Главное меню

Теплопроводность цементно песчаной штукатурки


Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 897
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Воздух сухой при 20°С 1.205 0.0259 1005
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат 280…1000 0.07…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ 810…840 0.14…0.185
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.045
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол Пеноплэкс 22…47 0.03…0.036 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плита огнеупорная теплоизоляционная Avantex марки Board 200…500 0.04
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые   0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996– 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 150…600 0.052…0.145 1060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная техническая 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.073…0.096
Пробковое покрытие для полов 540 0.078
Ракушечник 1000…1800 0.27…0.63 835
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

сравнили 6 наполнителей и нашли лучший!

Какое значение имеет теплопроводность штукатурки.

Теплопроводность – способность стройматериала передавать через свою массу тепло из более разогретых областей в более охлажденные. Чем она выше, тем быстрее остывает помещение.

Применительно к штукатурке — это свойство не столь принципиально, как убеждают производители. Дело в толщине – теплоизоляционная штукатурка занимает небольшой объем, основная нагрузка по теплосбережению возлагается на материал несущей конструкции и утеплителя.

Однако свою толику вносит и штукатурка, поэтому иногда ее используют для дополнительного утепления стен и потолков.

Теплоизоляционная штукатурка не является самостоятельным утеплением, а может служить только как дополнительная мера энергосбережения.

Теплопроводность зависит от плотности вещества.

От чего зависит теплопроводность штукатурки.

Штукатурный раствор приготовляется из вяжущего (клейкого вещества, способного твердеть при высыхании) и наполнителя. Тепловые характеристики смеси зависят от плотности примененных в ней компонентов.

Вяжущее наружных отделок – цемент. Остальные растворы применяются в фасадных работах значительно реже из-за малой водостойкости. Для внутренних поверхностей наоборот, чаще применяют растворы с незначительной теплоемкостью (способностью накапливать тепло). К таким относят глину, известь, гипс.

В качестве армирующих и утепляющих наполнителей применяется песок, мраморная и стеклянная крошка, шлак, опилки, керамзит, всевозможные экструзии, перлит, вермикулит, вспененное стекло. Их возможности по теплопередаче ниже, что и делает обычную смесь теплоизолирующей.

Коэффициент теплопроводности штукатурки.

Так, гипсо-перлитовая теплоизоляционная штукатурка толщ. 2.5 см будет защищать стену с той же эффективностью, что и цементно-песчаная толщиной 10 см.

Однако в массе это не значительно. Например, теплоизоляционная штукатурка стены «в кирпич» (толщ. 51см и теплопроводн. 0.9). Ее вклад в экономию тепла составит всего 3.3%.

Перед тем, как купить смесь, стоит обратить внимание на коэффициент теплопроводности материала. Но и рассчитывать на «сверхутепление» штукатурками не стоит – их объем в общей массе конструкции не значителен.

Теплоемкость строительных материалов.

Важная характеристика для теплоизоляционной штукатурки стен. Штукатурка может быть не очень «теплой», обладая высокой энергоемкостью. Такие стены долго нагреваются, поглощая тепловую энергию. Но когда воздух комнаты остывает, накопленная теплота возвращается в помещение.

Коэффициент теплоусвоения.

Количество тепла, необходимое на обогрев материала. Чем выше коэффициент усвоения тепловой энергии, тем больше ее нужно. И наоборот, материалы с низким теплоусвоением быстро становятся теплыми, хотя и не аккумулируют энергию (например, пенопласт).

Теплоизоляционная штукатурка для наружных работ.

Внешнее утепление стены более эффективно, чем внутреннее. По первой схеме тепло сохраняется и накапливается внутри стенного массива. Во втором стена не защищена, тепловая энергия выветривается.

Штукатурка теплоизоляционная внешняя, фасадная должна обладать не только низкой теплопроводностью, но и достаточной влагостойкостью. Т дело не только в сохранности и долговечности слоя. Намокающий утеплитель лучше проводит тепло. Когда же вода в толще слоя превращается в лед, утеплитель сам становится источником холода.

Мокрый утеплитель, включая внешние штукатурные отделки, гораздо хуже защищает дом. Замерзая, он сам охлаждает стены, затрудняет движение пара и быстро разрушается.

Неводостойкие штукатурные покрытия, применяемые для наружной теплоизоляционной штукатурки, должны защищаться навесными фасадами. Наиболее рациональны вентилируемые навесные конструкции.

Теплоизоляционная штукатурка для внутренних работ.

Внутреннее утепление малоэффективно, поскольку штукатурка не способна защитить дом от холода. А стены без дополнительного утепления быстро остывают.

Чтобы включить их в конструкт термосопротивления, утепляющий слой рациональнее вынести наружу.

Однако теплосберегающая штукатурка для внутренних работ не будет лишней. Здесь целесообразно рассматривать ее в качестве «отталкивателя» тепла. Так, чтобы тепловая энергия не поглощалась внутренней отделкой.

Для подобных слоев используются смеси в минимальным показателем теплоусвоения. Чтобы, прислоняясь к стене, жильцы не ощущали неприятного холода. Так бывает, например, при оштукатуривании цементными составами.

Но величина усвоения теряет значимость при последующей отделке стен виниловыми обоями, вагонкой или пластиком. Нет смысла во внутреннем утеплении стены, отделанной кафелем (кроме случаев их прогрева электрическими ИК пленками).

Наполнители для теплоизоляционной штукатурки.

Стандартные смеси состоят из вяжущего и наполнителя. В качестве последнего обыкновенно применяется песок. Его армировочных способностей достаточно для получения прочных штукатурок на любом связующем.

Но для «мокрого» утепления стен применяются наполнители с низким коэффициентом теплопроводности.

Солома.

Используется только при формировании глинобитных стен, для утепляющей штукатурной отдели глино- и землебитных, оштукатуриваемых деревянных и саманных строений.

Основные преимущества – низкая цена и значительные армирующие характеристики (в глиняных растворах).

К недостаткам можно отнести крайнее неудобство в работе, требующее большой физической силы. Соломенно-глиняная стена без дополнительной отделки не приемлема из эстетических соображений и в силу недостаточной водостойкости смеси.

Используется очень редко в условиях крайнего материального стеснения.

Опилки.

Современными строителями брезгливо отвергнуты как неэффективный утеплитель. Причиной тому низкий уровень профессионального образования. На деле теплопроводность опилок 0.093 Вт/(м•°С), как и у плотного вспененного перлита.

К другому достоинству можно отнести низкую стоимость. Опилки можно «достать» и бесплатно.

Недостаток – низкая влагостойкость. Опилочные растворы применяются только внутри, отделывать ими внешние стены не целесообразно. Впрочем, практика показывает, что для их защиты достаточно нанести верхний слой отделки с высоким уровнем водостойкости.

Керамзит.

Искусственно получаемые гранулы, производимые путем обжига глиноземов. Обладают высокой пористостью.

В качестве наполнителя используют фракции минимального диаметра – керамзитовый песок. Плотность от 200 до 800кг на куб. Проводимость тепла от 0.12 до 0.23 соответственно.

Перлит.

Вулканическое стекло. Вспененный перлит получают при соединении обсидиана с водой в условиях высоких температур. Впоследствии вода испаряется, а перлит получает тонкую пористую структуру.

К недостаткам материала можно отнести его огромную влагоемкость. Он способен впитать количество воды в 4 раза превышающее его массу. Нуждается в защите. Для внешней отделки не пригоден.

Неудобство в работе связано и с невероятной легкостью камня, который разносится порывом ветра, сквозняком.

Теплопроводность перлита зависит от его плотности: плотный (600 кг/м куб.) имеет показатель в 0.12Вт, средний (400 кг/м куб.) 0.9Вт, наиболее пористый (200 кг на куб.) – 0.8Вт/(м•°С).

Вермикулит.

Получают путем обжига слюдосодержащих пород. Свойствами вермикулит схож с перлитом. Также «боится» воды, поскольку много ее впитывает.

Плотные сорта (200кг/м.куб) обладают тепловодн. 0.11, более легкие (100кг/куб) – 0.08.

Экструзии полистирола.

Гранулы, из которых производится пенопласт, полистирол.

Не водостойки, нуждаются в доп. защите. Главный недостаток – низкие экологические характеристики. В интернете даже распространено заблуждение, что полистирол радиоактивен.

Но достоверно лишь то, что при сгорании он способен выделять ядовитый дым, что резко ограничивает возможности по его применению в строительстве.

При сгорании полистирола выделяется едких, опасный дым. Это важно, поскольку при пожарах большинство пострадавших находятся на грани гибели не ввиду высокой температуры или огня, а по причине удушливости газа.

Вспененное стекло.

Вспененное стекло представляет собой стеклянные гранулы с множеством замкнутых пор. Материал не впитывает воду, поры ею тоже не заполняются вследствие своей недоступности.

Стекло отличный наполнитель для фасадных теплоизоляционных штукатурок, не боится воды и достаточно эффективен как утеплитель. При плотн. 140кг/м.куб. 0.85Вт, при 100кг – 0.67.

Теплоизоляционная полимерная штукатурка.

Синтетические вяжущие необратимы. То есть, теряя воду при высыхании, они переходят в иное химическое состояние, при которым их взаимодействие с водой ограничено. Поэтому, хотя они и разбавляются водой, после высыхания становятся водостойкими.

Другой значимый фактор – паропроницаемость. Акриловые штукатурки «дышат», то есть не являются парозащитой, пропускают пары, не задерживая их под собой. Это позволяет предотвратить накопление влаги в предыдущем слое.

В качестве теплоизоляторов применяются распространенные наполнители.

Полимерные растворы наиболее влагостойки и водостойки. Поэтому их применяют для фасадной теплоизоляционной штукатурки, создания покрытий в ванных, предбанниках, тамбурах, лоджиях, коридорах, кухнях и санузлах.

Экономичная штукатурная теплоизоляция.

Полимерные штукатурки можно только купить, их не изготовить самостоятельно. Но растворы на минеральных вяжущих экономичнее смешивать своими руками.

Заказать работу наемным рабочим дорого. Но, если смесь изготовить самостоятельно, общая цена несколько упадет. Многие застройщики экономят таким образом: нанимают штукатуров, а сами выполняют для них «черную» работу. С учетом того, что помощь подсобника оплачивается не за м2, а по дням, экономия может быть не значительной. Приблизительно 800-1200 руб/день.

Еще дешевле самостоятельная подготовка стены, выставление маяков и грубое оштукатуривание. «Спецам» останется только выровнять покрытие и нанести декоративный раствор.

 Теплоизоляционная дешевая штукатурка для наружных работ.

Изолирующие смеси дороже обычных, поскольку сложнее. Своими руками, к тому же, можно сделать далеко не все.

Однако изготовление раствора на основе цемента под силам любому начинающему строителю и способно ощутимо снизить расход средств. В качестве наполнителя можно использовать как влагостойкие насыпные материалы (вспененное стекло, керамзитовые пески), так и не влагостойкое (опилки, перлит, вермикулит). Последние лишь защищают слоем плотного бетона.

Для внешней теплоизоляционной штукатурки возможно применение полистирольных наполнителей. Самый экономичный наполнитель – измельченный пенополистирол. Его стоимость нулевая, он бесплатен. Если использовать для измельчения пенопластовую упаковку.

Такой бетон широко применяется в России и за ее пределами. Он не плотен и не применим в конструкциях, требующих высокой прочности. Но для внешних утепляющих штукатурок вполне подходит.

Теплоизоляционная штукатурка своими руками для внутренних работ.

За квадратный метр отделки без наполнителя застройщики отдают меньше, чем за смесь с наполнителем. Поэтому некоторые, особенно «предприимчивые» строители, пытаются добавлять утепляющие подсыпки в готовые смеси. Это запрещено: такие манипуляции сильно ослабляют раствор, снижают его прочность и долговечность.

Чтобы снизить стоимость за кв. м. проще сделать замес самому, используя недорогие наполнители и вяжущее. Так глиняно-опилочный раствор практически бесплатен, хотя и не уступает по прочности гипсовому.

data-matched-content-ui-type="image_stacked" data-matched-content-rows-num="2" data-matched-content-columns-num="3" data-ad-format="autorelaxed">

теплопроводность штукатурки - Строительство и ремонт

Какова теплопроводность штукатурки разных типов

Отделочный материал, применяемый при наружных и внутренних работах, при капитальном строительстве и в косметическом ремонте – это штукатурка. Ее особенности зависят от вида, а их достаточно много, так как в смесь добавляются различные элементы, которые могут повышать ее основные качества либо добавлять эстетики покрытию. Посмотрим на некоторые виды, а также определимся, что такое теплопроводность штукатурки и какой показатель у различных типов материала.

Определение

Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим

Виды и теплопроводность

Естественно, теплопроводность цементно-песчаной штукатурки для внешних работ будет отличной, чем теплопроводность декоративной штукатурки. Поэтому более подробно посмотрим на общие особенности некоторых видов.

Цементно-песчаная

В зависимости от прочности покрытия, выбирается пропорции песка к цементу – 1:4 или 1:3. Это также зависит от марки цемента и фракции песка. Данный раствор практически не эластичный, поэтому его используют для минеральных поверхностей в качестве основного покрытия, а не заделывании щелей и трещин. При плотности слоя 1800 кг/м 3 коэффициент теплопроводности штукатурки будет равен 1,2.

Это материал для отделки внутренних поверхностей помещения. Его применение подходит, если температура окружающей среды колеблется от +5 до +25 градусов. Теплопроводность гипсовой штукатурки также зависит от плотности ее нанесения и возможных добавок. Обычно коэффициент теплопроводности гипсовой штукатурки при плотности материала 800кг/м 3 – 0.3.

Декоративная

Это исключительно отделочный материал для финишных работ. В его состав могут входить полимерные и синтетические смолы, различные примеси, дающие ей необходимые эстетические свойства. Декоративная штукатурка может применяться для отделки фасадов и внутренних частей здания. Фасадный состав с полимерными добавками при плотности в 1800 кг/м 3 имеет коэффициент теплопроводности 1.

Утепляющая

Это состав, в который входят различные добавки, предающие такие особенности, как:

В зависимости от добавок, коэффициент эластичности утепляющей штукатурки при плотности 500 кг/м 3 составляет 0,2.

Перлитовая

Это одна из разновидностей декоративных штукатурок, которая состоит из вулканических пород. В состав штукатурки входят особые кислые стекла, которые придают покрытию эстетичный внешний вид и добавляют различные практичные качества. Уникальная способность, которой обладает материал, – вспенивание и увеличение в размерах при нагревании. Надо сказать, что перлитовая штукатурка способна увеличиться в объеме в 10 раз. Благодаря этому получается внешне плотный, но достаточно легкий слой для основной поверхности. Плотность слоя может колебаться в пределах 350…800 кг/м 3 , за счет чего колеблется и теплопроводность штукатурки – 0,13…0,9.

Есть такое понятие «сухая штукатурка». Для незнающих в строительной терминологии это означает обыкновенный гипсокартон. По сути, листы состоят из тех же элементов, что и обычная гипсовая штукатурка (жидкая), за исключением того, что они высушены, спрессованы, сформованы и укреплены на картонных листах. Теплопроводность сухой штукатурки также будет зависеть от плотности материала. Средний коэффициент теплопроводности равен 0.21.

Известковая

Наиболее распространенный вид штукатурки для внутренних работ. Одним из главных ее качеств можно назвать чистую белизну, что отлично подходит под дальнейшие финишные работы, в особенности окрашивание или нанесение декоративных жидких обоев. Состоит смесь из гашеной извести, речного песка. Пропорции могут быть разными. Теплопроводность при плотности 1500 кг/м 3 будет равна 0.7.

Для каждой из смесей предусмотрены свои показатели, которые обозначаются на упаковке. Надо сказать, что бумажный мешок сухой смеси – инструкция не только по эксплуатации, но и составу. Там можно найти основные свойства каждого из составов.

Теплопроводность штукатурки

Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами). Надо помнить, что это только один из «источников» потерь тепла: хотя, например, вакуум имеет нулевую теплопроводность, энергия может передаваться излучением.

Основные значения коэффициентов теплопроводности я взял из СНиП II-3-79* (приложение 2) и из СП 50.13330.2012 СНиП 23-02-2003. Таблицу я дополнил значениями теплопроводности, которые взял с сайтов производителей строительных материалов (например, для ККБ, пеностекла и других).

Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности. Первое значение в таблице — это значение для сухого состояния. Второе и третье значения — это значения теплопроводности для условий эксплуатации А и Б согласно приложению С СП 50.13330.2012. Условия эксплуатации зависят от климата региона и влажности в помещении. Проще говоря А — это обычная «средняя» эксплуатация, а Б — это влажные условия.

Теплопроводность строительных материалов, их плотность и теплоемкость

Приведена обширная таблица теплопроводности строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!

Следует обратить внимание на величину теплопроводности строительных материалов в таблице, поскольку эта характеристика, наряду с их плотностью, является наиболее важной. Особенно теплопроводность важна для строительных материалов, применяемых в качестве теплоизоляции при утеплении строительных конструкций.

Теплопроводность строительных материалов существенно зависит от их пористости и плотности. Чем меньше плотность, тем ниже теплопроводность материала, поэтому низкая теплопроводность свойственна пористым и легким материалам (значения плотности строительных материалов, металлов и сплавов, продуктов и других веществ вы также сможете найти в подробной таблице плотности).

Например, в нашей таблице теплопроводности материалов и утеплителей можно выделить следующие строительные материалы с низким показателем коэффициента теплопроводности — это аэрогель (от 0,014 Вт/(м·град)), стекловата, пенополистирол пеноплэкс и вспененный каучук (от 0,03 Вт/(м·град)), теплоизоляция МБОР (от 0,038 Вт/(м·град)), газобетон и пенобетон (от 0,08 Вт/(м·град)).

Таблица теплопроводности строительных материалов: коэффициенты

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности строительных материалов: коэффициенты

В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

Таблица коэффициента теплопроводности строительных материалов:

Таблица теплопроводности строительных материалов: коэффициенты

Паропроницаемость и теплопроводность гипсовой штукатурки

Стоимость штукатурной смеси на основе гипса не намного отличается от обычной. Но у гипсовой штукатурки намного больше преимуществ, чем у цементной, она намного легче и прочнее. Также она очень удобна в использовании, так как на приготовление и нанесение раствора не уходит много времени. При хороших условиях в помещении она высыхает за двенадцать часов полностью.

Теплопроводность гипсовой штукатурки

Паропроницаемость гипсовой штукатурки нанесенной на поверхность зависит от замешивания. Но если сравнить ее с обычной, то проницаемость гипсовой штукатурки составляет 0,23 Вт/м×°С, а цементной достигает 0,6÷0,9 Вт/м×°С. Такие расчеты позволяю говорить о том что паропроницаемость гипсовой штукатурки намного ниже.

Благодаря низкой проницаемости снижется коэффициент теплопроводности гипсовой штукатурки, что позволяет увеличить тепло в помещении. Гипсовая штукатурка отлично удерживает тепло в отличии от :

Благодаря низкой теплопроводности гипсовой штукатурки стены остаются теплыми даже в сильный мороз снаружи помещения.

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

Рассчитывать придется все ограждающие конструкции

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Коэффициенты теплопроводности строительных материалов в таблицах

Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.

Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.

Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Понятие теплопроводности

Теплопроводность – это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:

Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности. Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам. А главное – к большим расходам на отопление.

Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.

Коэффициенты теплопроводности различных материалов, таблица

Таблица теплопроводности строительных материалов

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Таблица Теплопроводности строительных материалов

Вид строительного материала Коэффициент теплопроводности материалов,
Вт/(м·°C)
Строительный материал в сухом состоянии

Условия А
для материала
(«обычные»)

Условия Б
для материала («влажные»)
Теплопроводность Шерстяного войлока 0,045
Теплопроводность Цементно-песчаного раствора  0,58 0,76 0,93
Теплопроводность Известково-песчаного раствора 0,47 0,7 0,81
Теплопроводность обычной Гипсовой штукатурки 0,25
Теплопроводность Ваты Минеральной, каменной.
При плотности - 180 кг/куб.м.
0,038 0,045 0,048
Теплопроводность Ваты Минеральной, каменной.
При плотности - 140-175 куб.м.
0,037 0,043 0,046
Теплопроводность Ваты Минеральной, каменной. 
При плотности 80-125 куб.м.
0,036 0,042 0,045
Теплопроводность Ваты Минеральной, каменной.
При плотности - 40-60 куб.м.
0,035 0,041 0,044
Теплопроводность Ваты Минеральной, каменной.
При плотности - 25-50 куб.м.
0,036 0,042 0,045
Теплопроводность Ваты Минеральной, каменной.
При плотности - 85 куб.м.
0,044 0,046 0,05
Теплопроводность Ваты Минеральной, каменной.
При плотности - 75 куб.м.
0,04 0,042 0,047
Теплопроводность Ваты Минеральной, стеклянной.
При плотности - 60 куб.м.
0,038 0,04 0,045
Теплопроводность Ваты Минеральной, стеклянной.
При плотности - 45 куб.м.
0,039 0,041 0,045
Теплопроводность Ваты Минеральной, стеклянной. 
При плотности - 35 куб.м.
0,039 0,041 0,046
Теплопроводность Ваты Минеральной, стеклянной.
При плотности - 30 куб.м.
0,04 0,042 0,046
Теплопроводность Ваты Минеральной, стеклянной.
При плотности - 20 куб.м.
0,04 0,043 0,048
Теплопроводность Ваты Минеральной, стеклянной.
При плотности - 17 куб.м.
0,044 0,047 0,053
Теплопроводность Ваты Минеральной, стеклянной.
При плотности - 15 куб.м.
0,046 0,049 0,055
Газобетон и пенобетон на цементном вяжущем портландцементе. При плотности - 1000 куб.м. 0,29 0,38 0,43
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности - 800 куб.м.
0,21 0,33 0,37
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности - 600 куб.м.
0,14 0,22 0,26
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности - 400 куб.м.
0,11 0,14 0,15
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности - 1000 куб.м.
0,31 0,48 0,55
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности - 800 куб.м.
0,23 0,39 0,45
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности - 600 куб.м.
0,15 0,28 0,34
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности - 400 куб.м.
0,13 0,22 0,28
Теплопроводность Сосны и ели (волокна поперек). 0,09 0,14 0,18
Теплопроводность Сосны и ели (волокна вдоль). 0,18 0,29 0,35
Теплопроводность Дуба (волокна поперек). 0,10 0,18 0,23
Теплопроводность Дуба (волокна вдоль). 0,23 0,35 0,41
Теплопроводность Меди 382 - 390
Теплопроводность Алюминия 202 - 236
Теплопроводность Латуни 97 - 111
Теплопроводность Железа 92
Теплопроводность Олова 67
Теплопроводность Стали 47
Теплопроводность Стекла оконного 0,76
Теплопроводность Аргона 0,0177
 Теплопроводность Ксенона 0,0057
Теплопроводность Арболита 0,07 - 0,17
Теплопроводность Пробкового дерева 0,035
Теплопроводность Железобетона.
При плотности - 2500 куб.м.
1,69 1,92 2,04
Теплопроводность Бетона на щебне илигравии.
При плотности - 2400 куб.м.
1,51 1,74 1,86
Теплопроводность Керамзитобетона.
При плотности - 1800 куб.м.
0,66 0,80 0,92
Теплопроводность Керамзитобетона. 
При плотности - 1600 куб.м.
0,58 0,67 0,79
Теплопроводность Керамзитобетона. 
При плотности - 1400 куб.м.
0,47 0,56 0,65
Теплопроводность Керамзитобетона. 
При плотности - 1200 куб.м.
0,36 0,44 0,52
Теплопроводность Керамзитобетона. 
При плотности - 1000 куб.м.
0,27 0,33 0,41
Теплопроводность Керамзитобетона. 
При плотности - 800 куб.м.
0,21 0,24 0,31
Теплопроводность Керамзитобетона. 
При плотности - 600 куб.м.
0,16 0,2 0,26
Теплопроводность Керамзитобетона. 
При плотности - 500 куб.м.
0,14 0,17 0,23
Теплопроводность Кирпича керамический полнотелого. При кладке на цементно-песчанный раствор. 0,56 0,7 0,81

Теплопроводность Кирпича силикатного. При кладке на цементно-песчанный раствор.

0,70 0,76 0,87
Теплопроводность Кирпича керамического пустотелого (плотность 1400 куб.м. с учетом пустот). При кладке на цементно-песчанный раствор. 0,47 0,58 0,64
Теплопроводность Кирпича керамического пустотелого. При плотности- 1300 куб.м. с учетом пустот. При кладке на цементно-песчанный раствор. 0,41 0,52 0,58
Теплопроводность Кирпича керамического пустотелого. При плотности- 1000 куб.м. с учетом пустот. При кладке на цементно-песчанный раствор. 0,35 0,47 0,52
Теплопроводность Кирпича силикатного, 11 пустот (плотность 1500 куб.м.). При кладке на цементно-песчанный раствор. 0,64 0,7 0,81
Теплопроводность Кирпича силикатного, 14 пустот. Плотность 1400 куб.м.. При кладке на цементно-песчанный раствор. 0,52 0,64 0,76
Теплопроводность Гранита 3,49 3,49 3,49
 Теплопроводность Мрамора 2,91 2,91 2,91
Теплопроводность Известняка.
При плотности - 2000 куб.м.
0,93 1,16 1,28
Теплопроводность Известняка.
При плотности - 1800 куб.м.
0,7 0,93 1,05

Теплопроводность Известняка.
При плотности - 1600 куб.м.

0,58 0,73 0,81
Теплопроводность Известняка. При плотности - 1400 куб.м. 0,49 0,56 0,58
Теплопроводность Туфа.
При плотности - 2000 куб.м.
0,76 0,93 1,05
Теплопроводность Туфа.
При плотности - 1800 куб.м.
0,56 0,7 0,81
Теплопроводность Туфа.
При плотности - 1600 куб.м.
0,41 0,52 0,64
Теплопроводность Туфа.
При плотности - 1400 куб.м.
0,33 0,43 0,52
Теплопроводность Туфа.
При плотности - 1200 куб.м.
0,27 0,35 0,41
Теплопроводность Туфа.
При плотности - 1000 куб.м.
0,21 0,24 0,29
Теплопроводность Песок строительного (сухого, в соответствии с ГОСТ 8736-77). При плотности - 1600 куб.м. 0,35
Теплопроводность - Фанера клееная 0,12 0,15 0,18
Теплопроводность ДСП, ДВП.
При плотности - 1000 куб.м.
0,15 0,23 0,29
Теплопроводность ДСП, ДВП.
При плотности - 800 куб.м.
0,13 0,19 0,23
Теплопроводность ДСП, ДВП.
При плотности - 600 куб.м.
0,11 0,13 0,16
Теплопроводность ДСП, ДВП.
При плотности - 400 куб.м.
0,08 0,11 0,13
Теплопроводность ДСП, ДВП.
При плотности - 200 куб.м.
0,06 0,07 0,08
Теплопроводность Пакли 0,05 0,06 0,07
Теплопроводность Гипсокартона. Листы гипсовые обшивочные. При плотности - 1050 куб.м. 0,15 0,34 0,36
Теплопроводность Гипсокартона. Листы гипсовые обшивочные. При плотности - 800 куб.м. 0,15 0,19 0,21

Теплопроводность Линолеума из ПВХ на теплоизолирующей основе. 
При плотности - 1800 куб.м.

0,38 0,38 0,38
Теплопроводность Линолеума из ПВХ на теплоизолирующей основе.
При плотности - 1600 куб.м.
0,33 0,33 0,33

Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности - 1800 куб.м.

0,35 0,35 0,35
Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности - 1600 куб.м. 0,29 0,29 0,29
Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности - 1400 куб.м. 0,2 0,23 0,23
Теплопроводность, Эковата 0,037 - 0,042
Телопропводность Гравия и Керамзита.
При плотности - 250 куб.м.
0,099 - 0,1 0,11 0,12
Телопроводность Гравия и Керамзита.
При плотности - 300 куб.м.
0,108 0,12 0,13
Телопроводность Гравия и Керамзита.
При плотности - 350 куб.м.
0,115 - 0,12 0,125 0,14
Телопроводность Гравия и Керамзита.
При плотности - 400 куб.м.
0,12 0,13 0,145
Телопроводность Гравия и Керамзита.
При плотности - 450 куб.м.
0,13 0,14 0,155
Телопроводность Гравия и Керамзита.
При плотности - 500 куб.м.
0,14 0,15 0,165
Телопроводность Гравия и Керамзита.
При плотности - 600 куб.м.
0,14 0,17 0,19
Телопроводность Гравия и Керамзита.
При плотности - 800 куб.м.
0,18
Теплопроводность Гипсоплита.
При плотности - 1350 куб.м..
0,35 0,50 0,56
Теплопроводность Гипсоплита.
При плотности - 1100 куб.м.
0,23 0,35 0,41

Теплопроводность штукатурки и коэффициент: гипсовой, декоративной, цементной

Отделочный материал, применяемый при наружных и внутренних работах, при капитальном строительстве и в косметическом ремонте – это штукатурка. Ее особенности зависят от вида, а их достаточно много, так как в смесь добавляются различные элементы, которые могут повышать ее основные качества либо добавлять эстетики покрытию. Посмотрим на некоторые виды, а также определимся, что такое теплопроводность штукатурки и какой показатель у различных типов материала.

Декоративная штукатурка

Определение

Теплопроводностью материала называют перенос внутренней энергии от более нагретых частей к менее нагретым. Механизм переноса тепла отличается в зависимости от агрегатного состояния вещества, а также распределения температур по поверхности материала. Иными словами, способность тела проводить тепло — и есть теплопроводность. Определяется она количеством теплоты, которое способно проходить через определенную толщину материала, на определенном участке за обозначенное время (естественно, для удобства расчетов все показатели равны единице). Но штукатурки отличаются слоем нанесения — значит и показатель будет другим

Виды и теплопроводность

Естественно, теплопроводность цементно-песчаной штукатурки для внешних работ будет отличной, чем теплопроводность декоративной штукатурки. Поэтому более подробно посмотрим на общие особенности некоторых видов.

Цементно-песчаная

В зависимости от прочности покрытия, выбирается пропорции песка к цементу – 1:4 или 1:3. Это также зависит от марки цемента и фракции песка. Данный раствор практически не эластичный, поэтому его используют для минеральных поверхностей в качестве основного покрытия, а не заделывании щелей и трещин. При плотности слоя 1800 кг/м3 коэффициент теплопроводности штукатурки будет равен 1,2.

Гипсовая

Это материал для отделки внутренних поверхностей помещения. Его применение подходит, если температура окружающей среды колеблется от +5 до +25 градусов. Теплопроводность гипсовой штукатурки также зависит от плотности ее нанесения и возможных добавок. Обычно коэффициент теплопроводности гипсовой штукатурки при плотности материала 800кг/м3 – 0.3.

Декоративная

Это исключительно отделочный материал для финишных работ. В его состав могут входить полимерные и синтетические смолы, различные примеси, дающие ей необходимые эстетические свойства. Декоративная штукатурка может применяться для отделки фасадов и внутренних частей здания. Фасадный состав с полимерными добавками при плотности в 1800 кг/м3 имеет коэффициент теплопроводности 1.

Утепляющая

Это состав, в который входят различные добавки, предающие такие особенности, как:

В зависимости от добавок, коэффициент эластичности утепляющей штукатурки при плотности 500 кг/м3 составляет 0,2.

Перлитовая

Это одна из разновидностей декоративных штукатурок, которая состоит из вулканических пород. В состав штукатурки входят особые кислые стекла, которые придают покрытию эстетичный внешний вид и добавляют различные практичные качества. Уникальная способность, которой обладает материал, – вспенивание и увеличение в размерах при нагревании. Надо сказать, что перлитовая штукатурка способна увеличиться в объеме в 10 раз. Благодаря этому получается внешне плотный, но достаточно легкий слой для основной поверхности. Плотность слоя может колебаться в пределах 350…800 кг/м3, за счет чего колеблется и теплопроводность штукатурки – 0,13…0,9.

Сухая

Есть такое понятие «сухая штукатурка». Для незнающих в строительной терминологии это означает обыкновенный гипсокартон. По сути, листы состоят из тех же элементов, что и обычная гипсовая штукатурка (жидкая), за исключением того, что они высушены, спрессованы, сформованы и укреплены на картонных листах. Теплопроводность сухой штукатурки также будет зависеть от плотности материала. Средний коэффициент теплопроводности равен 0.21.

Известковая

Наиболее распространенный вид штукатурки для внутренних работ. Одним из главных ее качеств можно назвать чистую белизну, что отлично подходит под дальнейшие финишные работы, в особенности окрашивание или нанесение декоративных жидких обоев. Состоит смесь из гашеной извести, речного песка. Пропорции могут быть разными. Теплопроводность при плотности 1500 кг/м3 будет равна 0.7.

Для каждой из смесей предусмотрены свои показатели, которые обозначаются на упаковке. Надо сказать, что бумажный мешок сухой смеси – инструкция не только по эксплуатации, но и составу. Там можно найти основные свойства каждого из составов.

Смотрите также:

Теплопроводность строительных материалов (таблица и понятие)

Теплоизоляционные материалы
1 Плиты из пенополистиролаДо 100,0492100,0520,059
2 То же 10 - 120,0412100,0440,050
3 " 12 - 140,0402100,0430,049
4 "14-150,0392100,0420,048
5 "15-170,0382100,0410,047
6 "17-200,0372100,0400,046
7 "20-250,0362100,0380,044
8 "25-300,0362100,0380,044
9 "30-350,0372100,0400,046
10 "35-380,0372100,0400,046
11 Плиты из пенополистирола с графитовыми добавками15-200,0332100,0350,040
12 То же20-250,0322100,0340,039
13 Экструдированный пенополистирол25-330,029120,0300,031
14 То же35-450,030120,0310,032
15 Пенополиуретан800,041250,0420,05
16 То же600,035250,0360,041
17 "400,029250,0310,04
18 Плиты из резольно-фенолформальдегидного пенопласта800,0445200,0510,071
19 То же500,0415200,0450,064
20 Перлитопластбетон2000,041230,0520,06
21 То же1000,035230,0410,05
22 Перлитофосфогелевые изделия3000,0763120,080,12
23 То же2000,0643120,070,09
24 Теплоизоляционные изделия из вспененного синтетического каучука60-950,0345150,040,054
25 Плиты минераловатные из каменного волокна1800,038250,0450,048
26 То же40-1750,037250,0430,046
27 "80-1250,036250,0420,045
28 "40-600,035250,0410,044
29 "25-500,036250,0420,045
30 Плиты из стеклянного штапельного волокна850,044250,0460,05
31 То же750,04250,0420,047
32 "600,038250,040,045
33 "450,039250,0410,045
34 "350,039250,0410,046
35 "300,04250,0420,046
36 "200,04250,0430,048
37 "170,044250,0470,053
38 "150,046250,0490,055
39 Плиты древесно-волокнистые и древесно-стружечные10000,1510120,230,29
40 То же8000,1310120,190,23
41 "6000,1110120,130,16
42 "4000,0810120,110,13
43 Плиты древесно-волокнистые и древесно-стружечные2000,0610120,070,08
44 Плиты фибролитовые и арболит на портландцементе5000,09510150,150,19
45 То же4500,0910150,1350,17
46 "4000,0810150,130,16
47 Плиты камышитовые3000,0710150,090,14
48 То же2000,0610150,070,09
49 Плиты торфяные теплоизоляционные3000,06415200,070,08
50 То же2000,05215200,060,064
51 Пакля1500,057120,060,07
52 Плиты из гипса13500,35460,500,56
53 То же11000,23460,350,41
54 Листы гипсовые обшивочные (сухая штукатурка)10500,15460,340,36
55 То же8000,15460,190,21
56 Изделия из вспученного перлита на битумном связующем3000,087120,090,099
57 То же2500,082120,0850,099
58 "2250,079120,0820,094
59 "2000,076120,0780,09
Засыпки
60 Гравий керамзитовый6000,14230,170,19
61 То же5000,14230,150,165
62 "4500,13230,140,155
63 Гравий керамзитовый4000,12230,130,145
64 То же3500,115230,1250,14
65 "3000,108230,120,13
66 "2500,099230,110,12
67 "2000,090230,100,11
68 Гравий шунгизитовый (ГОСТ 32496)7000,16240,180,21
69 То же6000,13240,160,19
70 "5000,12240,150,175
71 "4500,11240,140,16
72 "4000,11240,130,15
73 Щебень шлакопемзовый и аглопоритовый (ГОСТ 32496)8000,18230,210,26
74 То же7000,16230,190,23
75 "6000,15230,180,21
76 "5000,14230,160,19
77 "4500,13230,150,17
78 "4000,122230,140,16
79 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820)7000,14230,170,19
80 То же6000,13230,160,18
81 "5000,12230,140,15
82 "4000,10230,130,14
83 Щебень и песок из перлита вспученного (ГОСТ 10832)5000,09120,10,11
84 То же4000,076120,0870,095
85 "3500,07120,0810,085
86 "3000,064120,0760,08
87 Вермикулит вспученный (ГОСТ 12865)2000,065130,080,095
88 То же1500,060130,0740,098
89 "1000,055130,0670,08
90 Песок для строительных работ (ГОСТ 8736)16000,35120,470,58
Конструкционные и конструкционно-теплоизоляционные материалы
Бетоны на заполнителях из пористых горных пород
91 Туфобетон18000,647100,870,99
92 То же16000,527100,70,81
93 "14000,417100,520,58
94 "12000,327100,410,47
95 Бетон на литоидной пемзе16000,52460,620,68
96 То же14000,42460,490,54
97 "12000,30460,40,43
98 "10000,22460,30,34
99 "8000,19460,220,26
100 Бетон на вулканическом шлаке16000,527100,640,7
101 То же14000,417100,520,58
102 "12000,337100,410,47
103 "10000,247100,290,35
104 "8000,207100,230,29
Бетоны на искусственных пористых заполнителях
105 Керамзитобетон на керамзитовом песке18000,665100,800,92
106 То же16000,585100,670,79
107 "14000,475100,560,65
108 "12000,365100,440,52
109 "10000,275100,330,41
110 "8000,215100,240,31
111 "6000,165100,20,26
112 "5000,145100,170,23
113 Керамзитобетон на кварцевом песке с умеренной (до Vв=12%) поризацией)12000,41480,520,58
114 То же10000,33480,410,47
115 "8000,23480,290,35
116 Керамзитобетон на перлитовом песке10000,289130,350,41
117 То же8000,229130,290,35
118 Керамзитобетон беспесчаный7000,1353,560,1450,155
119 То же6000,1303,560,1400,150
120 "5000,1203,560,1300,140
121 "4000,1053,560,1150,125
122 "3000,0953,560,1050,110
123 Шунгизитобетон14000,49470,560,64
124 То же12000,36470,440,5
125 "10000,27470,330,38
126 Перлитобетон12000,2910150,440,5
127 То же10000,2210150,330,38
128 "8000,1610150,270,33
129 Перлитобетон6000,1210150,190,23
130 Бетон на шлакопемзовом щебне18000,52580,630,76
131 То же16000,41580,520,63
132 "14000,35580,440,52
133 "12000,29580,370,44
134 "10000,23580,310,37
135 Бетон на остеклованном шлаковом гравии18000,46460,560,67
136 То же16000,37460,460,55
137 "14000,31460,380,46
138 "12000,26460,320,39
139 "10000,21460,270,33
140 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках18000,58580,70,81
141 То же16000,47580,580,64
142 "14000,41580,520,58
143 "12000,36580,490,52
144 Аглопоритобетон и бетоны на заполнителях из топливных шлаков18000,7580,850,93
145 То же16000,58580,720,78
146 "14000,47580,590,65
147 "12000,35580,480,54
148 "10000,29580,380,44
149 Бетон на зольном обжиговом и безобжиговом гравии14000,47580,520,58
150 То же12000,35580,410,47
151 "10000,24580,30,35
152 Вермикулитобетон8000,218130,230,26
153 То же6000,148130,160,17
154 "4000,098130,110,13
155 "3000,088130,090,11
Бетоны особо легкие на пористых заполнителях и ячеистые
156 Полистиролбетон на портландцементе (ГОСТ 32929)6000,145480,1750,20
157 То же5000,125480,140,16
158 "4000,105480,120,135
159 "3500,095480,110,12
160 "3000,085480,090,11
161 "2500,075480,0850,09
162 "2000,065480,070,08
163 "1500,055480,0570,06
164 Полистиролбетон модифицированный на шлакопортландцементе5000,123,570,130,14
165 То же4000,093,570,100,11
166 "3000,083,570,080,09
167 "2500,073,570,070,08
168 "2000,063,570,060,07
169 Газо- и пенобетон на цементном вяжущем10000,298120,380,43
170 То же8000,218120,330,37
171 "6000,148120,220,26
172 "4000,118120,140,15
173 Газо- и пенобетон на известняковом вяжущем10000,3112180,480,55
174 То же8000,2311160,390,45
175 "6000,1511160,280,34
176 "5000,1311160,220,28
177 Газо- и пенозолобетон на цементном вяжущем12000,3715220,600,66
178 То же10000,3215220,520,58
179 "8000,2315220,410,47
Кирпичная кладка из сплошного кирпича
180 Глиняного обыкновенного на цементно-песчаном растворе18000,56120,70,81
181 Глиняного обыкновенного на цементно-шлаковом растворе17000,521,530,640,76
182 Глиняного обыкновенного на цементно-перлитовом растворе16000,47240,580,7
183 Силикатного на цементно-песчаном растворе18000,7240,760,87
184 Трепельного на цементно-песчаном растворе12000,35240,470,52
185 То же10000,29240,410,47
186 Шлакового на цементно-песчаном растворе15000,521,530,640,7
Кирпичная кладка из пустотного кирпича
187 Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе16000,47120,580,64
188 Керамического пустотного плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе14000,41120,520,58
189 Керамического пустотного плотностью 1000 кг/м3  (брутто) на цементно-песчаном растворе12000,35120,470,52
190 Силикатного одиннадцатипустотного на цементно-песчаном растворе15000,64240,70,81
191 Силикатного четырнадцатипустотного на цементно-песчаном растворе14000,52240,640,76
Дерево и изделия из него
192 Сосна и ель поперек волокон5000,0915200,140,18
193 Сосна и ель вдоль волокон5000,1815200,290,35
194 Дуб поперек волокон7000,110150,180,23
195 Дуб вдоль волокон7000,2310150,350,41
196 Фанера клееная6000,1210130,150,18
197 Картон облицовочный10000,185100,210,23
198 Картон строительный многослойный6500,136120,150,18
Конструкционные материалы
Бетоны
199 Железобетон25001,69231,922,04
200 Бетон на гравии или щебне из природного камня24001,51231,741,86
201 Раствор цементно-песчаный18000,58240,760,93
202 Раствор сложный (песок, известь, цемент)17000,52240,70,87
203 Раствор известково-песчаный16000,47240,70,81
Облицовка природным камнем
204 Гранит, гнейс и базальт28003,49003,493,49
205 Мрамор28002,91002,912,91
206 Известняк20000,93231,161,28
207 То же18000,7230,931,05
208 "16000,58230,730,81
209 "14000,49230,560,58
210 Туф20000,76350,931,05
211 То же18000,56350,70,81
212 "16000,41350,520,64
213 "14000,33350,430,52
214 "12000,27350,350,41
215 "10000,21350,240,29
Материалы кровельные, гидроизоляционные, облицовочные и рулонные покрытия для полов
216 Листы асбестоцементные плоские18000,35230,470,52
217 То же16000,23230,350,41
218 Битумы нефтяные строительные и кровельные14000,27000,270,27
219 То же12000,22000,220,22
220 "10000,17000,170,17
221 Асфальтобетон21001,05001,051,05
222 Рубероид, пергамин, толь6000,17000,170,17
223 Пенополиэтилен260,048120,0490,050
224 То же300,049120,0500,050
225 Линолеум поливинилхлоридный на теплоизолирующей подоснове18000,38000,380,38
226 То же16000,33000,330,33
227 Линолеум поливинилхлоридный на тканевой основе18000,35000,350,35
228 То же16000,29000,290,29
229 "14000,2000,230,23
Металлы и стекло
230 Сталь стержневая арматурная785058005858
231 Чугун720050005050
232 Алюминий260022100221221
233 Медь850040700407407
234 Стекло оконное25000,76000,760,76
235 Плиты из пеностекла80-1000,041110,0420,042
236 То же101-1200,046110,0470,047
237 То же121- 1400,050110,0510,051
238 То же141- 1600,052110,0530,053
239 То же161- 2000,060110,0610,061

Теплопроводность выбранных материалов и газов

Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

"количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния"

Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

900 900 78 0,1 - 0,22 0,606
Теплопроводность
- k -
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Acetals 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Бальсовое дерево 0,048
Битум
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 - 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17
Доменный газ (газ) 0,02
Шкала котла 1,2 - 3,5
Бор 25
Латунь
Бризовый блок 0.10 - 0,20
Кирпич плотный 1,31
Кирпич противопожарный 0,47
Кирпич изоляционный 0,15
Кирпич обыкновенный (Строительный кирпич ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Руда бурого железа 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 - 0,33
Нитрат целлюлозы, целлулоид 0,12 - 0,21
Цемент, Портленд 0,29
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром никелевая сталь 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 - 1,8
Глина насыщенная 0,6 - 2,5
Уголь 0,2
Кобальт
Треск (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 - 0,3
Бетон, средний 0.4 - 0,7
Бетон, плотный 1,0 - 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
Утеплитель из шерсти 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17
11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидный 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1.05
Стекло, жемчуг, жемчуг 0,18
Стекло, жемчуг, насыщенное 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 - 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Твердая древесина (дуб, клен ...) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Чугун 47-58
Изоляционные материалы 0,035 - 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0 .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
, сухой 0,14
Известняк 1,26 - 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 - 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, Нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенолформальдегид 0,13 - 0,25
Фосфорбронза 110 Pinchbe20 159
Шаг 0,13
Карьерный уголь 0.24
Штукатурка светлая 0,2
Штукатурка, металлическая планка 0,47
Штукатурка песочная 0,71
Штукатурка, деревянная планка 0,28
Пластилин 0,65 - 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэстер
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 - 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 - 0,25
Полипропилен
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 - 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 - 0,25
Песок влажный 0,25 - 2
Песок насыщенный 2-4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Силиконовая литая смола 0,15 - 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 - 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими материя 0,15 - 2
Грунт насыщенный 0,6 - 4

Припой 50-50

50

Сажа

0.07

Насыщенный пар

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая
Изоляция соломенной плиты, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 - 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Лес, ясень 0,16
Лес, береза ​​ 0,14
Лес, лиственница 0,12
Лес, клен 0,16
Древесина дубовая 0,17
Древесина осина 0,14
Древесина оспа 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Пенополиуретан 0.021
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 - 0,15
Ксенон (газ) 0,0051
Цинк

1) Асбест плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример - кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

Кондуктивная теплопередача через стенку кастрюли может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности ( м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 - t 2 = разница температур ( o C, o F)

s = толщина стенки (м, фут)
9000 8

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

с = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 - t 2 = разница температур ( o C, o F)

Примечание! - общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм - разность температур 80 o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм - перепад температур 80 o C

Теплопроводность для нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

.

Теплопроводность> ENGINEERING.com

ТИПИЧНЫЕ СВОЙСТВА ПРИ 300 K

ОПИСАНИЕ / СОСТАВ

ПЛОТНОСТЬ, p (кг / м3)

ТЕПЛОПРОВОДНОСТЬ, k (Вт / м x K)

УДЕЛЬНАЯ ТЕПЛО, с.п.
(Дж / кг x К)

Строительные плиты
Плита асбестоцементная

1 920

0.58

Гипс или гипсокартон

800

0,17

Фанера

545

0.12

1,215

Обшивка обычной плотности

290

0,055

1,300

Акустическая плитка

290

0.058

1,340

Оргалит, сайдинг

640

0,094

1,170

Оргалит высокой плотности

1,010

0.15

1,380

ДСП низкой плотности

590

0,078

1,300

ДСП высокой плотности

1 000 900 13

0.170

1,300

Вудс
Лиственные породы (дуб, клен)

720

0.16

1,255

Хвойные породы (пихта, сосна)

510

0,12

1,380

Кладочные материалы

Цементный раствор

1,860

0.72

780

Кирпич обыкновенный

1 920

0,72

835

Кирпич лицевой

2,083

1.3

Плитка глиняная пустотелая
1 ячейка глубиной, толщиной 10 см

0.52

глубиной 3 ячейки, толщиной 30 см

0,69

Бетонный блок, 3 ядра овальной формы
Песок / гравий толщиной 20 см

1.0

Заряженный агрегат толщиной 20 см

0,67

Бетонный блок, прямоугольная сердцевина

2 жилы, толщиной 20 см, 16 кг

1.1

То же с заполненными жилами

0.60

Штукатурные материалы
Штукатурка цементная, песчаный заполнитель

1,860

0.72

Гипсовая штукатурка, песчаный заполнитель

1,680

0,22

1,085

Гипсовая штукатурка, крошка вермикулит

720

0.25

.

Теплопроводность> ENGINEERING.com

ТИПИЧНЫЕ СВОЙСТВА ПРИ 300 K

ОПИСАНИЕ / СОСТАВ

ПЛОТНОСТЬ, p (кг / м3)

ТЕПЛОПРОВОДНОСТЬ, k (Вт / м x K)

УДЕЛЬНАЯ ТЕПЛО, с.п.
(Дж / кг x К)

Строительные плиты
Плита асбестоцементная

1 920

0.58

Гипс или гипсокартон

800

0,17

Фанера

545

0.12

1,215

Обшивка обычной плотности

290

0,055

1,300

Акустическая плитка

290

0.058

1,340

Оргалит, сайдинг

640

0,094

1,170

Оргалит высокой плотности

1,010

0.15

1,380

ДСП низкой плотности

590

0,078

1,300

ДСП высокой плотности

1 000 900 13

0.170

1,300

Вудс
Лиственные породы (дуб, клен)

720

0.16

1,255

Хвойные породы (пихта, сосна)

510

0,12

1,380

Кладочные материалы

Цементный раствор

1,860

0.72

780

Кирпич обыкновенный

1 920

0,72

835

Кирпич лицевой

2,083

1.3

Плитка глиняная пустотелая
1 ячейка глубиной, толщиной 10 см

0.52

глубиной 3 ячейки, толщиной 30 см

0,69

Бетонный блок, 3 ядра овальной формы
Песок / гравий толщиной 20 см

1.0

Заряженный агрегат толщиной 20 см

0,67

Бетонный блок, прямоугольная сердцевина

2 жилы, толщиной 20 см, 16 кг

1.1

То же с заполненными жилами

0.60

Штукатурные материалы
Штукатурка цементная, песчаный заполнитель

1,860

0.72

Гипсовая штукатурка, песчаный заполнитель

1,680

0,22

1,085

Гипсовая штукатурка, крошка вермикулит

720

0.25

.

Хозяйственные постройки ... - Ч4 Строительные материалы: Бетонные блоки-песчано-цементные блоки - Строительный раствор-Ферроцемент-Фибра

Хозяйственные постройки ... - Ч4 Строительные материалы: Бетонные блоки-песчано-цементные блоки - Раствор-Ферроцемент-Фибра - армированные бетон-металлы-строительная фурнитура-стекло-пластик-резина
Бетонные блоки - песок - цементные блоки

Содержание - Предыдущая - Следующая

Строить из бетонных блоков быстрее, чем из кирпича и количество строительного раствора сокращается до менее чем половины.Если лицо применяется снаряд, при котором раствор укладывается только по края блоков расход раствора снижается на еще 50%. Однако общее количество цемента, необходимого для блоков и миномета намного больше, чем требуется для миномета в кирпичная стена.

Бетонные блоки часто изготавливаются из бетона 1: 3: 6 с заполнитель до 10 мм или цементно-песчаная смесь с соотношение 1: 7, 1: 8 или 1: 9. Эти смеси при правильном отверждении дают бетонные блоки имеют прочность на сжатие, значительно превышающую требуется в одноэтажном доме.Блоки могут быть цельными, ячеистый или полый. Ячеистые блоки имеют полости с одного конца. закрытые, в то время как в полых блоках полости проходят. Легкий заполнитель, такой как треснувшая пемза, иногда используемый.

Блоки изготавливаются ряда согласованных размеров, актуальные размеры примерно на 10 мм меньше, чтобы учесть толщину миномет.

Производство блоков

Блоки можно изготавливать на простой блочной машине управляется двигателем или вручную.Их также можно сделать, используя простые деревянные формочки на платформе или полу. Форма может быть облицованы сетчатыми стальными пластинами для предотвращения повреждений во время трамбовки и для уменьшения износа формы. В крупносерийном производстве стали часто используются формы. Деревянная форма изначально смазана маслом. на ночь и не нужно смазывать каждый раз при наполнении. это Достаточно протереть тканью. Бетон, жесткий или пластичной консистенции, укладывается в форму слоями и каждый слой уплотняется трамбовкой весом 3 кг.

Форма на Рис. 3.30 имеет крышку, сделанную так, чтобы она могла проходить через через остальную часть формы. Слегка заостренные стороны можно снимается, подняв ручки, удерживая крышку одна нога.

Рисунок 3.30 Деревянная форма для монолитных бетонных блоков.

Форма, показанная на рис. 3.31, имеет стальную пластину, разрезанную на форма блока, который закрывается крышкой и удерживается детали, образующие полые части, извлекаются.Затем болты ослабляются. и боковые стороны формы удаляются быстрым движением. Все части формы должны быть слегка сужены, чтобы их можно было легко снят с блока.

На следующий день после изготовления блоков вода опрыскивают их на две недели во время отверждения. Через 48 часов блоки можно снимать для штабелирования, но смачивание продолжается. После отверждения блоки просушиваются. Если влажные блоки положить в стены, они будут давать усадку и вызывать трещины.Чтобы обеспечить максимум высыхая, блоки укладываются внахлест, подвергаются воздействию преобладающий ветер, а в случае пустотелых блоков - полости, проложенные горизонтально, чтобы образовать непрерывный проход для циркулирующий воздух.

Блоки декоративные и вентиляционные

Декоративные бетонные или песчано-цементные блоки могут служить нескольким целей:

  • Обеспечьте свет и безопасность без установки окон, или ставни.
  • Обеспечьте постоянную вентиляцию.
  • Придает привлекательный внешний вид.

Кроме того, некоторые из них предназначены для защиты от дождя, а другие включить защиту от комаров.

Блоки простой формы можно изготовить в деревянной форме путем вставка кусочков дерева для получения желаемой формы, но больше сложные конструкции обычно требуют профессионально сделанной стали форма.

Рисунок 3.31 Форма для пустотелые или ячеистые бетонные блоки.

Миномет

Раствор представляет собой пластичную смесь воды и вяжущих материалов. используется для соединения бетонных блоков, кирпичей или других блоков кладки.

Желательно, чтобы раствор удерживал влагу, был достаточно пластичным. приклеить шпатель и блоки или кирпичи и, наконец, развивать соответствующую прочность без трещин.

Миномет не должен быть сильнее, чем соединяемые части.по факту в блоках или кирпичах с большей вероятностью появятся трещины, если раствор слишком крепкий.

Существует несколько типов минометов, каждый из которых подходит для конкретных приложений и различной стоимости. Большинство из них строительные растворы включают песок в качестве ингредиента. Во всех случаях песок должен быть чистым, не содержать органических материалов, иметь хорошую сортировку ( разнообразие размеров) и не превышает 3 мм ила в осадке контрольная работа. В большинстве случаев размер частиц не должен превышать 3 мм, поскольку раствор будет «жестким» и с ним будет сложно работать.

Известковый раствор обычно смешивают из 1 части извести с 3 частями песка. Два доступны виды извести. Гидравлическая известь быстро затвердевает и следует использовать в течение часа. Подходит как для выше, так и для подземные приложения. Для негидравлической извести требуется воздух для затвердевает и может использоваться только над землей. Если сглаживать пока стоя, ворс такого известкового раствора может храниться несколько дней.

Рисунок 3.32 Вентиляция и декоративные бетонные блоки.

Цементный раствор прочнее и водостойче, чем леска раствор, но с ним трудно работать, потому что он не жирный или пластик и отваливается от блоков или кирпичей во время размещение. К тому же цементный раствор дороже других типы. Следовательно, он используется только в нескольких приложениях, таких как гидроизоляция или в некоторых ограниченных местах, где тяжелые нагрузки ожидаемые. Обычно требуется смесь 1: 3 с использованием мелкого песка. получить адекватную пластичность.

Строительный раствор Compo состоит из цемента, извести и песка. В некоторых в населенных пунктах цементно-известковая смесь 50:50 продается как строительный цемент. В добавление извести снижает стоимость и улучшает работоспособность. Цементно-известково-песчаная смесь 1: 2: 9 подходит для общие цели, в то время как 1: 1: 6 лучше для открытых поверхностей и 1: 3: 12 можно использовать для внутренних или каменных стен, где дополнительная пластичность полезна.

Раствор также может быть изготовлен из пуццолана, битума, измельченного материала или почва.Раствор извести-пуццолана-песок 1: 2: 9 примерно равен 1: 6 цементно-песчаный раствор. Глыбы из самана и стабилизированного грунта часто укладывается в раствор того же состава, что и блоки.

В таблицах 3.16 и 3.17 представлена ​​информация о материалах. требуется на кубометр различных растворов и количество раствор на квадратный метр для нескольких строительных единиц.

Начиная с цементного раствора, прочность уменьшается с каждым типа, хотя способность приспосабливаться к движению увеличивается.

Окончательный раствор

Таблица 3.16 Материалы, необходимые для Кубический метр раствора

Тип Цементные мешки Известь кг Песок м
Цементный раствор 1: 5 6,0 1.1
Состав 1: 1: 6 5,0 100,0 1,1
Состав 1: 2: 9 3,3 13,5 1,1
Состав 1: 8 3,7 1,1
Состав 1: 3: 12 2.5 150,0 1,1
Раствор извести 1: 3 200,0 1,1

Таблица 3.17 Строительный раствор, необходимый для Различные типы стен

Тип стены Сумма, необходимая на м стенка
11.Кирпичная стена 5см 0,25 м
Кирпичная стена 22,2 см 0,51 м
Стенка из песчано-цементного блока 10см 0,008 м
Стенка из песчано-цементного блока 15см 0,01 1 мес.
Стенка из песчано-цементного блока 20см 0,015 м

Иногда используется на полах и других поверхностях, чтобы гладкая поверхность или как чрезвычайно твердое покрытие для увеличения устойчивость к износу.Хотя такое топовое покрытие склонно к растрескивание, редко увеличивает прочность и его трудно наносить не вызывая ослабленных или слабых частей. Бетонные полы обычно быть отлитым до готового уровня напрямую и получить достаточно гладкая и твердая поверхность без верхнего покрытия.

Для покрытия используется смесь из 1 части цемента и 2-4 частей песка. используемый. Покрытие наносится слоем толщиной от 1 до 2 см с стальной шпатель. Перед применением поверхность подкладки бетонную плиту следует очистить и увлажнить.

Штукатурка и штукатурка

Термин «штукатурка» обычно применяется к внутренним стенам и потолки для получения бесшовных, гигиеничных и обычно гладких поверхностей часто на неровном фоне. Наружная штукатурка обычно называется внешний рендеринг.

Цементную штукатурку

можно использовать на большинстве типов стен, кроме нее. плохо прилегает к стенам из грунтовых блоков, так как усадка и припухлость имеет свойство растрескивать штукатурку.Пропорция смешивания составляет 1 часть. цемента и 5 частей песка, а если штукатурка слишком жесткая, 0,5 до Можно добавить 1 часть лайма. Стена сначала увлажняется, а затем штукатурка наносится в два слоя примерно по 5 мм каждый, что позволяет не менее 24 часов между слоями. Цементную штукатурку нельзя наносится на стену под воздействием солнечных лучей.

Штукатурка Дагга - смесь глинистых грунтов, таких как красный или коричневый латерит, стабилизатор и вода. Штукатурка улучшается добавлением известь или цемент в качестве стабилизатора и битум для гидроизоляции.А хорошая смесь: 1 часть извести или цемента, 3 части глины, 6 частей песок, 0,2 части битума и вода. Штукатурка Дагга наносится на предварительно увлажненный грунт или стены из сырцового кирпича толщиной от 10 до 25 мм.

Ферроцемент

Ферроцемент - универсальная форма железобетона. изготовлены из близко расположенных легких армирующих стержней или проволочной сетки и цементно-песчаный раствор.С ним можно работать относительно неквалифицированный труд.

Функция проволочной сетки и арматурных стержней в первую очередь действовать как планка, обеспечивающая форму для поддержки раствора в его пластичном состоянии, а в затвердевшем состоянии впитывают растягивающие напряжения в конструкции, которые сам по себе не выдерживает способен выдержать.

Арматуру можно собрать любой желаемой формы и раствор наносится слоями с обеих сторон.Простые формы, такие как резервуары для воды могут быть собраны с деревянными палками в качестве опоры для армирование при нанесении первого слоя раствора.

Раствор должен иметь соотношение компонентов от 1: 2 до 1: 4. песок по объему, используя более богатую смесь для самых тонких структур. Водоцементное соотношение должно быть ниже 0,5 / 1,0. Можно добавить лайм в пропорции 1 часть извести к 5 частям цемента, чтобы улучшить удобоукладываемость.

Механическое поведение ферроцемента зависит от тип, количество, ориентация и прочность сетки и арматурные стержни.Из нескольких используемых типов сетки наиболее распространенные показаны на рис. 3.33.

Сетка стандартная оцинкованная (оцинкованная после плетения) адекватный. Неоцинкованная проволока имеет достаточную прочность, но проблема ржавления в ограничениях его использования.

Строительство, похожее на ферроцемент, недавно было разработан для небольших резервуаров, навесов, хижин и т. д. Он состоит из сварная квадратная арматурная сетка 150 мм (прутки 6 мм), покрытая Гессен и оштукатуривают так же, как и ферроцемент.

Волокно - железобетон

Фибра - железобетонные элементы могут быть тоньше, чем с обычным армированием, потому что коррозия - защитное покрытие стальных стержней не требуется. Волокна повысить гибкую прочность и устойчивость к растрескиванию.

Рисунок 3.33 Армирование сетка для ферроцеменов.

Обычно используемые волокна - асбест, сталь (0.Диаметр 25 мм), сизаль? слоновая трава и др.

Асбестоцемент (A-C)

Асбест, силикат магния, встречается в виде горных пород, которые могут быть разделенным на очень тонкие волокна длиной от 2 до 900 мм. Эти обладают хорошей устойчивостью к щелочам, нейтральным солям и органическим растворители, а разновидности, используемые для строительных изделий, имеют хорошие устойчивость к кислотам. Асбест негорючий и способен выдерживают высокие температуры без изменений.

Вдыхание пыли вызывает асбестоз (болезнь легких) а асбест сейчас используется только там, где нет альтернативных волокон. имеется в наличии. Рабочие должны носить маски и проявлять большую осторожность, чтобы не вдыхать асбестовую пыль!

Волокна, обладающие прочностью на растяжение и гибкостью, используются в качестве армирование портландцементом, известью и битумными вяжущими, в асбестоцементные и асбесто-силикатно-известковые изделия, виниловые полы плитки и битумные войлоки.Асбестоцемент используется в хозяйстве конструкции для профнастила, коньков и сантехнических трубы.

Цемент, армированный сизалевым волокном (SFRC)

Сизаль и другие растительные волокна только недавно стали использовать для армирования бетона.

Сизалевое волокно может использоваться как короткие прерывистые тембры (15 до 75 мм в длину) или в виде непрерывных длинных волокон более 75 мм в длина. Иногда одновременно используются и короткие, и длинные волокна.Способ включения волокон в матрицу влияет на свойства композита как в свежем состоянии а также в затвердевшем состоянии.

Волокна сизаля могут испортиться, если их не обработать. Хотя щелочность бетона помогает защитить волокна от вне атаки, он может сам разрушить волокна химически, разлагая лигнин.

Армирование сизалево-фиброй применяется с различными цементно-песчаными пропорции смешивания, в зависимости от использования:

штукатурка стен 1: 3
желоба 1: 2
черепица 1: 1
профнастил кровельный 1: 0.5

Песок нужно пропустить через сито от 1,5 до 2 мм. отверстия (например, москитная сетка). Вода для смешивания должна быть чистой и смесь должна быть как можно более сухой, при этом оставаясь работоспособной.

Добавляется от 16 г до 17 г коротких (25 мм) сухих волокон сизаля. смеси на каждый килограмм цемента. Короткие волокна смешать с сухим цементом и песком перед добавлением воды. Сизаль волокна обладают высоким водопоглощением, и некоторое количество воды может должны быть добавлены в смесь, чтобы компенсировать это.

При смешивании волокна имеют тенденцию комковаться и отделить от остальной смеси. Эта тенденция будет увеличиваются с более длинными волокнами, но если волокна короче 25 мм при использовании усиливающий эффект будет уменьшен. В большинстве случаев Затем смесь наносится шпателем на сетку из полноразмерных волокон сизаля.

Изготовление гофрированных армированных кровельных листов

Самодельный армированный профнастил кровли обычно отливают в стандартная ширина, но всего один метр в длину из-за дополнительных вес.Промышленная асбоцементная кровля тяжелее, чем гофрированная сталь и самодельные листы по-прежнему тяжелее. Таким образом особое внимание необходимо уделить размерам стропил или ферм, чтобы обеспечить безопасную конструкцию.

Процедура кастинга для SFRC задействована, но как только собрано необходимое оборудование и несколько листов сделал процесс становится намного проще.

Бетонный блок, залитый на асбестоцемент длиной 1 м Кровля нужна в качестве лицевой при отливке кровельных листов.Блок отливается в форму высотой 100 мм, которая дает блок достаточной прочности через несколько дней отверждения. Два и более Потребуется 1 м кровли A-C, а также кусок 18-миллиметровая фанера 1,2 м на 1,2 м и лист сверхпрочного полиэтилена 2,25 м в длину и 1 м в ширину. Полиэтилен складывается посередине и тонкая рейка 9 мм на 15 мм надежно прикрепляется скобами к сгибу. Полоски По двум краям фанеры прибивается фанера или дерево толщиной 9 мм. лист, оставляя между ними ровно 1 м, как показано на рисунке 3.34.

Ниже приведены этапы процедуры литья:

  • 1 Установите лист асбестоцемента на формовочный блок. и накрыть кусок фанеры кромочными планками на концах листа. Полиэтилен накладывается на фанера и верхний лист отогнуты от фанера.
  • 2 Приготовьте смесь из 9 кг цемента, 4,5 кг песка, 150 г короткого волокна сизаля (25 мм) и 4.5 литров воды. Также подготовьте четыре пучка сизалевых волокон по 60 г, максимально длинные.
  • 3 Используйте одну треть растворной смеси, чтобы затереть тонкий ровный слой. слой поверх полиэтилена. Возьмите два сизаля из четырех пучки и равномерно распределяют волокна, второй пучок под прямым углом к ​​первому, образуя мат из волокна. Это покрыто раствором и другим циновкой, используя оставшиеся два пакета. Наконец-то весь сизаль покрыть оставшимся раствором, а поверхность зашлифованы даже кромочными планками на фанере.
  • 4 Накройте верхним листом полиэтилена, убедившись, что раствор имеет равномерную толщину и воздух пузыри остаются под полиэтиленом.
  • 5 Удерживая планку обрешетки за сгиб в полиэтилен, осторожно снимите лист фанеры, чтобы новый сизаль-цементный лист упал на асбестоцементный лист. В то же время нажмите новый лист в гофры с помощью водосточной трубы из ПВХ Диаметр 90 мм.Уплотните новый лист, поместив другой сверху лист асбеста и наступив на него. Отверстия для монтаж пробивается дюбелем 5мм на 25мм от конца в овраги (гребни при установке на крыше) свежий лист.
  • 6 Удалите лист асбеста с сизалевым цементом. лист из формовочного блока и оставить до цемент в новом листе схватился, желательно за двое суток. Затем осторожно снимите новый лист, снимите полиэтилен и полимеризуйте новую простыню не менее одной недели, желательно погрузить в емкость с водой.
  • 7 Если больше листов полиэтилена и асбестоцемента доступно, кастинг можно продолжить немедленно.

Рисунок 3.34 Отливка из фанеры картон и полиэтилен "конверт"

Стены с использованием сизаль-цементной штукатурки

Грунтовые блоки можно использовать для недорогих стен с хорошим теплоизоляция. Однако они легко повреждаются при ударе. и размыты дождем. Один из способов решения этих проблем - оштукатурить лицевую сторону стены.Обычно штукатурка имеет тенденцию к трескается и отслаивается, поскольку не расширяется с той же скоростью, что и почва. Этого можно избежать, пропустив длинные волокна сизаля. через стену, чтобы залить раствором на каждой грани. Сформированная таким образом двойная оболочка обеспечивает достаточную прочность и гидроизоляция стены для укладки грунтовых блоков без стыковки раствора между блоками.

Металлы

Некоторые черные металлы (содержащие железо) используются в строительство хозяйственных построек.Чугун используется для изготовления сантехнических изделий. сточная труба и фитинги. Сталь состоит из железа плюс небольшой процент углерода в химической комбинации. Высокоуглеродистые или твердые сталь используется для инструментов с режущими кромками. Среднеуглеродистая сталь используется для конструктивных элементов, таких как двутавровые балки, арматурные стержни и рамы орудия. Низкоуглеродистая или низкоуглеродистая сталь используется для труб, гвоздей, шурупов, проволоки, экранирования, ограждений и профнастил кровельный.

Цветные металлы, такие как алюминий и медь, подвержены коррозии устойчивы и часто выбираются по этой причине.Медь используется для электропровода, труб для водоснабжения и для окладов. Алюминий чаще всего используется для изготовления гофрированных кровельных листов, желоба и сопутствующие гвозди. Использование одинаковых гвоздей материал избегает проблемы коррозии из-за электролитического действие. Латунь - это коррозионно-стойкий сплав меди и цинка. который широко используется для изготовления оборудования.

Рисунок 3.35 Сизаль-цемент штукатурная техника.

Коррозия

Воздух и влага ускоряют коррозию черных металлов если они не защищены.Кислоты имеют свойство разъедать медь, пока щелочи, такие как отходы животноводства, портландцемент и известь, а также некоторые загрязнения вызывают быструю коррозию алюминия и цинк. Электролитическое действие, вызванное созданием небольшого напряжения когда разнородные металлы контактируют друг с другом в присутствие воды также способствует коррозии некоторых металлов. Алюминий особенно подвержен электролитической коррозии.

Коррозию можно уменьшить, тщательно выбирая металлические изделия. для приложения; сокращение времени намокания металла предотвращая конденсацию и способствуя хорошему дренажу, избегая контакт между разнородными металлами и с помощью антикоррозионные покрытия.

Покрытия, ингибирующие коррозию

Медь, алюминий, нержавеющая сталь и чугун имеют тенденцию к образованию оксидные покрытия, обеспечивающие значительное количество самозащита от коррозии. Однако большинство других сталей требуют защитных покрытий, если они подвергаются воздействию влаги и воздух. Используемые методы включают цинкование (цинкование), стекловидно-эмалевое остекление и окраска. Живопись - единственный метод практично для применения в полевых условиях, хотя смазка и масло обеспечить временную защиту.

Перед окраской металлическая поверхность должна быть чистой, сухой и свободной. масла. Краски на битумной и масляной основе с оксидом металла. пигменты обеспечивают хорошую защиту, если их осторожно применять в сплошные слои. Два-три слоя обеспечивают лучшую защиту.

Дом оборудование

Гвозди

Гвоздь опирается на захват вокруг стержня и ножницы прочность его поперечного сечения для придания прочности стыку.это важно правильно подобрать тип и размер ногтя для любого конкретная ситуация. Гвозди указываются по их типу, длине. и калибр (чем выше номер калибра - тем меньше стержень диаметр). См. Таблицу 3.18. Большинство гвоздей изготавливаются из мягкой стали. провод. В агрессивной среде оцинкованный, медный, используются медные или алюминиевые гвозди. Большое количество видов и размеры гвоздей доступны на рынке. Гвозди больше всего в хозяйственных постройках обычно используются:

Круглые гвозди с гладкой головкой или круглые проволочные гвозди используются для общие столярные работы.Поскольку они имеют склонность к тонкому расколу членов, часто используется следующее правило: диаметр гвоздь не должен превышать 1/7 толщины бруса.

Таблица 3.18 Размеры и Приблизительное количество обычно используемых размеров круглой проволоки на килограмм Гвозди

Длина

Диаметр Прибл.
дюймов мм мм нет / кг
6 1 50 6,0 29
5 125 5,6 42
4 100 4.5 77
3 75 3,75 154
2,5 65 3,35 230
2 50 2,65 440
1,5 40 2.0 970
1 25 1,8 1 720

Гвозди с выпадающей головкой имеют меньшую головку, которую можно установить ниже поверхность дерева. Их удерживающая способность ниже, потому что Голову легче протянуть сквозь дерево.

Панельные штифты - это тонкие проволочные гвозди с маленькой головкой, используемые для крепление панелей из фанеры и ДВП.

Гвозди с грифелем или грифелем имеют большую головку и используются для крепления плитка, шифер и мягкий картон. У войлочных гвоздей шляпки еще больше.

Гвозди по бетону изготавливаются из более твердой стали, что позволяет для вбивания в бетонные или кладочные работы.

Скобы представляют собой П-образные гвозди с двумя остриями и используются в основном прикрутить провода.

Гвозди кровельный с квадратным закрученным стержнем и шайбой. прикреплен к голове.Рубероид или резина можно использовать под шайбу, чтобы предотвратить утечку. Гвоздь и шайба должны быть оцинкованный для предотвращения коррозии. Они используются для крепления гофрированные листовые материалы и должны быть достаточно длинными, чтобы по крайней мере На 20 мм в древесину. В качестве альтернативы проволока гвоздями с использованной бутылкой можно использовать колпачки для шайб.

Рисунок 3.36 Типы гвоздей.

Винты и болты

Винты по дереву имеют резьбу, которая обеспечивает более надежное крепление сила и сопротивление ломке, чем гвозди, и они могут быть легко снимается без повреждения древесины.Для винта функционировать должным образом, он должен вставляться вращением, а не забивают молотком. Обычно необходимо просверлить пилотное отверстие под хвостовик винта. Винты из мягкой стали обычно предпочтительнее, потому что они сильнее. Широкий ассортимент Доступны такие отделки, как оцинковка, окраска и гальваника.

Винты классифицируются по форме головки как потайной, приподнятый, круглый или утопленный (без прорезей поперек полная ширина).Винты Coach имеют квадратную головку и поворачиваются с гаечный ключ. Они используются для тяжелых строительных работ и должны иметь под головкой металлическую шайбу, чтобы не повредить дерево поверхность. Винты продаются в коробках, содержащих брутто (144 винта). и определяются их материалом, отделкой, типом, длиной и калибр. В отличие от калибра проволоки, используемого для гвоздей, винт большего размера номер калибра, тем больше диаметр хвостовика.

Болты обеспечивают более прочное соединение, чем гвозди или винты.Поскольку соединение закреплено затяжкой гайки на болта, нагрузка в большинстве случаев полностью превращается в силу сдвига. Болты используются для тяжелых нагрузок, например, в соединениях в портале. рама подъемника, углы кольцевой балки установлены на сейсмостойкость защиты или для закрепления петель тяжелых дверей. Большинство болтов используются с деревом, имеют закругленную головку и квадратный стержень чуть ниже голова. Для этих «тренерских» болтов требуется только один гаечный ключ. Также доступны болты с квадратной головкой, для которых требуются два гаечных ключа.Шайбы предотвращают погружение гаек в древесину.

Рисунок 3.37 Породы древесины винты и болты.

Петли

Петли классифицируются по назначению, длине ворса и материал, из которого они сделаны, и бывает самых разных типы и размеры. Петли для хозяйственных построек в основном изготовлены из низкоуглеродистой стали и оснащены антикоррозийное покрытие. Самые распространенные типы:

Стальная стыковая петля обычно используется для окон, ставни и дверцы, так как это дешево и прочно.Если штифт снимается снаружи, он не защищен от взлома. В створки обычно устанавливаются в ниши в двери или окне и Рамка.

H-петля аналогична стыковой петле, но обычно устанавливается на поверхность.

Т-образная петля в основном используется для подвешивания спичечных досок. двери. По соображениям безопасности ремешок Т-образной петли должен быть крепится к двери хотя бы одним тренерским засовом, что не может быть легко откручивается снаружи.

Петля с лентой и крючком является более прочным типом Thinge и используется для тяжелых дверей и ворот. Этот тип подходит для изготовление на месте или у местного кузнеца.

Рисунок 3.38 Типы петли.

Таблица 3.19 Преобразование Калибр винта в миллиметрах

Замки и защелки

Любое устройство, используемое для удержания двери в закрытом положении, может быть классифицируется как замок или защелка.Блокировка активируется с помощью ключ, тогда как защелка приводится в действие рычагом или стержнем. Замки могут быть получается с защелкой, так что дверь можно держать в закрытое положение без использования ключа. Замки в дверях обычно фиксируется на высоте 1050 мм. Некоторые примеры общих замков и Защелки, используемые в хозяйственных постройках, показаны на Рисунке 3.39.

Рисунок 3.39 Типы замков и защелки.

Стекло

Стекло, пригодное для общего остекления окон, изготавливается в основном из сода, известь и кремнезем.Ингредиенты нагреваются в печи до около 1500 C и плавятся вместе в расплавленном состоянии. Листы затем формируется путем вытягивания, плавания или прокатки. В остекление обычного качества изготавливается путем втягивания толщина от 2 до 6 мм. Прозрачен на 90% Светопропускание. Потому что две поверхности никогда не идеальны плоский или параллельный всегда есть визуальное искажение. Тарелка стекло изготавливается с шлифованной и полированной поверхностью и не должно быть недостатков.

Стекло в зданиях должно выдерживать нагрузки, включая ветер нагрузки, воздействия людей и животных, а иногда термические и другие стрессы. Обычно толщина должна увеличиваться с площадь стеклянной панели. Стекло эластично вплоть до разбития острие, но он также полностью хрупок, поэтому нет постоянного набор или предупреждение о надвигающемся отказе. Поддержка оказывалась стекло повлияет на его прочностные характеристики. Стекло нужно резать чтобы обеспечить минимальный зазор 2 мм по всей раме, чтобы для тепловых движений.

Пластмассы

Пластмассы относятся к новейшим строительным материалам, начиная от материал, достаточно прочный, чтобы заменить металл на изделия, похожие на пену. Пластмассы считаются в основном органическими материалами. из нефти и, в небольшой степени, угля, которые на определенном этапе в обработке пластичны при нагревании.

Диапазон свойств настолько велик, что сложно сделать.Однако пластик обычно легкий. и имеют хорошее соотношение прочности к весу, но жесткость ниже чем у практически всех других строительных материалов, и ползучесть высоко.

Пластмассы обладают низкой теплопроводностью и теплоемкостью, но тепловое движение велико. Они противостоят широкому спектру химические вещества и не подвержены коррозии, но они становятся хрупкими с возрастом.

Большинство пластмасс горючие и могут выделять ядовитые газы. в огне.Некоторые из них легко воспламеняются, а другие трудны. сжечь.

Пластмассы пригодны для широкого спектра производства методы и продукты доступны во многих формах: твердые и ячеистый, от мягкого и гибкого до жесткого, от прозрачного до непрозрачный. Различные текстуры и цвета (многие из которых блекнут при использовании на открытом воздухе) доступны. Пластмассы классифицируются как:

Термопласты, которые всегда размягчаются при нагревании и затвердевают снова при охлаждении, если они не перегреты.

Термореактивные пластмассы, подвергающиеся необратимым химическим воздействиям изменение, в котором молекулярные цепи сшиваются, поэтому они не могут впоследствии заметно размягчится под действием тепла. Чрезмерный нагрев вызывает обугливание.

Термопласты

Полиэтилен прочный, водо- и маслостойкий, его можно изготовлены во многих цветах. В зданиях используется для холода водопроводы, сантехника и сантехника и полиэтиленовая пленка (полупрозрачный или черный).Фильм не должен быть без надобности подвергаться продолжительному нагреванию свыше 50C или воздействию прямых солнечных лучей. В полупрозрачная пленка прослужит от одного до двух лет при воздействии солнечный свет, но углеродная пигментация черной пленки увеличивается устойчивость к солнечному свету.

Поливинилхлорид (ПВХ) не горит и может производиться в жесткая или гибкая форма. Он используется для водостоков, водостоков, трубы, воздуховоды, изоляция электрических кабелей и др.

Акрил, группа пластмасс, содержащих полиметил метакрилат, пропускает больше света, чем стекло, и может быть легко формованные или изогнутые практически любой формы.

Термореактивные пластмассы

Основное применение термореактивных пластиков в зданиях - это пропитки для бумажных тканей, связующие для ДСП, клеи, краски и лаки. Фенолформальдегид (бакелит) используется для электроизоляционных изделий. Мочевина формальдегид используется для производства ДСП.

Эпоксидные смолы для большинства применений поставляются в двух частях: смола и отвердитель.Они чрезвычайно прочные и стабильные и хорошо держатся на большинстве материалов. Силиконовые смолы водные репеллент и используется для гидроизоляции кирпичной кладки. Обратите внимание, что жидкость пластмассы могут быть очень токсичными.

Резина

Каучуки аналогичны термореактивным пластмассам. в в процессе производства ряд веществ смешивается с латекс, натуральный полимер. Технический углерод добавлен для увеличения прочность на растяжение и улучшение износостойкости.

После формования изделие вулканизируют путем нагревания под давление, обычно при наличии серы. В этом процессе повышается прочность и эластичность. Эбонит полностью вулканизированная, твердая резина.

Модифицированные и синтетические каучуки (эластомеры) все чаще используется для строительных изделий. Например в отличие от натурального каучуки часто обладают хорошей стойкостью к маслам и растворителям. Один из них бутил чрезвычайно прочен, обладает хорошей атмосферостойкостью, отличная устойчивость к кислотам и очень низкая воздухопроницаемость.Наполнители из синтетического каучука и шайбы для ногтей используются с металлом. кровля.


Содержание - Предыдущая - Следующая

.

Смотрите также