реальные мощности каждого отдельного электроаппарата, включенного в одну сеть. Выявить это также можно через таблицу, приведенную ниже. Данные приведены средние по нормативным документам.

Важно понимать, что может понадобиться больше электроэнергии и соответствующая большая сила агрегата, поскольку могут быть куплены дополнительные приборы, которые раннее в расчет не принимались.

Таблица мощности бытовых приборов и инструментов

Расчет номинальной мощности автомата

Вычислить номинальную силу или ту мощность, при которой проводка не отключится, можно по формуле M = N * CT * cos(φ), где M является силой в ваттах; N — напряжением электрической сети в вольтах; СТ — токовой энергией, которая способна появится в аппарате; cos(φ) — значением косинуса угла фазы с напряжением.

Вычисление номинального тока

Узнать номинальную токовую энергию можно, посмотрев документацию электрической проводки. Для расчета без нее нужно знать площадь проводникового сечения и способ ее прокладки.

Обратите внимание! Далее значения нужно подставить в формулу S = 0,785 * D * D, где D является проводниковым диаметром; S — площадью проводникового сечения.

Таблица сечения проводника

Определение время-токовой характеристики

Для правильного вычисления токовой характеристики по времени необходимо считывание пусковых токов. Чтобы все выяснить, стоит воспользоваться следующей таблицей ниже.

Таблица пускового тока

Особенности маркировки

На каждом автомате прописываются все характеристики. Имеет на своем корпусе маркировки нагрузки номинального тока, коммутационной способности, класса токоограничения, номинальной отключающей способности и время-токовой характеристики срабатывания расцепительной системе.

Популярные производители

Сегодня лучшие автоматические выключатели выпускает компания марки АВВ, Legrand, Schneider Electric, General Electric, CHINT Electric и DEKraft.

Бренд Legrand

В целом, электрические автоматические выключатели — профессиональное оборудование, благодаря которому можно минимизировать риски при отключении света и коротком замыкании. Имеют классификацию по числу полюсов, время-токовому параметру, номинальному току, отключающей способности. Выбрать несложно, принимая во внимание мощность, номинальный ток, токовую характеристику и маркировку. Как правило, пользователи рекомендуют останавливать свой выбор на популярных брендах.

A, B, C и D

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

Типы электрических машин - Все о технике

Что такое Различные типы электрических машин

Электрическая машина:

Устройство, способное к взаимному преобразованию между электрической и механической энергией, называется электрической машиной.

Проще говоря, электрическая машина преобразует электрическую энергию в механическую и наоборот. Трансформатор также является электрической машиной, за исключением того, что он преобразует уровни напряжения и тока.

Типы электрических машин:

Электрические машины подразделяются на два основных типа:

Стационарные электрические машины:

Стационарная электрическая машина - это такая машина, у которой нет движущихся частей и они остаются неподвижными на протяжении всей своей работы.

Трансформатор :

Трансформатор - это стационарная электрическая машина, не имеющая движущихся частей.Это машина, потому что между обмотками трансформатора происходит преобразование электрической и магнитной энергии.

Он преобразует электрическую энергию в магнитную энергию и снова в электрическую энергию с увеличением или уменьшением уровня переменного напряжения / тока и поддержанием постоянной электрической частоты.

Он имеет две обмотки, т.е. первичную и вторичную обмотку. Обе обмотки намотаны вокруг неподвижного стального сердечника.

Изменяющийся переменный ток подается на первичную обмотку, что создает переменный магнитный поток в сердечнике трансформатора.Этот переменный магнитный поток индуцирует ЭДС во вторичной обмотке трансформатора, что приводит к возникновению переменного тока на выходе.

Динамические электрические машины:

Машины такого типа состоят из подвижных и неподвижных частей.

Есть два типа динамических электрических машин, т. Е.

Электродвигатель:
.

Различные типы электродвигателей и их применение

Как мы знаем, электродвигатель играет жизненно важную роль во всех секторах промышленности, а также в широком спектре приложений. На рынке доступно множество типов электродвигателей. Выбор этих двигателей может быть сделан в зависимости от режима работы, напряжения и применения. Каждый двигатель состоит из двух основных частей: обмотки возбуждения и обмотки якоря. Основная функция обмотки возбуждения - создание фиксированного магнитного поля, в то время как обмотка якоря выглядит как проводник, расположенный внутри магнитного поля.Из-за магнитного поля обмотка якоря использует энергию для создания крутящего момента, необходимого для вращения вала двигателя. В настоящее время классификация двигателей постоянного тока может быть сделана на основе соединений обмоток, что означает, как две катушки в двигателе связаны друг с другом.

Типы электродвигателей

Типы электродвигателей доступны в трех основных сегментах, таких как электродвигатели переменного тока, электродвигатели постоянного тока и электродвигатели специального назначения.


типов двигателей

Двигатели постоянного тока

Типы двигателей постоянного тока в основном включают в себя серийные, параллельные и комбинированные двигатели с постоянным током постоянного тока.

двигатель постоянного тока
1). Шунтирующий двигатель постоянного тока

Параллельный двигатель постоянного тока работает от постоянного тока, и обмотки этого электродвигателя, такие как обмотки якоря и обмотки возбуждения, соединены параллельно, что называется шунтом. Этот тип двигателя также называется двигателем постоянного тока с шунтирующей обмоткой, а тип обмотки известен как шунтирующая обмотка. Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателя постоянного тока и его применениях

2). Двигатель с раздельным возбуждением

В двигателе с раздельным возбуждением соединение статора и ротора может быть выполнено с использованием другого источника питания.Так что двигателем можно управлять с шунта, а обмотку якоря можно усилить для создания магнитного потока.

3). Двигатель постоянного тока

В двигателях постоянного тока обмотки ротора соединены последовательно. Принцип работы этого электродвигателя во многом зависит от простого электромагнитного закона. Этот закон гласит, что всякий раз, когда магнитное поле может быть сформировано вокруг проводника, оно взаимодействует с внешним полем, создавая вращательное движение. Эти двигатели в основном используются в стартерах, которые используются в лифтах и ​​автомобилях.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателей постоянного тока и его применениях

Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о ДВИГАТЕЛЯХ постоянного тока - Основы, типы и применение

4). Двигатель PMDC

Термин PMDC означает «двигатель постоянного тока с постоянными магнитами». Это один из видов двигателей постоянного тока, в который может быть встроен постоянный магнит, чтобы создать магнитное поле, необходимое для работы электродвигателя. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о двигателе PMDC: конструкция, работа и применение

5).Составной двигатель постоянного тока

Обычно составной двигатель постоянного тока представляет собой гибридный компонент последовательного и параллельного двигателей постоянного тока. В этом типе двигателя присутствуют оба поля, такие как последовательный и шунтирующий. В этом типе электродвигателя статор и ротор могут быть соединены друг с другом через соединение последовательных и шунтирующих обмоток. Последовательная обмотка может быть сконструирована с несколькими витками широких медных проводов, что дает небольшой путь сопротивления. Шунтирующая обмотка может быть спроектирована с несколькими обмотками из медного провода для получения полного i / p напряжения.

Двигатели переменного тока

Типы двигателей переменного тока в основном включают синхронные, асинхронные и асинхронные двигатели.

двигатель переменного тока
1). Синхронный двигатель

Работа синхронного двигателя в основном зависит от трехфазного источника питания. Статор электродвигателя генерирует ток возбуждения, который вращается со стабильной скоростью в зависимости от частоты переменного тока. Так же как и ротор, от аналогичной скорости зависит ток статора. Между скоростью тока статора и ротора нет воздушного зазора.Когда уровень точности вращения высок, эти двигатели применимы в автоматизации, робототехнике и т. Д. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах синхронных двигателей и их применениях.

2). Асинхронный двигатель

Электродвигатель, работающий с асинхронной скоростью, известен как асинхронный двигатель, и альтернативное название этого двигателя - асинхронный двигатель. Асинхронный двигатель в основном использует электромагнитную индукцию для изменения энергии с электрической на механическую. По конструкции ротора эти двигатели подразделяются на два типа: с короткозамкнутым ротором и с фазовой обмоткой.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о типах и преимуществах асинхронных двигателей

Двигатели специального назначения

К двигателям специального назначения в основном относятся серводвигатель, шаговый двигатель, линейный асинхронный двигатель и т. Д.

Электродвигатель специального назначения
1 ). Шаговый двигатель

Шаговый двигатель может использоваться для обеспечения углового шага вращения в качестве альтернативы стабильному вращению. Мы знаем, что для любого ротора полный угол вращения составляет 180 градусов. Однако в шаговом двигателе полный угол вращения может быть разделен на множество шагов, например, 10 градусов X 18 шагов.Это означает, что за полный цикл оборота ротор совершит ступенчатое движение восемнадцать раз, каждый раз на 10 градусов. Шаговые двигатели применимы в плоттерах, производстве схем, инструментах управления технологическим процессом, генераторах обычного движения и т. Д. Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о типах шаговых двигателей и их применениях

2). Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока были впервые разработаны для достижения превосходных характеристик на меньшем пространстве, чем щеточные двигатели постоянного тока. Эти двигатели меньше по сравнению с моделями переменного тока.Контроллер встроен в электродвигатель, чтобы облегчить процесс за счет отсутствия коммутатора и контактного кольца. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о бесщеточном двигателе постоянного тока - преимущества, применение и управление

3). Гистерезисный двигатель

Гистерезисный двигатель работает исключительно уникально. Ротор этого двигателя может быть вызван гистерезисом и вихревыми токами для создания необходимой задачи. Работа двигателя может зависеть от конструкции, однофазное питание или трехфазное питание.Эти двигатели обеспечивают очень плавный процесс со стабильной скоростью, как и другие синхронные двигатели. Уровень шума этого двигателя довольно мал, по этой причине они применимы во многих сложных приложениях, где бы ни использовался звуконепроницаемый двигатель, например, в аудиоплеере, диктофоне и т. Д.

4). Реактивный двигатель

В основном, реактивный двигатель - это однофазный синхронный двигатель, и эта конструкция двигателя аналогична асинхронному двигателю, например, клеточного типа. Ротор в двигателе похож на короткозамкнутый, а статор двигателя включает в себя наборы обмоток, такие как вспомогательная и основная обмотка.Вспомогательная обмотка очень полезна при запуске двигателя. Поскольку они предлагают ровную работу со стабильной скоростью. Эти двигатели обычно используются в приложениях синхронизации, которые включают генераторы сигналов, записывающие устройства и т. Д.

5). Универсальный двигатель

Это особый тип двигателя, который работает от одного источника переменного тока или постоянного тока. Универсальные двигатели имеют последовательную намотку, при этом обмотка возбуждения и обмотка якоря соединены последовательно, что обеспечивает высокий пусковой момент.Эти двигатели в основном предназначены для работы на высоких оборотах свыше 3500 об / мин. Они используют источник переменного тока на низкой скорости и источник постоянного тока аналогичного напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше об универсальном двигателе

Таким образом, речь идет о типах электродвигателей. В настоящее время существуют разные и гибкие. Назначение двигателя - когда требуется управление движением, это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Вот вам вопрос, что такое моторы особого типа?

.

Основы и типы электрических вращающихся машин


Электрические машины стали обязательными в повседневной жизни. Во всех отраслях промышленности работа производства не начинается без электрических машин. Электроэнергия также вырабатывается электрической машиной. Эта статья обо всех различных типах вращающихся электрических машин, которые используются в настоящее время. Эта статья полезна для всех студентов инженерных специальностей, чтобы понять основную концепцию вращающейся машины.

Электрическая машина


Есть два типа электрических машин: один - электродвигатель, а второй - электрический генератор. Электрический двигатель потребляет некоторое количество электроэнергии и преобразует ее в механическую энергию, используя различные электрические принципы. Электрический генератор использует входную механическую мощность и преобразует ее в электрическую мощность.

Типы электрических машин:

  • Машины переменного тока

  • Машины постоянного тока
  • Машины переменного тока:


    Типы двигателей разделены по мощности, которую они используют.Машина переменного тока использует источник переменного тока для работы двигателя. Существует много типов электрических машин переменного тока, а именно:
  • Асинхронный двигатель

  • Индукционный генератор

  • Асинхронные двигатели также подразделяются на другие типы: (1) Однофазные и (2) Трехфазные. Однофазные асинхронные двигатели имеют обмотку на статоре и на роторе. Однофазное питание переменного тока подается на статор однофазного асинхронного двигателя. Ротор не питается никакими источниками.Теперь, используя конденсатор, мы можем разделить переменный ток статора на две разные фазы. Таким образом, вокруг статора создается вращающееся поле. Этот поток связан с ротором, и в соответствии с принципом электромагнитной индукции в роторе вырабатывается электричество, которое является индуцированной мощностью. Это индуцированное напряжение будет течь по обмотке ротора. Итак, магнитное поле ротора создается. Это магнитное поле находится в противофазе потоку статора. Таким образом, два разных потока вызовут противоположный крутящий момент, и, таким образом, ротор начнет вращаться.
    Ротор асинхронного генератора вращается под действием некоторого внешнего механического момента. Возбуждение происходит от статора. Итак, магнитное поле ротора создается, и он тоже вращается. Итак, это вызовет напряжение.

    Машина постоянного тока:


    Машина постоянного тока использует источник постоянного тока для работы двигателя. Существует множество типов электрических машин постоянного тока, а именно:
  • электродвигатель постоянного тока

  • генератор постоянного тока
  • электродвигатель постоянного тока:


    электродвигатели постоянного тока с двумя обмотками.Статор двигателя имеет обмотку возбуждения, а ротор двигателя - обмотку якоря. Существует три типа двигателей постоянного тока, как показано ниже:
  • Двигатель постоянного тока с самовозбуждением:
    В этом типе двигателя постоянного тока поле создается энергией, поступающей от обмотки якоря. Никакого другого отдельного источника питания для возбуждения поля не требуется.

  • Электродвигатель постоянного тока с независимым возбуждением:
    В этом типе электродвигателя постоянного тока поле создается за счет питания обмотки якоря. Никакого другого отдельного источника питания для возбуждения поля не требуется.Другая классификация двигателя также проводится по соединению обмотки возбуждения с якорем. Существует три типа, как показано ниже:

  • Двигатель серии
  • :
    В этом типе двигателя обмотка возбуждения расположена последовательно с якорем. Таким образом, этот тип двигателя создает крутящий момент двигателя по сравнению с другими двигателями. Пусковой крутящий момент у этого типа двигателя очень высокий. Этот тип двигателя используется в кране и лифте. Этот тип двигателя никогда не работает без нагрузки.Если он работает без нагрузки, то в двигателе создается очень высокий крутящий момент, и, возможно, существует вероятность взрыва.

  • Шунтирующий двигатель:
    В этом типе двигателя обмотка возбуждения соединена параллельно якорю. Итак, ток нагрузки делится на ток якоря и ток возбуждения. Крутящий момент у этого типа двигателя низкий по сравнению с серийным двигателем.

  • Составной двигатель:
    В этом типе двигателя обмотка возбуждения шунтируется, а также входит в серию обмоток якоря.Сегодня эти типы двигателей используются в промышленности.
  • Генератор постоянного тока:


    В генераторе постоянного тока питание постоянного тока подается на обмотку возбуждения и коммутатор. Коммутатор изменит направление тока на противоположное, так что он будет производить переменный ток, такой же, как и источник переменного тока. Ротор вращается с помощью некоторых первичных двигателей. Таким образом, вращающееся поле связано с ротором, а выход постоянного тока снимается с ротора с помощью коммутатора. В случае с двигателем коммутатор преобразует питание постоянного тока в питание переменного тока, и посредством этого ротор двигателя постоянного тока создает вращающееся поле.В генераторе генерируемый переменный ток выпрямляется коммутатором.
    .

    Классификация электродвигателей ~ Электрические ноу-хау


    В предыдущей теме » Электрооборудование Основные компоненты двигателей «, я объяснил конструкцию и основные компоненты основных типов двигателей; Двигатели переменного и постоянного тока.

    Сегодня я объясню различные типы электродвигателей в мире следующим образом.

    Основные типы двигателей



    Электродвигатели в целом подразделяются на две следующие категории:

    1. Двигатели переменного тока.
    2. Двигатели постоянного тока.
    Внутри этих двух основных категорий есть подразделения, как показано на рисунке ниже.

    Типы двигателей


    Примечания: В последнее время, с развитием экономичных и надежных силовых электронных компонентов, появилось множество способов конструирования двигателя, и классификации этих двигателей стали менее строгими, и появилось много других типов двигателей. Наша классификация двигателей будет максимально полной.

    Первый: двигатели постоянного тока


    Двигатели постоянного тока

    Системы питания постоянного тока не очень распространены в современной инженерной практике. Однако двигатели постоянного тока использовались в промышленности в течение многих лет. В сочетании с приводом постоянного тока двигатели постоянного тока обеспечивают очень точное управление. Двигатели постоянного тока могут использоваться с конвейерами, лифтами, экструдерами, морскими приборами, погрузочно-разгрузочными работами, бумагой, пластмассами, резиной, сталью, и текстильные приложения, автомобили, самолеты и портативная электроника, в приложениях управления скоростью.

    Преимущества двигателей постоянного тока:


    1. Их скорость легко контролировать в широком диапазоне; Исторически сложилось так, что их характеристики крутящий момент - скорость было легче адаптировать, чем характеристики двигателей всех категорий переменного тока. Вот почему большинство тяговых и серводвигателей были машинами постоянного тока. Например, двигатели для привода рельсовых транспортных средств до недавнего времени были исключительно машинами постоянного тока.
    2. Их уменьшенные габаритные размеры позволяют значительно экономить место, что позволяет изготовителю машин или установок не зависеть от чрезмерных размеров круговых двигателей.

    Недостатки двигателей постоянного тока
    1. Так как для подключения обмотки ротора нужны щетки. Происходит износ щеток, который резко увеличивается в среде с низким давлением. Поэтому их нельзя использовать в искусственных сердцах. При использовании в самолетах щетки потребуют замены через час работы.
    2. Искры от щеток могут вызвать взрыв, если в окружающей среде содержатся взрывчатые вещества.
    3. Радиочастотный шум от щеток может мешать работе расположенных поблизости телевизоров, электронных устройств и т. Д.
    4. Двигатели постоянного тока
    5. также дороги по сравнению с двигателями переменного тока.

    Таким образом, все применения двигателей постоянного тока используют механический переключатель или коммутатор для преобразования постоянного или постоянного тока на клеммах в переменный ток в якоре машины. Поэтому машины постоянного тока еще называют коммутирующими машинами.

    Типы двигателей постоянного тока:


    Типы двигателей постоянного тока


    Двигатели постоянного тока делятся в основном на:
    1. Щеточные двигатели постоянного тока (BDC).
    2. Бесщеточные двигатели постоянного тока (BLDC).

    1. A Двигатели постоянного тока с щетками
    Двигатели постоянного тока с щетками

    Щеточный двигатель постоянного тока (BDC) - это электродвигатель с внутренней коммутацией, предназначенный для работы от источника постоянного тока.

    Области применения:
    Двигатели постоянного тока с щеткой широко используются в различных областях, от игрушек до автомобильных сидений с кнопочной регулировкой.

    Преимущества:
    Щеточные двигатели постоянного тока (BDC) недороги, просты в управлении и доступны во всех размерах и формах

    Конструкция :

    Матовый двигатель постоянного тока Конструкция
    Все двигатели BDC состоят из одних и тех же основных компонентов: статора, ротора, щеток и коммутатора.

    1- Статор
    Статор генерирует стационарное магнитное поле, окружающее ротор.Это поле создается постоянными магнитами или электромагнитными обмотками.

    2- Ротор


    Ротор (якорь)

    Ротор, также называемый якорем, состоит из одной или нескольких обмоток. Когда эти обмотки находятся под напряжением, они создают магнитное поле. Магнитные полюса этого поля ротора будут притягиваться к противоположным полюсам, создаваемым статором, заставляя ротор вращаться.Когда двигатель вращается, обмотки постоянно находятся под напряжением в различной последовательности, так что магнитные полюса, генерируемые ротором, не выходят за пределы полюсов, генерируемых в статоре. Такое переключение поля в обмотках ротора называется коммутацией.

    3- Щетки и коммутатор

    Пример коммутатора



    2
    2 9005


    В отличие от электродвигателей других типов (т.е.е., бесщеточный постоянный ток, индукционный переменный ток), двигатели BDC не требуют контроллера для переключения тока в обмотках двигателя. Вместо этого коммутация обмоток двигателя BDC выполняется механически. Сегментированная медная втулка, называемая коммутатором, находится на оси двигателя BDC. Когда двигатель вращается, угольные щетки (перемещаются сбоку от коммутатора, чтобы обеспечить питающее напряжение на двигатель) скользят по коммутатору, вступая в контакт с различными сегментами коммутатора. Сегменты прикреплены к разным обмоткам ротора, поэтому внутри двигателя создается динамическое магнитное поле, когда на щетки двигателя подается напряжение.Важно отметить, что щетки и коллектор являются частями двигателя BDC, которые наиболее подвержены износу, поскольку они скользят мимо друг друга.

    Как работает коммутатор:

    Как работает коммутатор

    Когда ротор вращается, клеммы коммутатора также поворачиваются и постоянно меняют полярность тока, который он получает от стационарных щеток, прикрепленных к батарее.

    Типы двигателей BDC:

    Типы двигателей постоянного тока



    Различные типы двигателей BDC различаются конструкцией статора или способом подключения электромагнитных обмоток к источнику питания. Вот эти типы:
    1. Постоянный магнит.
    2. Шунтирующая рана.
    3. Series-Wound.
    4. Составная рана.
    5. Двигатель постоянного тока с независимым возбуждением.
    6. Универсальный мотор.
    7. Серводвигатели.

    A- Постоянный магнит


    Двигатель с постоянным магнитом

    Двигатель постоянного тока с постоянным магнитом (PMDC) - это двигатель, полюса которого сделаны из постоянных магнитов для создания поля статора.

    Преимущества:


    1. Поскольку внешняя цепь возбуждения не требуется, потери в меди в цепи возбуждения отсутствуют.
    2. Поскольку обмотки возбуждения не требуются, эти двигатели могут быть значительно меньше.
    3. Широко используется в приложениях с низким энергопотреблением.
    4. Обмотка возбуждения заменена постоянным магнитом (простая конструкция и меньше места).
    5. Нет требований к внешнему возбуждению.

    Недостатки:
    1. Поскольку постоянные магниты создают более слабую магнитную индукцию, чем внешние шунтирующие поля, такие двигатели имеют более низкий индуцированный крутящий момент.
    2. Всегда существует риск размагничивания из-за сильного нагрева или из-за эффектов реакции якоря (некоторые двигатели с постоянным постоянным током имеют встроенные обмотки, чтобы этого не произошло).

    B- Шунтирующий

    Двигатель с параллельной обмоткой

    Двигатели постоянного тока с шунтовой обмоткой (SHWDC) имеют катушку возбуждения, параллельную (шунтирующую) якорю.

    Скорость практически постоянна независимо от нагрузки и поэтому подходит для коммерческих приложений с низкой пусковой нагрузкой, таких как центробежные насосы, станки, нагнетательные вентиляторы, поршневые насосы и т. Д.

    Преимущества:


    1. Ток в обмотке возбуждения и в якоре не зависит друг от друга. в результате эти двигатели обладают отличным контролем скорости.
    2. Потеря магнетизма не является проблемой для двигателей SHWDC, поэтому они обычно более надежны, чем двигатели PMDC.
    3. Скорость можно контролировать, добавляя сопротивление последовательно с якорем (уменьшая скорость) или добавляя сопротивление в ток возбуждения (увеличивая скорость).

    Недостатки:
    1. Двигатели постоянного тока с шунтирующей обмоткой и щеткой (SHWDC) имеют недостатки при реверсировании, поскольку направление обмотки относительно шунтирующей обмотки должно быть изменено на обратное при изменении напряжения якоря. Здесь необходимо использовать реверсивные контакторы.

    C-серия с обмоткой
    Двигатель с последовательной обмоткой
    Электродвигатели постоянного тока с щеточной обмоткой серии
    (SWDC) имеют катушку возбуждения, включенную последовательно с якорем.Эти двигатели идеально подходят для применений с высоким крутящим моментом, таких как тяговые транспортные средства (краны и подъемники, электропоезда, конвейеры, лифты, электромобили), поскольку ток как в статоре, так и в якоре увеличивается под нагрузкой.

    Преимущества:


    1. Крутящий момент пропорционален I2, поэтому он дает самый высокий крутящий момент на соотношение тока по сравнению со всеми другими двигателями постоянного тока.

    Недостатки:
    1. Недостатком двигателей SWDC является то, что они не имеют точного управления скоростью, как у двигателей PMDC и SHWDC.
    2. Скорость ограничена до 5000 об / мин.
    3. Следует избегать запуска последовательного двигателя без нагрузки, поскольку двигатель будет бесконтрольно ускоряться.

    D- Составная рана

    Двигатель с комбинированной обмоткой
    Двигатели
    с комбинированной обмоткой (CWDC) представляют собой комбинацию двигателей с параллельной обмоткой и двигателей с последовательной обмоткой. Двигатели

    CWDC используют как последовательное, так и шунтирующее поле.Двигатель CWDC представляет собой комбинацию двигателей SWDC и SHWDC. Двигатели CWDC имеют более высокий крутящий момент, чем двигатель SHWDC, но при этом обеспечивают лучшее управление скоростью, чем двигатель SWDC.

    Он используется в таких приложениях, как прокатные станы, внезапные временные нагрузки, тяжелые станки, штампы и т. Д.

    Преимущества:


    1. Этот двигатель имеет хороший пусковой момент и стабильную скорость.

    Недостатки:


    1. Скорость холостого хода регулируется в отличие от двигателей, установленных в серии.

    E- Двигатель постоянного тока с независимым возбуждением

    Двигатель постоянного тока с независимым возбуждением

    В двигателе постоянного тока с независимым возбуждением катушки возбуждения питаются от независимого источника, такого как двигатель-генератор, и на ток возбуждения не влияют изменения тока якоря. Двигатель постоянного тока с отдельным возбуждением иногда использовался в тяговых двигателях постоянного тока для облегчения контроля пробуксовки колес.

    F- Универсальный двигатель

    Универсальный двигатель

    Универсальный двигатель представляет собой вращающуюся электрическую машину, аналогичную двигателю постоянного тока, предназначенную для работы от источника постоянного или переменного тока. Обмотки статора и ротора двигателя соединены последовательно через коммутатор ротора. Серийный двигатель разработан для перемещения больших грузов с высоким крутящим моментом в таких приложениях, как двигатель крана или подъемник.

    Серводвигатели G

    Серводвигатели

    Сервомоторы
    - это механические устройства, которым можно дать указание переместить выходной вал, прикрепленный к сервоколесу или рычагу, в указанное положение. Серводвигатели предназначены для приложений, включающих управление положением, скоростью и крутящим моментом.


    Серводвигатель в основном состоит из двигателя постоянного тока, зубчатой ​​передачи, датчика положения, который в основном представляет собой потенциометр, и управляющей электроники.
    Сервомоторы Применения


    В следующей теме я объясню Бесщеточный двигатель постоянного тока (BDLC) и двигатели переменного тока типа . Итак, продолжайте следить. Примечание: эти темы о двигателях в этом курсе EE-1: Курс электрического проектирования для начинающих является введением только для новичков, чтобы получить общую базовую информацию о двигателях и насосах как типе силовых нагрузок.Но на других уровнях наших курсов по электрическому проектированию мы покажем и подробно объясним расчеты нагрузок на двигатель и насосы. .

    Электроприводы - Основы электрических машин

  • Motor Action
  • Майкл Фарадей показал, что прохождение тока через проводник, свободно подвешенный в фиксированном магнитном поле, создает силу, которая заставляет проводник двигаться через это поле.
    И наоборот, если ограничен проводник, а не магнит, то магнит, создающий поле, будет перемещаться относительно проводника.

    В более общем смысле сила, создаваемая током, известная теперь как сила Лоренца, действует между проводником тока и магнитным полем или магнитом, создающим поле.

    Величина силы, действующей на проводник, определяется по формуле:

    F = BLI

    Где F - сила, действующая на проводник, L - длина проводника, а I - ток, протекающий по проводнику

  • Действие генератора
  • Фарадей также показал, что верно и обратное: перемещение проводника через магнитное поле или перемещение магнитного поля относительно проводника вызывает протекание тока в проводнике.

    Величина создаваемой таким образом ЭДС определяется как:

    E = BLv

    Где E - ЭДС генератора (или обратная ЭДС в двигателе), а v - скорость проводника через поле

  • Альтернативное моторное действие (интерактивные поля)
  • Другая форма движущей силы, которая не зависит от силы Лоренца и протекания электрического тока, в принципе может быть получена из чисто притягивающей (или отталкивающей) магнитной силы, действующей на магнит или на магнитно-восприимчивые материалы, такие как как железо, когда их помещают в поле другого магнита.Примером может служить движение стрелки компаса в присутствии магнита. Однако на практике по меньшей мере один магнит, создающий поле, должен быть электромагнитом, чтобы получить необходимый контроль магнитного поля для достижения устойчивого движения, а также практических уровней крутящего момента.

    Бесщеточные двигатели постоянного тока и реактивные двигатели зависят от этого явления, известного как «реактивный момент», поскольку в роторе не протекают электрические токи. Вращательное движение достигается путем последовательной подачи импульсов полюсами статора для создания вращающегося магнитного поля, которое увлекает за собой движущийся магнит.

    В асинхронных двигателях переменного тока вращающееся поле получается другим методом, и основное действие двигателя зависит от силы Лоренца, однако синхронные двигатели переменного тока имеют элементы магнитного ротора, которые вращаются синхронно с вращающимся полем, как в бесщеточном двигателе постоянного тока. .

    • Момент сопротивления
    • Крутящий момент создается за счет реакции между магнитными полями.Рассмотрим небольшой стержневой магнит в поле другого большего магнита, такого как зазор между полюсами подковообразного магнита или одной из пар полюсов электродвигателя. (См. Схему реактивного двигателя). Когда стержневой магнит выровнен с полюсами большого магнита, его поле будет соответствовать внешнему полю. Это положение равновесия, и стержень не будет испытывать никаких усилий, чтобы переместить его. Однако, если стержень не совмещен с полюсами, либо повернут, либо смещен, он будет испытывать силу, возвращающую его в соответствие с внешним полем.В случае бокового смещения сила уменьшается с увеличением расстояния, но в случае вращения сила будет увеличиваться, достигая максимума, когда стержень находится под прямым углом к ​​внешнему полю. Другими словами, крутящий момент на магните является максимальным, когда поля ортогональны, и нулевым, когда поля выровнены.

      • Явные полюса
      • Двигатели, зависящие от реактивного момента, обычно имеют «выступающие полюса» - полюса, которые выступают наружу.Это необходимо для концентрации потока в дискретных угловых секторах, чтобы максимизировать и сфокусировать выравнивающую силу между полями.

    • Крутящий момент от вращающихся полей
    • В двигателях, которые зависят от вращающихся полей, таких как асинхронные двигатели, бесщеточные двигатели постоянного тока и реактивные двигатели, мгновенный крутящий момент на роторе зависит от его углового положения по отношению к угловому положению магнитной волны. Хотя магнитная волна пытается подтянуть полюса ротора в соответствии с магнитным потоком, всегда будут инерция и потери, сдерживающие ротор.

      • Клинья
      • Из-за трения, сопротивления воздуха и других потерь ротор асинхронного двигателя вращается с меньшей скоростью, чем вращающееся поле, что приводит к угловому смещению между вращающейся магнитной волной и вращающимся полем, связанным с полюсами ротора. Разница между скоростью магнитной волны и скоростью ротора называется «скольжением», а крутящий момент двигателя пропорционален скольжению.

      • Угол крутящего момента
      • Даже в синхронных двигателях, в которых ротор вращается с той же скоростью, что и магнитная волна, из-за потерь, указанных выше, полюса ротора никогда не достигнут полного совпадения с пиками магнитной волны, и все равно будет смещение между вращающаяся магнитная волна и вращающееся поле. Иначе бы не было крутящего момента. Это смещение называется «углом крутящего момента». Крутящий момент двигателя равен нулю, когда угол крутящего момента равен нулю, и максимален, когда угол крутящего момента равен 90 градусам.Если угол крутящего момента превышает 90 градусов, ротор выйдет из синхронизма и остановится.

  • Электрические машины
    Большинство продаваемых сегодня электрических машин (двигателей и генераторов) по-прежнему основаны на силе Лоренца, и их принцип действия может быть продемонстрирован на примере ниже, в котором однооборотная катушка, по которой проходит электрический ток, вращается в магнитном поле. поле между двумя полюсами магнита.
  • Для многооборотных катушек эффективный ток составляет NI (ампер-витков), где N - количество витков в катушке.

    Если на катушку подается ток, машина действует как двигатель. Если катушка вращается механически, в катушке индуцируется ток, и машина, таким образом, действует как генератор.

    Во вращающихся машинах вращающийся элемент называется ротором или якорем, а неподвижный элемент - статором.

  • Действие и реакция
  • На практике эффекты двигателя и генератора имеют место одновременно.

    Прохождение тока через проводник в магнитном поле заставляет проводник перемещаться через поле, но как только проводник начинает движение, он становится генератором, создающим ток через проводник в направлении, противоположном приложенному току. Таким образом, движение проводника создает «обратную ЭДС», которая противодействует приложенной ЭДС.

    И наоборот, перемещение проводника через поле вызывает прохождение тока через проводник, который, в свою очередь, создает силу на проводнике, противодействующую приложенной силе.

    Фактический ток, протекающий в проводнике, определяется по формуле:

    I = (V - E)

    Р

    Где В, - приложенное напряжение, E - обратная ЭДС и R - сопротивление проводника (якоря двигателя)..

  • Уравнение ЭДС
  • Исходя из вышесказанного, обратная ЭДС в электродвигателе равна приложенному напряжению за вычетом падения напряжения на якоре.

    E = V - RI

    Это известно как «Уравнение ЭДС двигателя».

    Падение напряжения на аматуре RI иногда называют Net Voltage

    .

  • Уравнение мощности
  • Умножение напряжения на ток якоря для получения мощности дает следующее соотношение:

    P = EI = VI - I 2 R

    Это показывает, что механическая мощность, выдаваемая двигателем, равна обратной ЭДС, умноженной на ток якоря, ИЛИ электрическая мощность, подаваемая на двигатель, за вычетом потерь I 2 R в обмотках.(Без учета потерь на трение).

    Это известно как «Уравнение мощности двигателя».

  • Рабочее равновесие под нагрузкой
  • Эффекты «Действие и реакция», описанные выше, обеспечивают важный автоматический механизм саморегулирующейся обратной связи в двигателях постоянного и переменного тока для адаптации к изменениям приложенной нагрузки. По мере увеличения нагрузки на двигатель он имеет тенденцию замедляться, уменьшая обратную ЭДС.Это, в свою очередь, позволяет протекать большему току, создавая больший крутящий момент, чтобы приспособиться к возросшей нагрузке, пока не будет достигнута точка баланса или равновесия. Таким образом, двигатель установит скорость, соответствующую требуемому крутящему моменту. См. Также раздел "Управление мощностью" ниже.

  • Магнитные поля
    Магнитное поле двигателя создается статором, и в приведенном выше примере статор представляет собой постоянный магнит, однако в большинстве электрических машин магнитное поле создается электромагнитно с помощью катушек, намотанных вокруг полюсов статора.Обмотки статора также называют обмотками возбуждения, а двигатель называется «возбужденным от возбуждения».
    Ротор обычно наматывается на железный сердечник, чтобы повысить эффективность магнитной цепи машины.
    • Магнитные цепи
      В случае электрических машин магнитная цепь - это путь магнитного потока через корпус статора, через воздушный зазор, через ротор и обратно через воздушный зазор в статор.Длина l этого пути известна как средняя длина магнитного пути MMPL
      Магнитные цепи предназначены для создания максимально возможного магнитного потока и его концентрации в воздушном зазоре между ротором и статором, через который движутся катушки. Поток Φ измеряется в Webers
      . Плотность потока B измеряется в теслах и определяется как магнитный поток Φ на единицу площади A .Таким образом, B = Φ / A , где A - это площадь, через которую проходит поток.

    • Из приведенных выше уравнений видно, что крутящий момент, создаваемый электродвигателем, или ЭДС, создаваемая генератором, прямо пропорциональны плотности магнитного потока B в области, окружающей движущиеся электрические проводники, а для эффективных машин B должно быть как можно выше.

    • Магнитодвижущая сила (MMF)
      Магнитный поток, возникающий в магнитной цепи, пропорционален создаваемой магнитодвижущей силе (МДС). Для электромагнита MMF - это эффективный ток в намагничивающей катушке, измеренный в амперах витков NI , и, как указано выше, это фактический ток в I , умноженный на количество витков N в катушке.
      Таким образом, MMF = NI = Φ X R , где R - это магнитное сопротивление магнитной цепи.Сопротивление - это внутреннее сопротивление материала магнитной цепи возникновению магнитного потока через него. (Для железа сопротивление очень низкое. Для воздуха очень высокое)
      Это уравнение для потока в магнитных цепях аналогично закону Ома для тока в электрических цепях, в котором:
      ЭДС = I X R , где R - сопротивление электрической цепи.
      Поскольку сопротивление воздушного зазора между статором и ротором очень велико, воздушный зазор должен быть как можно меньше, чтобы свести к минимуму количество ампер-витков, необходимых для создания желаемой плотности магнитного потока.
    • Магнитная сила (H) , также называемая напряжением магнитного поля
    • Напряженность магнитного поля H - это MMF на единицу длины в магнитной цепи. Таким образом:

      H = NI

      л

      Магнитодвижущая сила является причиной магнитного поля, магнитная сила - следствием.

    • Плотность потока (B) и Магнитная проницаемость )
    • Для однородных полей плотность потока, связанная с магнитной силой, пропорциональна напряженности поля и определяется выражением:

      B = µ 0 µ r H

      где

      µ 0 известна как магнитная постоянная или проницаемость свободного пространства.

      µ r - относительная проницаемость магнитного материала.

      К сожалению, зависимость становится нелинейной по мере увеличения плотности магнитного потока и насыщения магнитного материала. Затем поток, создаваемый увеличением магнитного поля, уменьшается и выравнивается, а относительная проницаемость µ r стремится к 0.

    • Насыщенность
    • Из вышеизложенного видно, что увеличение MMF (ампер-витков) в магнитной цепи увеличивает поток через цепь, но есть предел плотности потока, который может быть создан в магнитных материалах, таких как железо, когда материал называется быть насыщенным.Выше этой точки требуется все больше и больше MMF для создания все меньшего и меньшего потока. Другими словами, сопротивление резко возрастает при насыщении материала.

      Для максимальной эффективности электрические машины обычно рассчитаны на работу чуть ниже точки насыщения.

    • Магнитные полюса
      Электрические машины могут иметь несколько пар полюсов. Многополюсные машины обычно обеспечивают более эффективные магнитные цепи и более плавные характеристики крутящего момента.

  • Коммутация
  • Соединение с подвижной катушкой в ​​базовой машине, показанной выше, осуществляется с помощью угольных щеток, установленных на паре контактных колец, по одному на каждом конце катушки.

    Если машина используется в качестве генератора, направление генерируемого тока будет меняться каждые полцикла, поскольку плечо катушки последовательно проходит через противоположные полюса.Если требуется однонаправленный ток, контактные кольца разъединяются и соединяются между собой так, что в каждом полупериоде ток снимается с чередующихся плеч катушки. Этот простой механизм переключения называется коммутатором.

    Аналогичным образом, когда машина используется в качестве двигателя постоянного тока, коммутатор переключает напряжение питания постоянного тока на чередующиеся плечи катушки каждый полупериод, чтобы добиться однонаправленного вращения.

    Таким образом, во всех машинах постоянного тока с фазным ротором, как в двигателях, так и в генераторах, ток в обмотках ротора является переменным, и именно коммутатор обеспечивает соответствующий вход или выход постоянного тока.Однако есть некоторые заметные исключения. Первые в мире двигатели и генераторы, изобретенные Фарадеем, были униполярными или униполярными машинами, в проводниках которых протекал однонаправленный ток. Двигатель Фарадея был лабораторным диковинным предметом, не имеющим практического применения, но его так называемая динамо-машина «Диск Фарадея» могла генерировать полезный ток.

    На протяжении более 100 лет механическая коммутация была единственным практическим способом переключения направления тока, однако с 1970-х годов наличие мощных полупроводников сделало возможной электронную коммутацию.

    В машинах переменного тока можно избежать сложностей коммутации, поскольку ток может индуцироваться в обмотках ротора за счет действия трансформатора с обмотками статора, устраняя необходимость в прямых соединениях между линией питания и вращающимися обмотками. См. Асинхронные двигатели.

    Поскольку коммутатор по сути является механическим переключателем, быстро замыкающим и размыкающим сильноточную цепь, переключатель склонен к искрообразованию и возникновению радиочастотных помех, которые могут нарушить работу других электронных схем, находящихся поблизости.

    В очень больших двигателях склонность к искрообразованию может быть снижена путем добавления «межполюсных» или «коммутирующих полюсов», узких вспомогательных обмоток на полпути между основными полюсами статора. Они соединены последовательно с обмотками ротора и создают MMF, равную и противоположную MMF ротора, так что эффективный магнитный поток между главными полюсами равен нулю. Коммутация предназначена для того, чтобы происходить в тот момент, когда ток проходит через ноль между отрицательным и положительным полупериодами, и это происходит, когда ротор находится на полпути между основными полюсами.За счет нейтрализации потока в этой области снижается вероятность искрения.

  • Evolution
  • Самые ранние электрические машины зависели от постоянных магнитов для создания магнитного поля, однако лучшие магнитные материалы, доступные в то время, были способны создавать только очень слабые поля, что ограничивало потенциальные применения машин до лабораторных демонстраций. В конце концов стало понятно, что гораздо более сильные магнитные поля могут быть созданы с помощью электромагнитов, питаемых от приложенного или генерируемого сетевого напряжения.Это позволило построить гораздо более мощные машины, дающие возможность разработки практических приложений. Достижения в области магнитных материалов привели к созданию гораздо более мощных постоянных магнитов, позволяющих использовать их в практических машинах, упрощая машиностроение за счет исключения одного набора обмоток. В то же время многие функции, такие как энкодеры, тахогенераторы, термовыключатели, тормоза и вентиляторы, встроены в машины. См. Также Контроллеры

    .
  • Момент
  • Вообще говоря, крутящий момент, создаваемый двигателем, пропорционален потребляемому им току, а также потоку в воздушном зазоре.

    T = K 1 I B

  • Скорость
    • Двигатели постоянного тока
    • В двигателях постоянного тока скорость вращения пропорциональна приложенному напряжению, и нормальный метод управления скоростью заключается в изменении входного напряжения.

      N = K 2 V

      Б

      Однако скорость также обратно пропорциональна потоку в воздушном зазоре.Это означает, что скорость увеличивается по мере уменьшения магнитного потока, создаваемого катушками возбуждения. Теоретически скорость может стремиться к бесконечности, если ток в катушке возбуждения будет удален, хотя двигатель, скорее всего, будет разрушен до того, как это произойдет. На практике ограниченное увеличение скорости может быть достигнуто за счет контролируемого уменьшения тока возбуждения. Но обратите внимание на уравнение крутящего момента выше, что уменьшение тока возбуждения также снижает крутящий момент. Этот метод управления скоростью называется « Ослабление поля »

    • Двигатели переменного тока
    • В двигателях переменного тока скорость пропорциональна частоте приложенного напряжения и обратно пропорциональна количеству магнитных полюсов.

      N = K 3 f

      П

  • Характеристики крутящего момента - скорости
  • Двигатели постоянного тока

    развивают максимальный крутящий момент при нулевой скорости или когда они остановлены (когда они потребляют максимальный ток), и крутящий момент падает линейно по мере увеличения скорости, достигая нуля, когда обратное напряжение, генерируемое вращающимися катушками в магнитном поле ( обратная ЭДС) равна приложенному напряжению.

    Для двигателей переменного тока пусковой крутящий момент при нулевой скорости может составлять примерно от 70% до 90% от максимального значения, возрастая до пика при увеличении скорости, а затем резко снижаясь до нуля, когда двигатель приближается к синхронной скорости. См. Примечание о синхронных двигателях.

    (Характеристики крутящего момента электродвигателей отличаются от двигателей внутреннего сгорания, крутящий момент которых очень низкий на низких скоростях, обычно останавливается ниже 800 об / мин, но увеличивается с увеличением скорости до пика при падении примерно 80% максимальной скорости. отключается лишь незначительно при достижении максимальной скорости.)

  • Начиная с
  • Некоторые конструкции двигателей не являются самозапускающимися в своей базовой конфигурации, но обычно включают конструктивные изменения, позволяющие самозапускаться, чтобы пользователь мог не осознавать проблему.

  • Электроэнергетика
  • Выходная мощность двигателя прямо пропорциональна его скорости.
    В выходная мощность P в Ваттах определяется по формуле:

    P = ωT

    Где ω - скорость в радианах в секунду, а T - крутящий момент в Ньютон-метрах

    ИЛИ

    P = 2π NT = NT

    60 9.55

    Где N - скорость в оборотах в минуту (об / мин)

    ПРИМЕЧАНИЕ : Это соотношение показывает, что для заданной мощности скорость уменьшается по мере увеличения нагрузки или крутящего момента и наоборот. Это в некотором смысле эквивалентно тому, что происходит в механической коробке передач, и соответствует рабочему равновесию, упомянутому выше.

  • Максимальная мощность
  • Максимальная мощность, которую может выдержать двигатель, определяется его максимально допустимой температурой.Пропускная способность может быть увеличена за счет использования материалов, способных выдерживать более высокие температуры, особенно для изоляции обмоток, или путем обеспечения принудительного охлаждения, которое снижает температуру двигателя при заданном потреблении тока.

  • Угловая мощность
  • Угловая мощность - это альтернативный способ определения мощности двигателя, который некоторые люди считают полезным для сравнения машин.

    Это просто произведение максимального крутящего момента двигателя и максимальной скорости, которую он может достичь.Поскольку максимальный крутящий момент редко, если вообще возникает, возникает одновременно с максимальной скоростью, фактическая передаваемая мощность машины всегда будет меньше угловой мощности.

    В двигателях постоянного тока предел коммутации устанавливается способностью сегментов коммутатора и щеток выдерживать высокие напряжения (ограничение скорости) и большие токи (ограничение крутящего момента).

    Отметим также, что при высоких напряжениях и токах может потребоваться принудительное охлаждение.

  • Охлаждение
  • Допустимая мощность электрической машины ограничена максимально допустимой температурой ее обмоток.

    Для двигателей большей мощности требуются более высокие магнитные поля, и ток, необходимый для обеспечения более высокой плотности магнитного потока, линейно увеличивается с размером двигателя. Однако площадь поперечного сечения медного кабеля, необходимая для протекания тока, увеличивается пропорционально квадрату тока.

    Допустимая мощность может быть увеличена за счет использования изоляции, выдерживающей более высокие температуры, или за счет принудительного охлаждения для отвода тепла от обмоток. Принудительное охлаждение обычно не требуется для машин с дробной мощностью, но более крупные встроенные двигатели в лошадиных силах обычно включают встроенный охлаждающий вентилятор, который нагнетает воздух через машину.Принудительное воздушное охлаждение может быть эффективным в машинах мощностью до 50 мегаватт, но более крупные машины с номинальной мощностью в несколько мегаватт, используемые в электроэнергетике, должны прибегать к жидкостному охлаждению, при котором хладагент циркулирует по полым проводникам. Рабочей жидкостью может быть вода, но в самых больших машинах используется водород из-за его малого веса и высокой теплоемкости.

  • Зубчатая передача
  • Для заданного крутящего момента мощность двигателя пропорциональна скорости.Таким образом, низкоскоростные двигатели будут обеспечивать очень низкую мощность. Приложения, требующие высокого крутящего момента на низких скоростях, потребуют очень больших токов и непрактично больших двигателей. Для таких применений лучше подходят более высокоскоростные двигатели с зубчатыми передачами для снижения скорости и увеличения крутящего момента.

  • Размер
  • Размер двигателя определяется крутящим моментом, который он должен передать. Для аналогичных двигателей с аналогичными системами охлаждения крутящий момент двигателя пропорционален объему ротора и, следовательно, общему объему двигателя.

  • КПД
  • Как отмечалось выше, для заданного крутящего момента мощность двигателя пропорциональна скорости, в то время как электрические и боковые потери имеют тенденцию быть примерно постоянными и возрастают относительно медленно. Таким образом, КПД двигателя увеличивается с увеличением скорости.

    КПД также зависит от размера двигателя, поскольку резистивные потери имеют тенденцию быть пропорционально намного выше в устройствах меньшего размера, чем в машинах большего размера, которые могут быть разработаны с более эффективными магнитными цепями.

  • Зубчатые
  • Зубчатость - это резкая, неравномерная угловая скорость ротора машины, особенно заметная на низких скоростях в двигателях с небольшим количеством полюсов. Это происходит потому, что ротор имеет тенденцию ускоряться по мере приближения к полюсам статора и замедляться, когда он выходит из полюсов. Это также заметно при использовании импульсного постоянного тока, если частота сигнала питания слишком мала. Проблема может быть уменьшена путем использования перекошенных обмоток ротора, а также увеличения числа полюсов в двигателе.

  • Потери
    Потери снижают эффективность машины и обычно приводят к нежелательному нагреву.
    • Потери в меди
      Это тепловые потери I 2 R в результате протекания тока в обмотках. Потери в меди варьируются в зависимости от тока и, следовательно, нагрузки на машину. Потери в железе и другие потери обычно относительно постоянны.
      • Сопротивление обмотки статора
      • Сопротивление обмотки ротора
    • Потери в железе
      Это потери, возникающие в магнитной цепи.
      • Насыщенность
      • Это расточительное использование энергии, связанное с использованием материалов с плотностью потока выше точки насыщения.

      • Гистерезис потери
        Это энергия, необходимая для намагничивания и размагничивания железа в магнитной цепи в каждом машинном цикле. Поскольку потери за цикл фиксированы, они будут увеличиваться в соответствии с частотой.См. Дополнительную информацию о гистерезисе. Для уменьшения этих потерь были разработаны специальные стали с низким гистерезисом.
      • Потери на вихревые токи
        Эти потери возникают из-за нежелательных циркулирующих токов, которые индуцируются в железе магнитной цепи машины. по машинным обмоткам. Их можно свести к минимуму за счет использования в магнитных цепях ламинированного железа вместо твердого железа. Изолирующий оксидный слой на слоях препятствует протеканию вихревого тока между слоями.
    • Утечка потока
    • В практических магнитных цепях не всегда возможно сконцентрировать весь магнитный поток там, где это необходимо для оптимальной магнитной связи и максимального обмена энергией между ротором и статором. Следовательно, часть приложенной энергии теряется.

    • Ветер / трение
    • Это механические потери, вызванные сопротивлением движению ротора.

    • Коэффициент мощности
    • Асинхронный двигатель выглядит в линии питания как большой индуктор, и, следовательно, линейный ток отстает от приложенного напряжения. Тогда эффективная мощность двигателя будет равна VAcosΦ , где V, - приложенное напряжение, A, - протекающий ток, а Φ - фазовый угол, на который ток отстает от напряжения.

      CosΦ известен как коэффициент мощности.Когда Φ = 0, ток находится в фазе с напряжением, cosΦ = 1 и потери мощности отсутствуют. Когда Φ = 1, ток отстает от напряжения на 90 °, cosΦ = 0, и на нагрузку не будет подаваться эффективная мощность. Коэффициент (1 - cosΦ ) представляет собой дополнительную мощность, которую машина должна потреблять от источника для обеспечения своей номинальной мощности.

    Как отмечалось выше, из-за реакции системы на приложенную силу все вращающиеся машины одновременно действуют как двигатели и генераторы.В обоих случаях действуют одни и те же электромагнитные силы, и одни и те же уравнения представляют поведение машин в обоих случаях.

    Как и в случае с двигателями, вышеупомянутые принципы могут применяться по-разному. См. Несколько практических примеров в разделе «Генераторы».

    См. Описания и приложения некоторых из самых распространенных из множества типов электрических машин и приводов, доступных сегодня

    .Машина постоянного тока

    - конструкция, работа, типы, уравнение ЭДС и приложения

    Машины постоянного тока можно разделить на два типа: двигатели постоянного тока и генераторы постоянного тока . Большинство машин постоянного тока эквивалентны машинам переменного тока, потому что они включают в себя как переменные токи, так и переменные напряжения. Выход машины постоянного тока - это выход постоянного тока, потому что они преобразуют напряжение переменного тока в напряжение постоянного тока. Преобразование этого механизма известно как коммутатор, поэтому эти машины также называются коммутаторами.Машина постоянного тока чаще всего используется в качестве двигателя. Основные преимущества этой машины включают регулировку крутящего момента, а также легкую скорость. Применение машины постоянного тока ограничено поездами, мельницами и шахтами. Например, в вагонах метро, ​​а также в троллейбусах могут использоваться двигатели постоянного тока. В прошлом в автомобилях были установлены динамо-машины постоянного тока для зарядки батарей.

    Что такое машина постоянного тока?

    Машина постоянного тока - это электромеханическое устройство для преобразования энергии. Принцип работы машины постоянного тока заключается в том, что электрический ток протекает через катушку в магнитном поле, а затем магнитная сила создает крутящий момент, который вращает двигатель постоянного тока.Машины постоянного тока подразделяются на два типа, такие как генератор постоянного тока и двигатель постоянного тока.


    Машина постоянного тока

    Основная функция генератора постоянного тока состоит в преобразовании механической энергии в электрическую энергию постоянного тока, тогда как двигатель постоянного тока преобразует мощность постоянного тока в механическую энергию. Электродвигатель переменного тока часто используется в промышленных приложениях для преобразования электрической энергии в механическую. Однако двигатель постоянного тока применим там, где необходимо хорошее регулирование скорости и широкий диапазон скоростей, например, в системах с электрическими транзакциями.

    Конструкция машины постоянного тока

    Конструкция машины постоянного тока может быть выполнена с использованием некоторых основных частей, таких как ярмо, полюсный сердечник и полюсные наконечники, полюсная катушка и обмотка возбуждения, сердечник якоря, обмотка якоря или проводник, коммутатор, щетки и подшипники. Некоторые из частей машины постоянного тока обсуждаются ниже.

    Конструкция машины постоянного тока
    Ярмо

    Другое название ярма - рама. Основная функция ярма в машине - обеспечить механическую опору для столбов и защитить всю машину от влаги, пыли и т. Д.В ярме используются такие материалы, как чугун, стальное литье или стальной прокат.

    Полюс и сердечник полюса

    Полюс машины постоянного тока представляет собой электромагнит, а обмотка возбуждения намотана между полюсами. Когда обмотка возбуждения находится под напряжением, полюс дает магнитный поток. Материалы, используемые для этого - литая сталь, чугун или сердечник полюса. Он может быть изготовлен из отожженных стальных пластин для уменьшения падения мощности из-за вихревых токов.


    Башмак для шеста

    Башмак для стойки в машине постоянного тока является обширной деталью, а также для увеличения области полюса.Из-за этой области поток может распространяться внутри воздушного зазора, а также дополнительный поток может проходить через воздушное пространство к якорю. Материал, используемый для изготовления полюсного башмака, - это чугун, в противном случае - литой конь, а также использовалась отожженная стальная пластина для уменьшения потерь мощности из-за вихревых токов.

    Обмотки возбуждения

    В этом случае обмотки намотаны в области сердечника полюса и называются обмоткой возбуждения. Когда ток подается через обмотку возбуждения, он приводит в действие полюсы, которые создают необходимый магнитный поток.Материал обмоток возбуждения - медь.

    Сердечник арматуры

    Сердечник арматуры имеет огромное количество пазов по краю. В этих пазах находится провод якоря. Он обеспечивает путь с низким сопротивлением к потоку, создаваемому обмоткой возбуждения. Материалы, используемые в этом сердечнике, представляют собой материалы с низкой магнитной проницаемостью, такие как литое железо. Ламинирование используется для уменьшения потерь из-за вихревых токов.

    Обмотка якоря

    Обмотка якоря может быть образована путем соединения между собой проводников якоря.Когда обмотка якоря поворачивается с помощью первичного двигателя, в ней индуцируется как напряжение, так и магнитный поток. Эта обмотка подключена к внешней цепи. Материалы, используемые для этой обмотки, представляют собой проводящий материал, например медь.

    Коммутатор

    Основная функция коммутатора в машине постоянного тока - собирать ток с проводника якоря, а также подавать ток на нагрузку с помощью щеток. А также обеспечивает однонаправленный крутящий момент для двигателя постоянного тока.Коммутатор может быть построен с огромным количеством сегментов в форме ребра жестко вытянутой меди. Сегменты в коммутаторе защищены тонким слоем слюды.

    Щетки

    Щетки в машине постоянного тока собирают ток от коммутатора и подают его на внешнюю нагрузку. Щетки изнашиваются со временем, чтобы часто проверять. В щетках используются графит, в противном случае - углерод, имеющий прямоугольную форму.

    Типы машин постоянного тока

    Возбуждение машины постоянного тока подразделяется на два типа, а именно раздельное возбуждение и самовозбуждение.В машинах постоянного тока с отдельным типом возбуждения катушки возбуждения активируются отдельным источником постоянного тока. В машинах постоянного тока с самовозбуждением ток через обмотку возбуждения подается вместе с машиной. Основные типы машин постоянного тока подразделяются на четыре типа, включая следующие.

    • Аппарат постоянного тока с независимым возбуждением
    • Шунтирующий / шунтирующий аппарат.
    • Станок для намотки / серии.
    • Машина для комбинированной раны / составной машины.

    Отдельно возбуждаемый

    В машине постоянного тока с раздельным возбуждением для активации катушек возбуждения используется отдельный источник постоянного тока.

    Шунтирующая обмотка

    В машинах постоянного тока с шунтирующей обмоткой полевые катушки соединены параллельно через якоря . Поскольку шунтирующее поле получает полное напряжение o / p генератора, иначе - напряжение питания двигателя, оно обычно состоит из огромного количества витков тонкой проволоки с небольшим током возбуждения.

    Серийная обмотка

    В машинах постоянного тока с последовательной обмоткой катушки возбуждения соединены последовательно через якорь. Поскольку последовательная обмотка возбуждения получает ток якоря, а также ток якоря огромен, в связи с этим последовательная обмотка возбуждения включает в себя несколько витков проволоки с большим поперечным сечением.

    Составная рана

    Составная машина включает как рядные, так и шунтирующие поля. Две обмотки подключены к каждому полюсу машины. Последовательная намотка машины включает в себя несколько витков огромной площади поперечного сечения, а также шунтирующие обмотки, включающие несколько витков тонкой проволоки.

    Подключение составной машины может быть выполнено двумя способами. Если шунтирующее поле соединено параллельно только якорем, тогда машину можно назвать «составной машиной с коротким шунтом», и если шунтирующее поле соединено параллельно как арматурой, так и последовательным полем, тогда машина называется «машина с длинным шунтом».

    Уравнение ЭДС машины постоянного тока

    Машина постоянного тока e.m.f можно определить как когда якорь в машине постоянного тока вращается, напряжение может генерироваться внутри катушек. В генераторе ЭДС вращения можно назвать генерируемой ЭДС, а Er = Eg. В двигателе ЭДС вращения можно назвать встречной или обратной ЭДС, а Er = Eb.

    Пусть Φ - полезный поток для каждого полюса в пределах паутины

    P - общее количество полюсов

    z - общее количество проводников внутри якоря

    n - скорость вращения якоря при обороте в секунду

    А - это нет.параллельных полос по всей арматуре среди щеток противоположной полярности.

    Z / A - это нет. проводов якоря последовательно для каждой параллельной дорожки

    Поскольку магнитный поток для каждого полюса равен ‘Φ’, каждый проводник режет магнитный поток ‘PΦ’ за один оборот.

    Напряжение, создаваемое для каждого проводника = наклон потока для каждого оборота в WB / Время, затраченное на один оборот в течение секунд

    Поскольку 'n' оборотов завершаются в течение одной секунды, а 1 оборот будет выполнен в течение 1 / n секунды .Таким образом, время одного оборота якоря составляет 1 / нсек.

    Стандартное значение производимого напряжения для каждого проводника

    p Φ / 1 / n = np Φ вольт

    Производимое напряжение (E) может быть определено с помощью количества проводников якоря в серии I любой отдельной полосы из щетки таким образом, все напряжение вырабатывается

    E = стандартное напряжение для каждого проводника x нет. проводников в серии для каждой полосы

    E = n.P.Φ x Z / A

    Вышеприведенное уравнение - это e.м.ф. уравнение машины постоянного тока.

    Машина постоянного тока против машины переменного тока

    Разница между электродвигателем переменного тока и электродвигателем постоянного тока заключается в следующем.

    Двигатель переменного тока

    Двигатель постоянного тока

    Двигатель переменного тока - это электрическое устройство, которое приводится в действие через двигатель переменного тока Двигатель постоянного тока является одним из видов вращающихся двигателей, используемых для изменения энергии от постоянного тока до механического.
    Они подразделяются на два типа, такие как синхронные и асинхронные двигатели. Эти двигатели доступны двух типов, например, щеточные двигатели.
    Входное питание двигателя переменного тока - переменный ток Входное питание двигателя постоянного тока - постоянный ток
    В этом двигателе нет щеток и коммутаторов. В этом двигателе присутствуют угольные щетки и коллекторы.
    Входные фазы питания двигателей переменного тока однофазные и трехфазные Фазы входного питания двигателей постоянного тока однофазные
    Характеристики якоря двигателей переменного тока: якорь неактивен, а магнитное поле вращается. Характеристики якоря двигателей постоянного тока: якорь поворачивается, а магнитное поле остается неактивным.
    Он имеет три входных терминала, таких как RYB. Он имеет две входные клеммы, такие как положительный и отрицательный.
    Управление скоростью двигателя переменного тока может осуществляться путем изменения частоты. Управление скоростью двигателя постоянного тока может быть выполнено путем изменения тока обмотки якоря
    КПД двигателя переменного тока меньше из-за потери индукционного тока и скольжения двигателя. Эффективность двигателя постоянного тока высока, поскольку отсутствует индукционный ток, а также проскальзывание.
    Не требует технического обслуживания Требуется техническое обслуживание
    Двигатели переменного тока используются везде, где высокая скорость, а также переменная крутящий момент, требуется. Двигатели постоянного тока используются везде, где требуется регулируемая скорость, а также высокий крутящий момент.
    На практике они используются в крупных отраслях промышленности На практике они используются в приборах

    Потери в машине постоянного тока

    Мы знаем, что основная функция машины постоянного тока заключается в преобразовании механических энергия в электрическую энергию.При использовании этого метода преобразования вся входная мощность не может быть преобразована в выходную мощность из-за потерь мощности в различных формах. Тип потери может меняться от одного устройства к другому. Эти потери снизят эффективность устройства, а также увеличат температуру. Потери энергии в машинах постоянного тока можно разделить на электрические, в противном случае - потери на медь, потери в сердечнике или потери в железе, механические потери, потери в щетках и потери на случайную нагрузку.

    Преимущества машины постоянного тока

    Преимущества этой машины заключаются в следующем.

    • Машины постоянного тока, такие как двигатели постоянного тока, имеют различные преимущества, такие как высокий пусковой крутящий момент, реверсирование, быстрый запуск и остановка, изменяемые скорости через входное напряжение
    • Они очень легко управляются, а также дешевле по сравнению с AC
    • Управление скоростью хороший
    • Крутящий момент высокий
    • Работа без швов
    • Без гармоник
    • Простота установки и обслуживания

    Применение машины постоянного тока

    В настоящее время производство электроэнергии может производиться в больших объемах в форме переменного тока (переменный ток).Следовательно, использование машин постоянного тока, таких как двигатели и генераторы, генераторы постоянного тока чрезвычайно ограничено, поскольку они используются в основном для обеспечения возбуждения генераторов переменного тока небольшого и среднего диапазона. В промышленности машины постоянного тока используются для различных процессов, таких как сварка, электролитические процессы и т. Д.

    Обычно генерируется переменный ток, а затем он преобразуется в постоянный ток с помощью выпрямителей. Поэтому генератор постоянного тока подавляется с помощью источника переменного тока, который выпрямляется для использования в нескольких приложениях.Двигатели постоянного тока часто используются в качестве приводов с регулируемой скоростью и там, где происходят серьезные изменения крутящего момента.

    Применение машины постоянного тока в качестве двигателя используется путем разделения на три типа, таких как последовательные, шунтирующие и составные, тогда как применение машины постоянного тока в качестве генератора подразделяется на генераторы с раздельным возбуждением, последовательные и шунтирующие генераторы.

    Итак, это все машины постоянного тока. Из приведенной выше информации, наконец, мы можем сделать вывод, что машины постоянного тока - это генератор постоянного тока и двигатель постоянного тока.Генератор постоянного тока в основном используется для подачи источников постоянного тока на машину постоянного тока на электростанциях. В то время как двигатель постоянного тока приводит в действие некоторые устройства, такие как токарные станки, вентиляторы, центробежные насосы, печатные машины, электровозы, подъемники, краны, конвейеры, прокатные станы, авто-рикши, льдогенераторы и т. Д. Вот вам вопрос, что такое коммутация в машина постоянного тока?

    .

    Смотрите также