Главное меню

Технология усиления фундаментов буроинъекционными сваями


Методические рекомендации «Методические рекомендации по применению буроинъекционных свай»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
по применению буроинъекционных свай

Аннотация

«Методические рекомендации» предназначены для инженеров проектировщиков и линейного инженерного персонала специализированных производственных организаций. Их основной целью является помощь инженеру-проектировщику и строителю в выборе наиболее рационального принципа проектирования и способа производства работ по усилению грунтов основания и фундаментов инъекционными методами, включая способы укрепительной цементации и буроинъекционных свай, в конкретных инженерно-геологических и гидрогеологических условиях с учетом вида, типа и конструктивных особенностей реконструируемых зданий и сооружений. Кроме того, в «Рекомендациях» рассматриваются различные возможности усиления инъекционными способами несущих конструкций реконструируемых объектов включая стены, колонны и столбы, своды и другие конструкции, а также выполнение инъекционной горизонтальной гидроизоляции существующих зданий и сооружений.

«Методические рекомендации» разработаны на базе и в развитие действующих глав СНиП и «Руководств» к ним (положениями которых следует руководствоваться при проектировании, производстве и приемке работ по усилению грунтов основания и фундаментов инъекционными способами).

«Методические рекомендации» разработаны А.И. Егоровым при участии ведущих специалистов НПФ «Реставратор G3R» В.Я. Юдиной и Муштай И.А. Части 2.4-2.7 Главы 2 подготовлены д.т.н., проф. В.М. Улицким (С.Петербургский арх.-строительный университет).

Настоящее издание «Методических рекомендаций» является третьим, дополненным и частично переработанным изданием "Методических Рекомендаций", разработанных Егоровым А.И. в институте "Спецпроектреставрация" Министерства Культуры РСФСР в 1984 году и второго издания, подготовленного в фирме «Восстановление» в 1997 году.

Содержание

устройство и технология сооружения, способы установки и сфера применения БИС

Буроинъекционные сваи (БИС) используются при сооружении объектов, расположенных на участках плотной застройки: микрорайоны города, крупные промышленные предприятия. Это эффективная замена забивным опорам, во время работы с которыми появляются сильные динамические колебания в слоях грунта. Это нарушает целостность близлежащих сооружений. БИС решает проблему негативного действия на конструкции, расположенных по соседству со строительным участком.

Принцип технологии

Для буроинъекционных опор в земле делаются скважины диаметром до 40 см. При достижении необходимой глубины они наполняются водоцементным или цементно-песчаным составом, подающимися внутрь под большим давлением с помощью полого шнека. За счет подачи раствора под давлением его можно заливать и в горизонтально, и в вертикально сделанные скважины. Затем в еще не застывший бетон устанавливается армированное каркасное основание.

После засыхания состава скважина становится монолитной железобетонной опорой, на которую в последующем происходит установка фундамента дома.

Требования к армированию и бетонированию

С учетом действующего СНиП существуют определенные требования к бетонированию и использованию армирования в буроинъекционных сваях. Технология установки:

  1. Сечение устанавливаемого каркаса должно быть всегда меньше на 14 см, в отличие от диаметра пробуренной полости. Это позволяет избежать заклинивания каркаса в скважине.
  2. Для армирования применяются пространственные каркасы, у которых продольные пояса находятся на одинаковом расстоянии по отношению друг к другу. Минимальное число продольных прутьев — 6 штук, класс арматуры — А3 (сечение — не менее 18 мм).
  3. К армирующим каркасам предъявлены высокие требования относительно жесткости. Крепление элементов производится с помощью сварки, арматура должна быть дополнительно усилена стальными кольцами, находящимися с внешней части каркаса с дистанцией 2 м. Устанавливаются кольца с шириной 5−10 см, толщиной — 8−10 мм.
  4. Наибольшая длина арматуры — 11,7 м. Если требуется установка каркаса в скважину большего размера, то отдельные части свариваются друг с другом на стройплощадке.
  5. Для устройства буроинъекционных свай используется бетон М300 с классом сжатия не менее В22,5.

Также требуется заливка защитного бетонного слоя вокруг каркаса слоем не менее 7 см. Равномерное расположение арматуры в скважине достигается благодаря креплению фиксаторов на металлических кольцах жесткости.

Перерасход раствора, который обусловлен заполнением скважины, пока из полости не появится чистый от шлама бетонный состав, должен быть не более 25% от запланированного объема заливки одной сваи.

Условия монтажа

Также существуют требования и к непосредственно процессу монтажа БИС. С учетом СНиП должны быть соблюдены следующие условия:

  1. Во время постоянных работ можно бурить близлежащие скважины с шагом, который не превышает 3 диаметра уже находящейся сваи. Если дистанция меньше допустимой, разрабатывать новую опору можно только по истечении суток после заливки бетоном предыдущей опоры.
  2. Процесс заливки бетоном производится при постоянных поступательно-возвратных передвижениях шнека.
  3. Обязательное сохранение постоянного давления подачи бетонного раствора при наполнении полости, при его снижении требуется уменьшить время извлечения шнековой колонны.
  4. После окончания процесса заливки бетоном МБУ должна отъехать от скважины. Грунт, который был выработан во время установки опоры, убирается с помощью экскаватора.
  5. После очистки территории в устье скважины устанавливается кондуктор и выполняется заливка бетоном надземной части опорного столба.
  6. Армирование сваи производится тут же по окончании наполнения полости бетоном и очищения устья скважины.

Внимание: Максимальный временной интервал между заливкой бетона и установкой каркаса не должен быть больше 20 минут.

Сфера использования

Чаще всего буроинъекционные столбы применяются в случае, если невозможно установить забивные сваи. Но это не единственная область их использования. Строители также могут воспользоваться этой технологией если:

Основное отличие буроинъекционных свай от буронабивных опорных столбов заключается в способе подачи инъекционного бетонного раствора в забой.

С учетом качественного состава почвы и близости прохождения подземных вод, технология постоянно усовершенствуется.

Так, сегодня существуют следующие способы:

  1. Буроинъекционные опорные столбы с обсадкой отверстия монтируются в зонах с ослабленным грунтом, где часто происходит его пучение в зимний сезон. Обсадка выполняется с помощью металлических гильз, устанавливающихся в скважины. После заливают бетонный раствор.
  2. БИС без дополнительной обсадки используется на стабильной почве с небольшим количеством подземных вод. Максимальный диаметр этих опор — 18 см. Пробуренную скважину армируют и заполняют бетоном зразу после достижения требуемой глубины.
  3. Опоры с навивкой характеризуются особой технологией устройства. Скважины для них делаются с помощью специального наконечника в виде винта. Вместе с бурением производят армирование.

Обсадка скважин удорожает стоимость сооружения фундамента, но это гарантирует его устойчивость и продолжительное время эксплуатации.

Спецтехника для установки свай

Для организации буроинъекционных опор используют мобильные буровые установки (МБУ). При сооружении фундаментов чаще всего используют колесные МБУ.

Буровое оборудование МБУ находится на основной платформе, которая крепится к транспортному шасси на шарнирных соединений. С учетом вида платформы спецтехника бывает поворотной и фиксированной. Для бурения каждой следующей скважины МБУ с фиксированным механизмом необходимо изменять положение, при этом наличие поворотной техники позволяет машине бурить одновременно несколько скважин с учетом их расположения.

Основная рабочая часть МБУ — буровая колонна, состоящая из вертлюга, бура шнекового типа, подъемных цилиндров, вращателя и металлической мачты, по которой передвигается шнек.

Острие бура комплектуется заглушкой, предотвращающей заполнение скважины землей во время разработки полости. При окончании бурения, когда производится заливка бетоном, подаваемый по скважине раствор выдавливает из своего штатного места заглушку.

Нагнетание состава в шнек происходит за счет бетононасоса. МБУ подсоединяется к буровой колонне с помощью вертлюга, куда подключаются подающие шланги. Допустимое давление подачи бетонного раствора — 10 мПа.

Для установки в полость каркаса используют подъемные краны. При монтаже опор размером до 5 м арматура опускается в скважину под собственным весом, но во время работы с более длинными конструкциями для армирования дополнительно применяется виброгружатель.

Основные преимущества

Основным достоинством буроинъекционных опорных столбов считается абсолютное отсутствие вибрации при выполнении строительных работ.

Помимо этого, к достоинствам можно отнести:

Буроинъекционные сваи — современная и высоконадежная технология, имеющая множество неоспоримых достоинств.

Недостатки при обустройстве

Использование буроинъекционной технологии имеет и определенные недостатки. Так, во время обустройства этих свай, в отличие от набивных и буронабивных опор, нет искусственного уплотнения почвы. То есть их несущая возможность находится на уровне природного состояния.

Использование буроинъекционных опор зачастую является невозможным из-за угрозы выдавливания бетонного состава из почвы грунтовыми водами до его полного засыхания. Этот процесс может произойти при сооружении оснований в песчаных обводненных почвах с высоким коэффициентом фильтрации, а также активным передвижением подземных вод.

Некоторые сомнения относительно качества уже изготовленных фундаментов может вызывать и технология их обустройства. Нередко появляются сложности во время погружения арматурного каркаса в бетон, который при низком давлении опускается на глубину не больше 75−85% длины опоры. Последующее погружение армирования, которое происходит под повышенным давлением, приводит к нарушению целостности арматуры, ее выпиранию из стен опоры. То есть нижний участок сваи находится почти без армирования.

Но сегодня пока не известно ни одной серьезной аварии, которая связана с деформацией основания из буроинъекционных опорных столбов. Их сфера использования в последнее время только увеличивается.

Формирование стоимости

Чаще всего во время устройства буронабивных свай производится целый комплекс строительных работ: разметка свайного поля, бурение скважин, сварка арматурных каркасов, установка армирования в полости, заливка бетонного раствора в скважины с использованием глубинного вибратора. То есть общая стоимость буроинъекционных свай состоит из следующих частей:

  1. Стоимость работ по бурению скважин (глубина бурения).
  2. Цена водо-песчаного или песчано-цементного состава (объем требуемого раствора).
  3. Стоимость арматуры и сборка армированного каркаса.
  4. Амортизация специальной техники, которая используется на стройплощадке.
  5. Доплата, если рабочий процесс осложняется с учетом особенностей местности (тип и сложность рельефа).

Правильно рассчитанный и грамотно установленный фундамент на буроинъекционных сваях подойдет для сооружения любых конструкций на неустойчивых грунтах. В отличие от ленточного основания, фундамент на сваях стоит гораздо дешевле. Установку буроинъекционных свай стоит доверять лишь опытным строителям. Только так получится сделать действительно прочную основу здания.

Загрузка...

Метод укрепления фундамента при помощи буроинъекционных свай



Укрепление основания фундамента необходимо при появлении признаков разрушении старого фундамента, а также нового вследствие ошибочных проектных расчётов или некачественного выполнения строительных работ. Классические методы по устранению деформаций не всегда применимы. В таком случае используют метод укрепления буроинъекционными сваями, которой технологически сложный и дорогостоящий, но один из самых надёжных и эффективных

Ключевые слова: свая, фундамент.

В современном строительстве этот метод применяется почти для всех типов объектов, имеющих самую разную конструкцию и стоящих на любых грунтах и рельефе. Это универсальный метод для старых и новых фундаментов из любого материала, применяющийся также при разрушении фундаментов, возникшем по причине проектных ошибок и некачественного выполнения строительных работ. Просадки зданий легко устраняются устройством буроинъекционных свай. Этот метод ещё называют цементацией грунтов.

Цементация — это нагнетание под давлением 0,2–1 МПа цементного раствора в пустоты конструкции и подачей его в инъекторы. Обычно цементация происходит комплексно, то есть усиляют и сам фундамент, и кладку стен.

Подготовительные работы очень трудоёмкие: отрывание фундамента, бурение отверстий под сваи, установка специальныхрубок для инъектирования и присоединение их к инъекционным насосам. Отверстия для инъекторов бурятся при помощи перфоратора или буровой установки, шурфы располагаются в шахматном порядке с шагом 0,8–1,2 м.

Затем в пробуренные отверстия вставляются инъекторы (перфорированные трубки диаметром 50 мм) и закрепляются цементно-песчаным раствором. Инъекционная смесь растекается в грунте в радиусе 0,6–1,2 м. Расход бетона, требующегося для укрепления фундамента, напрямую зависит от объёма разрушений в основании, свойств инъекционной смеси и характеристик грунта.

По факту расход наблюдается в пределах 0,2–0,4 от объёма цементируемого грунта в основании фундамента.

Но что же такое буроинъекционная свая? Это конструкция из бетона, устанавливаемая под углом 300–450 к фундаменту с целью переноса нагрузок с него, то есть разгружает основание. Этот метод довольно прост, но практически невозможен без специального оборудования.

Свая состоит из бетона с наполнителями мелких фракций без арматурного каркаса, то есть не армируется. Данный метод один из самых дорогих, так как требует большого количества бетона, который нужно приготовить и доставить на строительную площадку. Для укрепления фундамента количество свай может варьироваться от нескольких единиц до десятков, минимальный диаметр которых 30 см, а глубиной до нескольких метров, что выливается во внушительный объём расхода цемента. На практике глубина погружения сваи напрямую связана с глубиной промерзания грунта и на 0,5–0,7 м больше этой величины.

Сваи обязательно должны быть погружены ниже уровня промерзания грунта, только в таком случае они обеспечивают прочность конструкции, разгружают основание и играют роль главного укрепляющего элемента фундамента.

Основные плюсы метода укрепления основания буроинъекционными сваями:

1. Монтаж может вестись в стеснённых местах городской застройки, где сложно обеспечить доступ строительной технике;

2. Возможность укрепления фундаментов зданий, находящихся в зоне сильных промышленных вибраций;

3. Буроинъекционные сваи способны укрепить даже старые смещённые фундаменты, фиксируют их и разгружают от основной несущей нагрузки от здания;

4. Метод довольно прост в проектировании и позволяет вычислить количество свай и тип конструкции, используя классические методики;

5. Буроинъекционные сваи способны выдержать нагрузку от любого здания, построенного на рыхлых грунтах

Фундамент рекомендуется укрепить, если:

− В фундаменте или стене появились трещины;

− Происходит локальная усадка здания — накренились углы или стены здания по периметру;

− При реставрации или реконструкции аварийного здания, текущее состояние которого необходимо сохранить до начала работ;

− При попадании здания в область промышленных или производственных вибраций, что негативно сказывается на несущей способности фундамента;

6. Буроинъекионные сваи способны выдержать нагрузку от любого здания, построенного на рыхлых грунтах

Фундамент рекомендуется укрепить, если:

− В фундаменте или стене появились трещины;

− Происходит локальная усадка здания — накренились углы или стены здания по периметру;

− При реставрации или реконструкции аварийного здания, текущее состояние которого необходимо сохранить до начала работ;

− При попадании здания в область промышленных или производственных вибраций, что негативно сказывается на несущей способности фундамента;

− При разрушении винтовой сваи или столбчатой опоры в качестве замены можно установить буронабивную сваю;

− Для укрепления здания в зоне плотной городской застройки, где существуют негативные воздействия от рядом стоящих зданий.

Алгоритм рабочих операций по устройству буроинъекционных свай следующий:

1. Выполняется расчёт нагрузок от здания на фундамент, только после этого начинается разработка проекта;

2. Производятся инженерно-геологические изыскания, вследствие чего определяется тип, свойства и состав грунта, количество слоёв и глубина залегания прочного слоя;

3. По плану отверстий в проекте бурятся скважины под углом 300 градусов к фундаменту, глубина расчётная;

4. В пробуренные скважины через инъекторы под определённым давлением нагнетают бетонный раствор с помощью спецтехники и мощных насосов;

5. Скважины между собой и с фундаментом соединяются арматурой. Процесс усиления буроинъекционными сваями:

1. С помощью пневматических буров в фундаменте выполняют отверстия под определённым углом и расчётной глубины;

2. В эти отверстия под давлением 0,2–1 Мпа начинает поступать инъекционная смесь, которая заполняет пустоты в фундаменте.

При бурении скважины уширяется и её подошва благодаря боковому давлению грунта, что способствует увеличению площади основания сваи, вследствие чего свая может выдержать нагрузку больше расчётной. Также этот метод препятствует негативному воздействию грунтовых вод на фундамент, создавая щит из свай, который забирает всю нагрузку на себя.

Метод универсальный, так как его можно применять для любого типа фундаментов, но на каждом объекте подбирается бетон определённого класса. Класс бетона зависит от типа грунта и его свойств, глубины промерзания, уровня подземных вод и несущей способности основания.

Также особенность рассматриваемого метода заключается в том, что даже с виду правильный проект может быть не точным и содержать ошибки, но технология нивелирует эти погрешности, ведь запас прочности у укреплённого основания намного выше. Но составлять проект и производить расчёт основных конструкций должны всё же профессионалы, так как это непростая математическая процедура, а полагаться на онлайн-калькуляторы чревато неприятными последствиями.

Важно отметить, что при устройстве буроинъекционных свай следует приостановить все строительные работы, способные вызывать вибрации в грунте. Иногда используют в качестве защиты от грунтовых сдвигов от близлежащих объектов временный щит.

Данный метод укрепления фундамента буроинъекционными сваями используется для следующих типов оснований:

1. Ленточный тип. В фундаменте бурятся скважины конической формы, в которые помещают армированную сваю и заливают бетоном под определённым давлением;

2. Столбчатые и свайно-ростверковые фундаменты. Сваи монтируются под ростверком как дополнительные опоры, разгружающие основание. Или старые опоры заменяются на новые сваи;

3. Плитный монолитный фундамент. Подбираются сваи исходя из габаритов плиты. Используется высокопрочный бетон. Этот тип фундамента ремонтируется таким методов лишь в крайних случаях.

Литература:

  1. Все о мелкозаглубленных фундаментах и садовых строениях на них. — М.: Bestiary, 2013. — 766 c.
  2. Все о строительстве деревянного дома от фундамента до крыши. — Москва: Гостехиздат, 2013. — 256 c.
  3. Вялых, В. А. Антропологические исследования как фундамент смыслоориентированного образования. Учебно-методическое пособие / В. А. Вялых. — М.: Флинта, 2014. — 858 c.
  4. Гарагаш, Борис Ашотович Надежность пространственных регулируемых систем «основание-фундамент» при неравномерных деформациях основания (количество томов: 2) / Гарагаш Борис Ашотович. — М.: Ассоциация строительных вузов (АСВ), 2016.851 c.
  5. Горелов, Владимир Межвидовой унифицированный комплекс средств автоматизации пунктов управления и командных пунктов радиотехнических формирований ряда «Фундамент» / Владимир Горелов. — Москва: СИНТЕГ, 2018.551 c.
  6. Далматов, Б. И. Механика грунтов, основания и фундаменты включая специальный курс инженерной геологии / Б. И. Далматов. — Москва: Высшая школа, 2017. — 416 c.
  7. Далматов, Б. И. Механика грунтов, основания и фундаменты (включая специальный курс инженерной геологии). Учебник / Б. И. Далматов. — М.: Лань, 2017. — 321 c.
  8. Далматов, Б. И. Механика грунтов, основания и фундаменты, включая специальный курс инженерной геологии. Учебник / Б. И. Далматов. — М.: Лань, 2016.440 c.
  9. Далматов, Б. И. Механика грунтов, основания и фундаменты. Включая специальный курс инженерной геологии. Учебник / Б. И. Далматов. — М.: Лань, 2017. — 147 c.
  10. Дашжамц, Далайн Основания и фундаменты на мерзлых и пучинистых грунтах (на примерах Забайкалья и Монголии) / Далайн Дашжамц. — М.: АСВ, 2016.137 c.

Основные термины (генерируются автоматически): свая, фундамент, аварийное здание, инъекционная смесь, локальная усадка здания, некачественное выполнение, попадание здания, стен здания, текущее состояние, укрепление фундамента.

Укрепление фундамента буроинъекционными сваями

Укрепление фундамента буроинъекционнымисваями применяется при обнаружении осадки здания, вызванной неправильной эксплуатацией, ошибками проектирования либо строительства.

Укрепление фундамента буроинъекционнымисваями требуется, если обнаружены какие-либо признаки осадки: возникновение на стенах трещин, которые могут со временем увеличиваться в размере (для контроля трещин устанавливают специальные маячки). Укрепление фундамента буроинъекционными сваями проводят также, если здание находится в месте массовой застройки, если дом в аварийном состоянии и нельзя проводить реконструкцию, сопровождающуюся ударами и сильной вибрацией, что актуально для старых домов в центре города и памятников архитектуры.

Укрепление фундамента буроинъекционными сваями: схема работ

Усиление основания дома по такому методу выполняется следующим образом:

  1. В первую очередь проводится бурение скважин.

  2. Затем готовится цементно-песчаный раствор.

  3. Проводится инъекция приготовленного раствора в готовые скважины.

  4. Сваи армируются.

  5. Завершающий этап – опрессовка готовых свай.

Укрепление фундамента буроинъекционными сваями: методика усиления

Суть методики укрепления фундаментов буроинъекционными сваями такова:

Через основание имеющегося фундамента бурятся скважины. Скважины заполняются специальным раствором, вследствие чего грунт уплотняется, а имеющиеся в нём пустоты также заполняются раствором.

Благодаря такому укреплению грунтовые воды прекращают разрушающе воздействовать на фундамент дома. Вокруг имеющегося фундамента появляется своеобразный защитный слой, который усиливает имеющееся основание строения.

В зависимости от особенностей старого фундамента, наличия грунтовых вод, геолого-инженерных показателей грунта, степени разрушения фундаменты состав раствора, заполняющего пустоты, может быть разным.

Данный метод позволяет сохранить и провести реконструкцию зданий, у которых обнаружено повреждение фундамента, а также защитить их от последующего разрушения. Укрепление фундамента буроинъекционными сваями можно назвать щадящим методом без сильных ударов и вибраций. Благодаря этим свойствам при помощи этого метода можно восстанавливать исторически значимые памятники истории и архитектуры, которые требуют особо бережного отношения.

Особенности укрепления фундаментов буроинъекционными сваями

Нередко встречаются ошибки, допущенные ещё на стадии закладывания фундамента, которые могут привести к большим неприятностям, если их вовремя не исправить. Одним из способов исправить подобные ошибки является усиление при помощи буроинъекционных свай.

Несмотря на то, что подобные работы можно выполнить и самостоятельно, гораздо рациональнее обратиться к специалистам. Специалисты компании «АТМ-Аква» работают с различными типами свай с 2004 года и во время проведения работ всегда соблюдают все необходимые строительные нормы, что гарантирует качество и надёжность результата. Говоря об укреплении фундаментов, нельзя не упомянуть главный критерий, которому должны соответствовать реконструированные строения: безопасность! Ведь от того, насколько качественно выполнено усиление основания дома, напрямую зависит безопасность людей, которые в нём живут.

Укрепление ленточных фундаментов при помощи буроинъекционных свай

Данный метод хорошо показал себя не только для укрепления свайного фундамента (винтового), но и для ленточного. Технологии усиления имеют некоторые незначительные различия, однако общий принцип работ схож.

В первую очередь по периметру основания дома выбирается грунт и проводится обустройство пазух. Далее просверливают конусное отверстие на плитном участке фундамента. В это отверстие помещают свайный элемент. После того, как работы завершены, грунт засыпают обратно.

При всех плюсах данной технологии у неё есть и некоторые недостатки. К ним относят довольно высокую стоимость, ограниченность применения и небольшую долговечность относительно иных способов укрепить фундамент.

Заказ работ в «АТМ-Аква»

Во время проведения работ наши специалисты всегда учитывают особенности конкретного здания и окружающей среды. Благодаря обширному опыту в проведении свайных работ и индивидуальному подходу к каждому объекту мы гарантируем надёжность и долговечность выполненных проектов. Опытные бригады рабочих всегда выполняют заказ в срок, указанный в договоре.

Стоимость рассчитывается отдельно для каждого конкретного проекта с учётом места расположения объекта, особенностей грунта, состояния фундамента и т. д.

Компания «АТМ-Аква» выполняет широкий спектр буровых работ не только в Москве, но и во Владимирской, Смоленской, Рязанской, Тульской и Калужской областях.

 

технология усиления фундамента. Буроинъекционные сваи. Описание

Буроинъекционные сваи были разработаны в Италии после окончания Второй мировой войны. Поврежденные во время войны итальянские памятники архитектуры остро нуждались в восстановлении. Для реставрации зданий и памятников истории требовалась специальная технология, обеспечивающая минимальное вмешательство в уже существующую застройку и, в то же время, усиливающая основания и фундаменты сооружений.

Иногда буроинъекционные сваи называют корневидными . Поводом к появлению такого названия стала форма тела, которую сваи образуют в грунте. Свайные стволы по всей длине имеют обширные многочисленные уширения, которые получаются при нагнетании раствора. Пучок тонких свай, которые расходятся под различным наклоном, вызывает ассоциации с корнями деревьев.

Буроинъекционные сваи и их особенности

Отличительной особенностью таких свай является небольшой диаметр, редко превышающий 13 - 25 см и относительно большая глубина. Материалом для ствола буроинъекционых свай является мелкозернистый армированный бетон . Изготавливаются сваи путем инъекции бетона в скважину под давлением.

Раствор для получения мелкозернистого бетона состоит из цемента, соответствующего марке раствора, требуемому сроку схватывания и агрессивности среды. Инертным заполнителем в растворе служит мелко- и среднезернистый песок, а пластифицирующей добавкой - бетонитовый порошок.

Для устройства корневидных свай используют разнообразные растворы в зависимости от задач, которые они должны решить: цементные, цементно-песчаные, цементно-бетонитовые и растворы других составов.

Устройство буроинъекционных свай для усиления фундаментов - наиболее частая область применения данных изделий.


1. Бурение скважины 2. Заполнение скважины мелкозернистым бетоном с одновременным подъемом буровой колонны 3. Установка армокаркаса в скважину 4. Инъекция цеметного раствора в нижнюю часть скважины через специальную трубку

В зависимости от видов грунта, залегающего под нижним концом, корневидные сваи подразделяются на висячие сваи и сваи-стойки. Конструкции, опирающиеся нижними концами на скалу, относятся к сваям-стойкам, а сваи, которые опираются на грунт нижним концом и боковой поверхностью - к висячим сваям. Последние применяются часто в сжимаемых грунтах.

В зависимости от характера нагрузки буроинъекционные сваи армируются либо в верхней части сваи, либо на всю длину. Длина секции арматуры зависит от высоты помещения, в котором идут работы

Усиление фундамента сваями

Укрепление фундаментного основания сваями, позволят продлить эксплуатационный срок сооружения. Выполнить процедуру, возможно используя несколько типов опор: буронабивные, буроинъекционные, вдавливаемые, винтовые. Профессиональные строители используют современные технологии, позволяющие выполнить операцию оперативно и качественно.

1) Усиление фундамента буронабивными сваями
2) Усиление фундамента буроинъекционными сваями
3) Усиление фундамента вдавливаемыми сваями
4) Усиление фундамента винтовыми сваями

Технология усиления буронабивными сваями

Методика укрепления с использование буронабивных опор включает несколько этапов:


Методика усиления буроинъекционными опорами

Технология укрепления буроинъекционными сваями включает проведение следующих операций:

Использование вдавливаемых свайных конструкций

Применение вдавливаемых свай, позволяет существенно упростить работу и ускорить процесс. Опоры имеют сегментарное строение, а в ходе укрепления осуществляется их последовательное заглубление в почву посредством домкрата. Конструкции производятся с применением железобетона и имеют секционное строение, с отдельными элементами, соединяющимися посредством стыков.

Использование технологии вдавливания обеспечивает решение следующих проблем в процессе установки:

Такой метод исключает возможность обрушения и повреждения строения. 

Методика усиления винтовыми сваями

Наиболее доступным и оперативным методом, считается использование винтовых свай.

Технология укрепления фундамента включает следующие этапы:

Работы выполняются в течение одного дня. Благодаря методике удаётся добиться стабильности грунта, отличающегося низкой несущей способностью. Обеспечивается искусственное увеличение указанного параметра. Применение методики усиления позволяет решить проблему постепенного проседания грунта, приводящего к растрескиванию цоколя.

Выполнить необходимые операции помогут профессиональные строители, располагающие современным оборудованием, позволяющим осуществлять процедуру укрепления в кратчайшие сроки. Реализовать план самостоятельно невозможно, поскольку придётся делать трудоёмкую работу. Предварительно надо провести расчёты, позволяющие избежать неточностей, способных ухудшить технические характеристики конструкции и здания в целом.

Внимание! Всем эти занимаемся мы, обратитесь к профессионалам! Звоните: +7 (499) 403-19-55


Полезные материалы

 

Усиление фундаментов

Достаточно часто в строительстве зданий и сооружений можно столкнуться с проблемой, когда фундамент находится в аварийном состоянии. 

 

 

 


Заказать усиление фундамента сваями в Москве

 

 

Буронабивная (просверленная) свая | Глубокие фундаменты

Буронабивные сваи - это железобетонные элементы, которые устанавливаются на месте, в ямах, вырытых с помощью соответствующего оборудования. Способ выполнения этого типа свай прост и применим к большинству типов грунтов, в том числе при наличии зеркала грунтовых вод. В случае выполнения в мягких грунтах может потребоваться использование бентонитовой суспензии. Существует несколько видов буронабивных свай, для которых способ выполнения и применяемое оборудование могут отличаться.Выбирать наиболее подходящий тип свай следует с учетом местных условий и размеров конструкции.

Буронабивные сваи

Буронабивные сваи

Буронабивные сваи

Программа GEO5 Pile предназначена для проверки вертикальной несущей способности забивной, буронабивной сваи или сваи CFA, осадки сваи и горизонтальной несущей способности одиночной сваи. Это также позволяет спроектировать и проверить армирование сваи.

Если проводятся испытания CPT, программное обеспечение GEO5 Pile CPT можно использовать для расчета несущей способности и осадки свай в соответствии с результатами испытаний CPT.

Программа GEO5 Pile Group предназначена для анализа свайного фундамента с жесткой свайной заглушкой с использованием аналитических или численных решений.

Другие источники

Программное обеспечение GEO5 поддерживает другие типы технологий пиллинга:

.

Оптимальное проектирование свайного фундамента с помощью генетических алгоритмов автоматической группировки

В данной статье исследуется оптимальный концептуальный дизайн свайного фундамента на начальном этапе проектирования. Предлагается модульный метод, при котором фундамент делится на модули, и каждый модуль идентифицируется по своим характеристикам - длине, диаметру, количеству и расположению свай. Модули с одинаковыми характеристиками могут быть упакованы и представлены переменной конструкции. Модель оптимизации с минимальными затратами и несколькими конструктивными ограничениями, основанная на китайском коде и ограничении мощности, построена для достижения одновременной оптимизации размера и компоновки стопки.Модель решается с помощью улучшенных генетических алгоритмов автоматической группировки для получения плана с оптимальными переменными и оптимальной группировкой переменных. Практический пример демонстрирует эффективность предложенного подхода.

1. Введение

Фундаменты свай, широко используемые в многоэтажных зданиях, часто размещают одинаковые сваи по равномерной сетке с постоянным интервалом между ними. Такой дизайн очень консервативен и неэкономичен. Несколько стратегий проектирования свайных фундаментов [1–3] представлены для достижения экономичного проектирования.

Оптимизация конструкции свай может быть определена как минимальная стоимость фундамента при сохранении удовлетворительных характеристик. По сравнению с широким изучением и применением техники оптимизации в области проектирования конструкций, разработка оптимизации свайных фундаментов является относительно поздней из-за трех основных трудностей. Во-первых, точное прогнозирование характеристик свайного фундамента практически невозможно из-за неопределенности параметров грунта, сложности взаимодействия сваи-грунт-плот и неточного основного закона слоистого грунта.Даже с учетом множества имеющихся исследований, основанных на теории упруго-пластической деформации [4–6], нелинейный анализ требует различных упрощений и допущений, которые могут не соответствовать реальной ситуации. Как отметил Поулос, «инженерная теория должна изначально основываться на опыте и расширяться или модифицироваться в свете дальнейшего опыта» [7], результаты теоретического анализа свайных фундаментов следует модифицировать в соответствии с опытом практического проектирования. Во-вторых, из-за дискретного характера характеристик сваи (количества, диаметра и длины) оптимизация сваи является дискретной задачей.Кроме того, целевая функция и условия ограничения могут быть прерывистыми, недифференцируемыми или даже трудно выражаемыми математически в терминах проектных переменных [8]. В результате оптимизация сваи должна решаться эффективным методом. В-третьих, сваи практичной конструкции должны быть сгруппированы, потому что конструкции со слишком большим количеством разных свай значительно увеличивают стоимость строительства и управления. Предварительно заданная конфигурация группирования свай на основе опыта приводит к другой проблеме оптимизации с потенциально существенно другим оптимальным решением [9].Поэтому характеристики свай и их группировка должны быть оптимизированы одновременно. Оптимизация группирования является дискретной, и ее следует решать с помощью методов дискретной оптимизации.

Некоторые исследователи [10–15] представили концепцию и теорию структурной оптимизации в процессе проектирования свай и использовали градиентные методы с предпосылками дифференцируемости и непрерывности ограничений / целей для решения задачи оптимизации. Кроме того, другие попытки [8, 16] были сделаны на основе генетических алгоритмов (ГА), которые не имеют предпосылок для дифференцируемости и непрерывности.

В данной статье исследуется проблема оптимизации свай на начальном этапе проектирования с использованием улучшенного генетического алгоритма автоматической группировки (AGGA). Характеристики сваи (количество, длина и диаметр) и расположение свай учитываются с помощью предлагаемого модульного метода для достижения одновременной оптимизации размера и расположения свай. Основным вкладом в статью является предложение нового представления проблемы оптимизации конструкции свай на основе модульного метода, а также использование улучшенного AGGA для решения этой проблемы.Модель оптимизации свай с минимальными затратами с практическими конструктивными ограничениями и ограничением мощности представлена ​​в разделе 2. Конструктивные ограничения оцениваются китайским стандартом JGJ 94-2008 [17], который объединяет теоретические исследования и инженерный опыт и обеспечивает стандарт для Практическое проектирование свайного фундамента в Китае. В разделе 3 применяется AGGA с улучшением функции штрафа и оператора кроссовера для обработки ограничения мощности, представляющего требование группировки стопок.В разделе 4 представлен подробный алгоритм применения улучшенного AGGA для оптимизации свайного фундамента. Практический пример в разделе 5 демонстрирует эффективность предложенного подхода. В конце обсуждаются некоторые выводы.

2. Формулировка оптимизации свайного фундамента

Оптимизация свайного фундамента может быть сформулирована как при условии Физическое значение (1) - (9) дано в следующих разделах.

2.1. Расчетные параметры

Оптимизация свайного фундамента включает оптимизацию длины, диаметра, количества и расположения свай. Чтобы рассматривать такие факторы одновременно, в настоящем исследовании вводятся концепции модуля и пакета. Во-первых, свайный фундамент разделяется на несколько модулей по определенному правилу. Характеристики модуля включают как атрибуты сваи (количество, диаметр и длина), так и расположение свай. Затем, на основе инженерного опыта, модули с одинаковыми характеристиками могут быть упакованы, и каждая упаковка соответствует переменной конструкции.Например, для свайного фундамента с симметричной надстройкой или симметричными приложенными нагрузками часто используется симметричная конструкция. Затем модули, соответствующие свайному фундаменту, можно укладывать по симметричной схеме. Ссылаясь на два шаблона упаковки, предложенные в [14], то есть шаблон изменения строки и шаблон изменения в квадрате, последний используется в этой статье. В качестве иллюстрации рассмотрим свайный фундамент симметричной конструкции каркас-опорная стена на Рисунке 1. Фундамент, содержащий 43 модуля, подвергается только вертикальным нагрузкам.Нагрузки, действующие на фундамент под несущей стенкой, распределяются равномерно, а нагрузки, действующие на фундамент под каждой колонной, отличаются друг от друга. Таким образом, основание под несущей стенкой может иметь симметричную конструкцию, и 25 соответствующих модулей упакованы снаружи внутрь по очереди, причем самые крайние 16 модулей принадлежат первому пакету, 8 модулей во втором внешнем круге назначаются как второй пакет. см. заштрихованную часть рисунка 1, а один самый внутренний модуль - это третий пакет.Каждая колонна рамы на периферии фундамента соответствует модулю, входящему в состав пакета. В результате всем 43 модулям присвоен 21 пакет.


Поскольку модули в каждом пакете имеют одинаковые характеристики, то есть они имеют одинаковое количество свай, длину сваи, диаметр сваи и расположение свай, th пакет определяется как th проектной переменной. Здесь не скаляр, а вектор с

.

Метод местного проектирования свайных фундаментов

В данной работе делается попытка предложить метод местного проектирования свай, основанный на результатах испытания свайной нагрузки для эталонного участка. Такой LPDM просто основан на идентификации трех безразмерных величин, таких как коэффициент мощности CR, коэффициент жесткости SR и коэффициент групповой осадки. Чтобы доказать надежность LPDM, экспериментальные данные, собранные в течение многих лет в Неаполитанской области (Италия), были использованы для получения вышеупомянутых коэффициентов.Затем LPDM был применен в качестве метода предварительного проектирования к трем хорошо задокументированным случаям с применением подходов, основанных на мощности и расчетах (CBD и SBD). Удовлетворительное соответствие между геометрией первоначального проекта свай и геометрией, полученной с помощью LPDM, доказывает, что предложенная методика может быть очень полезной для предварительного проектирования, обеспечивая разумную точность и требуя небольшого количества ручных расчетов.

1. Введение

Проектирование фундаментных систем - это инженерный процесс, который поэтому включает упрощенное моделирование более сложного реального мира.Применительно к свайным фундаментам при проектировании свай всегда учитывается осевая несущая способность одиночной сваи. Среди основных методов оценки значений сопротивления основания агрегата и сопротивления вала агрегата есть методы, основанные на фундаментальных свойствах грунта ( теоретических методов ), таких как угол трения, и методы, основанные на результатах испытаний на месте. ( эмпирических методов ), таких как стандартные тесты на проникновение (SPT) или тесты на проникновение конуса (CPT).Понимание разницы между моделью и реальностью, границ модели и осуществимости различных методов имеет решающее значение.

Теоретические методы состоят в оценке проектных значений следующих выражений: где - эффективное горизонтальное напряжение при разрушении, его оценка является одним из наиболее сложных методов в геотехнической инженерии, и - угол трения грунт-сваи. Горизонтальное эффективное напряжение может быть принято как некоторое отношение вертикального эффективного напряжения, что приводит ко второй форме выражения в уравнении (1).

В уравнении (2) - коэффициент несущей способности, часто принимаемый как функция угла внутреннего трения грунта вблизи вершины сваи, как предлагается в Березанцев и др. [1]; - эффективное вертикальное напряжение, действующее на глубине вершины сваи.

Эмпирические методы, основанные на результатах CPT, состоят в оценке следующих эмпирических соотношений: где и - эмпирические коэффициенты, зависящие как от типа грунта, так и от типа сваи, - значение точечного сопротивления CPT, представляющего слой вдоль ствола сваи. , и - среднее значение, измеренное в подходящем интервале глубины вокруг основания сваи.

Для повышения надежности уравнений (3) и (4) данные нагрузочных испытаний экспериментальных свай можно интерпретировать для получения значений и значений для эталонного участка, и только для такого конкретного участка, используя вычисленные назад значения вышеуказанные коэффициенты делают расчет сваи более точным.

Хотя в последние десятилетия были сделаны значительные улучшения в понимании процессов, управляющих поведением системы грунт-сваи вплоть до отказа, недавние статьи [2, 3] демонстрируют, что наша способность оценивать реакцию сваи на нагрузку все еще далека от совершенства. удовлетворительно для практических целей по конкретному проекту.

Орр [3] проанализировал прогнозы, сделанные 15 геотехническими специалистами в отношении забивных, буронабивных, винтовых свай и свай CFA в различных грунтовых условиях. Прогнозы полностью теоретические, в том смысле, что каждый специалист получил все данные, необходимые для прогнозирования реакции сваи, но не было экспериментальных данных для сравнения прогнозов и производительности. По мнению автора, наблюдается большой разброс значений предельной вертикальной несущей способности (Таблица 1), особенно в отношении монолитных свай (буронабивных, винтовых и CFA).


Тип сваи Кол-во прогнозов (кН) мин. значение (кН) макс. значение Макс. / мин.

Привод 3 1748 2262 1,3
Расточка 10 989 3026 3,1
Винт 8 351 1500 4.3
CFA 11 1290 5093 4.0

Аналогичные результаты были получены в случае события международного прогнозирования, стимулированного ISSMGE TC212, результаты которого были обнародованы во время 3 rd Боливийской международной конференции по глубоким фондам, проходившей в Санта-Крус-де-ла-Сьерра (Боливия). В данном случае на участке Б. были установлены 3 разные сваи (буронабивные, винтовые и CFA).СТАНДАРТНОЕ ВОСТОЧНОЕ ВРЕМЯ. (Боливийский экспериментальный сайт для тестирования), а затем загружается в случае отказа. Анализ прогнозов [2] показывает, что соотношение между прогнозируемыми максимальными и минимальными значениями (72 прогноза, выполненных 121 человеком) было даже больше, чем указано в таблице 1.

Способ повышения надежности и точности Проектирование свай в локальном масштабе заключается в разработке местных методов проектирования свай (LPDM), которые могут использоваться либо на предварительной стадии, либо на заключительной стадии проектирования, в зависимости от данных (качества и количества), на основе которых они были разработаны .

Целью данной работы является (1) предложить LPDM, основанный на интерпретации результатов испытаний свайной нагрузки для эталонного участка, (2) описать некоторые истории болезни, расположенные на эталонном участке, и сообщить наиболее актуальные экспериментальные данные, и (3) применить предложенный LPDM к выбранным историям болезни. Будет показано, что LPDM может быть очень полезным для предварительного проектирования фундамента, будучи довольно точным с инженерной точки зрения, несмотря на то, что требует небольшого количества ручных расчетов.

2.Метод локального проектирования свай

Поскольку прогноз реакции сваи на нагрузку зависит от нескольких неопределенностей, программу испытаний свайной нагрузки следует рассматривать как неотъемлемую часть процесса проектирования и строительства. Испытания свай могут относиться к одной из двух категорий: испытания на разрушение пробных свай, чтобы доказать пригодность системы свай и подтвердить проектные параметры, выведенные из исследования площадки, и испытания, проводимые на эксплуатационных сваях, для проверки конструкции. техника и качество изготовления и подтвердить эффективность сваи в качестве элемента фундамента [4].

Испытания на нагрузку на сваи в основном используются для определения предельной несущей способности свай непосредственно по полученной кривой «нагрузка-оседание» или путем ее экстраполяции, а также жесткости системы сваи-грунт при определенной нагрузке. Нагрузочные тесты также предоставляют значительный объем дополнительных данных, которые часто остаются неиспользованными. Тем не менее, такие данные могут быть лучше использованы, как демонстрирует LPDM, предложенный в следующих разделах.

2.1. Коэффициент мощности

Mandolini et al. [5] ввел коэффициент несущей способности, безразмерный параметр, определяемый следующим образом: где предельная осевая несущая способность сваи, полученная по результатам испытаний сваи на нагрузку, делится на вес сваи,.

Предельная нагрузка на сваю обычно не определяется должным образом, исходя из наблюдения кривой нагрузки-осадки сваи. Простой критерий, который можно использовать для преодоления этой проблемы, - условно определить как нагрузку, вызывающую смещение головки сваи, равную 10% диаметра основания сваи (как, например, предлагается в Еврокоде 7). Если испытание под нагрузкой было остановлено до того, как головка сваи могла испытать такое смещение, можно получить экстраполяцию кривой нагрузки-осадки; например, может быть применен эмпирический метод Чина [6], который предполагает, что форма кривой нагрузка-оседание является гиперболической.Чтобы получить надежное значение путем экстраполяции, во время испытания на нагрузку необходимо измерить осадку головки сваи не менее 5% от диаметра основания сваи.

Коэффициент вместимости CR позволяет сравнивать данные от разных свай (типа и геометрии), принадлежащих к одной и той же территории, с точки зрения геологических и геотехнических условий недр. Для данного установленного объема сваи коэффициент вместимости, как и, зависит от типа сваи и типа почвы. Поскольку состояние грунта является фиксированным, ожидается, что на CR сильно повлияет метод установки свай.На предварительном этапе проектирования, среднее значение коэффициентов пропускной способности, полученное для эталонного участка, позволяет прогнозировать ожидаемое значение. Ясно, что необходимо адекватное количество значений CR, чтобы обеспечить надежную оценку. Поэтому предлагается вычислить коэффициент вариации (CV) популяции CR, чтобы выразить точность.

2.2. Коэффициент жесткости

Mandolini et al. [5] ввел коэффициент жесткости, выраженный следующим образом:

.

Фондов

Фондов

Фонды

Типы фундаментов

Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушечки («изолированные опоры»), ленточные опоры и плоты.
Фундаменты глубокие
включают сваи, свайные стены, диафрагменные стены и кессоны.


Типы фундаментов

Фундамент мелкого заложения

Фундаменты мелкого заложения - фундаменты, заложенные рядом с готовой поверхностью земли; как правило, если глубина фундамента (D f ) меньше ширины основания и менее 3 м.Это не строгие правила, а просто рекомендации: в основном, если нагрузка на поверхность или другие условия поверхности влияют на несущую способность фундамента, это «неглубокий». Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушки («изолированные опоры»), ленточные опоры и плоты.
Фундаменты мелкого заложения используются, когда поверхностные почвы достаточно прочные и жесткие, чтобы выдерживать приложенные нагрузки; они обычно непригодны для слабых или сильно сжимаемых почв, таких как плохо уплотненная насыпь, торф, недавние озерные и аллювиальные отложения и т. д.


Фундамент мелкого заложения

Падовый фундамент

Подушечки фундаментов используются для поддержки отдельных точечных нагрузок, например, от несущей колонны. Они могут быть круглыми, квадратными или прямоугольными. Обычно они состоят из блока или плиты одинаковой толщины, но они могут быть ступенчатыми или изогнутыми, если требуется для распределения нагрузки от тяжелой колонны. Фундаменты с подушечками обычно неглубокие, но можно использовать и глубокие фундаменты.


Фундамент мелкого заложения

Ленточный фундамент

Ленточные фундаменты используются для поддержки линии нагрузок либо из-за несущей стены, либо если линия колонн нуждается в опоре, если положение колонн настолько близко, что отдельные опорные основания не подходят.


Фундамент мелкого заложения

Плотные фундаменты

Плотные фундаменты используются для распределения нагрузки от конструкции на большую площадь, обычно на всю площадь конструкции.Они используются, когда нагрузки на колонны или другие нагрузки на конструкцию близки друг к другу и отдельные опорные основания взаимодействуют друг с другом.

Плотный фундамент обычно представляет собой бетонную плиту, которая простирается по всей загруженной площади. Он может быть усилен ребрами или балками, встроенными в фундамент.

Фундаменты на плотах имеют то преимущество, что они снижают дифференциальные осадки, поскольку бетонная плита сопротивляется дифференциальным движениям между положениями загрузки. Они часто необходимы на мягких или рыхлых грунтах с низкой несущей способностью, поскольку могут распределять нагрузки на большую площадь.


Типы фундаментов

Фундамент глубокий

Глубокие фундаменты - это фундаменты, заложенные слишком глубоко под готовой поверхностью грунта, чтобы на их несущую способность основания влияли условия поверхности, обычно это происходит на глубине> 3 м ниже уровня готовой земли. К ним относятся сваи, опоры и кессоны или компенсированные фундаменты с использованием глубоких фундаментов, а также глубокие подушечные или ленточные фундаменты. Глубокие фундаменты могут использоваться для передачи нагрузки на более глубокие и более подходящие слои на глубине, если неподходящие почвы присутствуют вблизи поверхности.

Сваи - это относительно длинные тонкие элементы, которые передают нагрузки на фундамент через слои грунта с низкой несущей способностью на более глубокие слои почвы или породы с высокой несущей способностью. Они используются, когда по экономическим соображениям, конструкционным соображениям или условиям почвы желательно передавать нагрузки на слои за пределами практической досягаемости фундаментов мелкого заложения. В дополнение к опорным конструкциям сваи также используются для анкеровки конструкций против подъемных сил и для оказания помощи конструкциям в сопротивлении боковым силам и силам опрокидывания.

Опоры - это фундамент, выдерживающий большую конструктивную нагрузку, который сооружается на месте в глубоких котлованах.

Кессоны - это форма глубокого фундамента, который сооружается над уровнем земли, затем опускается до необходимого уровня путем выемки грунта или выемки грунта изнутри кессона.

Компенсированные фундаменты - это глубокие фундаменты, в которых снятие напряжений, возникающих при выемке грунта, примерно уравновешивается приложенным напряжением, создаваемым фундаментом.Таким образом, прикладываемое чистое напряжение очень мало. Компенсированный фундамент обычно представляет собой глубокий фундамент.


Фундамент глубокий

Сваи

Свайные фундаменты можно классифицировать по
тип сваи
(разные конструкции, которые должны поддерживаться, и разные условия грунта, требуют разных типов сопротивления) и
вид конструкции
(могут использоваться разные материалы, конструкции и процессы).


Сваи

Типы свай

Сваи часто используются, потому что на достаточно малых глубинах нельзя найти адекватную несущую способность, чтобы выдержать нагрузки конструкции. Важно понимать, что сваи получают опору как от концевой опоры , так и от поверхностного трения . Пропорция несущей способности, создаваемая либо торцевым подшипником, либо поверхностным трением, зависит от условий почвы. Сваи могут использоваться для поддержки различных типов структурных нагрузок.


Типы свай

Концевые опорные сваи

Концевые несущие сваи - это сваи, которые оканчиваются твердым, относительно непроницаемым материалом, таким как скала или очень плотный песок и гравий. Большую часть своей несущей способности они получают из-за сопротивления слоя у носка сваи.


Типы свай

Сваи фрикционные

Фрикционные сваи получают большую часть своей несущей способности за счет поверхностного трения или адгезии.Это обычно происходит, когда сваи не достигают непроницаемого пласта, а забиваются на некоторое расстояние в проницаемый грунт. Их несущая способность определяется частично концевой опорой и частично поверхностным трением между заделанной поверхностью почвы и окружающей почвой.


Типы свай

Сваи редукционные

Сваи, уменьшающие оседание, обычно закладываются под центральной частью фундамента плота, чтобы уменьшить разницу осадки до приемлемого уровня.Такие сваи укрепляют почву под плотом и помогают предотвратить перекос плота в центре.


Типы свай

Натяжные сваи

Конструкции, такие как высокие дымоходы, опоры электропередачи и пирсы, могут подвергаться большим опрокидывающим моментам, поэтому часто используются сваи для противодействия возникающим подъемным силам у фундаментов. В таких случаях возникающие силы передаются на грунт по длине заделки сваи.Сила сопротивления может быть увеличена в случае буронабивных свай за счет недораскачивания. При проектировании натяжных свай необходимо учитывать эффект радиального сжатия сваи, так как это может привести к снижению сопротивления вала примерно на 10-20%.


Типы свай

Сваи с боковой нагрузкой

Почти все свайные фундаменты подвергаются, по крайней мере, некоторой степени горизонтальной нагрузки. Величина нагрузок по отношению к приложенной вертикальной осевой нагрузке, как правило, будет небольшой, и никаких дополнительных расчетов конструкции обычно не требуется.Однако в случае причалов и пристаней, на которые воздействуют ударные силы швартованных судов, свайных оснований для опор мостов, эстакад для мостовых кранов, высоких дымоходов и подпорных стен, горизонтальный компонент относительно велик и может иметь решающее значение при проектировании. Традиционно сваи в таких случаях устанавливаются под углом к ​​вертикали, обеспечивая достаточное горизонтальное сопротивление за счет составляющей осевой нагрузки сваи, которая действует горизонтально. Однако способность вертикальной сваи противостоять нагрузкам, приложенным нормально к оси, хотя и значительно меньше, чем осевая способность этой сваи, может быть достаточной, чтобы избежать необходимости в таких «сгребающих» или «битых» сваях, установка которых является более дорогой .Поэтому при проектировании свай для восприятия боковых сил важно учитывать это.


Типы свай

Сваи в насыпи

Сваи, проходящие через слои средне- или плохо уплотненного заполнителя, будут подвержены отрицательному поверхностному трению , которое вызывает сопротивление вниз вдоль ствола сваи и, следовательно, дополнительную нагрузку на сваю. Это происходит, когда заливка затвердевает под действием собственного веса.


Сваи

Виды свайных конструкций

Вытесняемые сваи вызывают смещение почвы как в радиальном, так и в вертикальном направлениях, когда вал сваи забивается или вдавливается в землю. При использовании несмещаемых свай (или сменных свай) грунт удаляется, а образовавшаяся яма, заполненная бетоном или сборной бетонной сваей, опускается в яму и заливается раствором.


Виды свайного строительства

Сваи вытесняющие

Пески и зернистые почвы имеют тенденцию уплотняться в процессе смещения, тогда как глины имеют тенденцию к вспучиванию.Сами сваи смещения можно разделить на разные типы, в зависимости от того, как они построены и как они вставляются.


Сваи смещения

Полностью готовые вытесняющие сваи

Они могут быть из сборного железобетона;
армированный по всей длине (предварительно напряженный)
сочлененный (усиленный)
полый (трубчатый) профиль
или из стали различного сечения.


Сваи смещения

Забивные и забивные сваи

Этот тип сваи бывает двух форм. Первый включает в себя вбивание временной стальной трубы с закрытым концом в землю для образования пустоты в почве, которая затем заполняется бетоном, когда труба извлекается. Второй тип такой же, за исключением того, что стальная труба остается на месте, образуя прочный кожух.


Сваи смещения

Винтовые забивочные сваи

Конструкция этого типа выполняется с использованием специального шнека.Однако почва уплотняется, а не удаляется, поскольку шнек ввинчивается в землю. Шнек установлен на полой штанге, которую можно заполнить бетоном, поэтому, когда необходимая глубина будет достигнута, бетон может быть закачан вниз по штоку, и шнек медленно откручивается, оставляя сваю на месте.


Сваи смещения

Способы установки

Сваи забиваются или вдавливаются в грунт.Можно использовать несколько различных методов.


Способы установки

Падение веса

Падающий груз или ударный молот - это наиболее часто используемый метод установки вытесняющих свай. Вес примерно в два раза меньше веса сваи поднимается на подходящее расстояние в направляющей и отпускается, чтобы ударить по головке сваи. При забивке полой трубы сваи вес обычно воздействует на заглушку в нижней части сваи, что снижает любые избыточные напряжения по длине трубы во время вставки.

Вариантами простого отбойного молотка являются отбойные молотки одностороннего и двустороннего действия . Они приводятся в движение паром, сжатым воздухом или гидравлически. В молоте одностороннего действия вес поднимается сжатым воздухом (или другими средствами), который затем выпускается, и весу позволяют упасть. Это может происходить до 60 раз в минуту. Молоток двустороннего действия такой же, за исключением того, что сжатый воздух также используется при движении молота вниз. Однако этот тип молота не всегда подходит для забивки бетонных свай.Хотя бетон может выдерживать сжимающие напряжения, создаваемые молотком, ударная волна, создаваемая каждым ударом молота, может создавать высокие растягивающие напряжения в бетоне при возврате. Это может привести к разрушению бетона. Вот почему бетонные сваи часто подвергаются предварительному напряжению.


Способы установки

Дизельный молот

Быстрые контролируемые взрывы можно производить от дизельного молота. Взрывы поднимают таран, который используется для забивания сваи в землю.Хотя вес поршня меньше, чем вес, используемый в отбойном молотке, повышенная частота ударов может компенсировать эту неэффективность. Этот тип молота наиболее подходит для забивки свай через несвязные зернистые грунты, где большая часть сопротивления приходится на торцевую опору.


Способы установки

Вибрационные методы забивки свай

Вибрационные методы могут оказаться очень эффективными при забивании свай через несвязные зернистые почвы.Вибрация сваи возбуждает зерна почвы, прилегающие к свае, делая почву почти свободно текущей, что значительно снижает трение вдоль вала сваи. Вибрация может создаваться электрическими (или гидравлическими) эксцентриками, вращающимися в противоположных направлениях, прикрепленными к головке сваи, обычно действующими с частотой примерно 20-40 Гц. Если эту частоту увеличить примерно до 100 Гц, это может создать продольный резонанс в свае, и скорость проникновения может достигать 20 м / мин в умеренно плотных зернистых грунтах.Однако большая энергия, возникающая из-за вибрации, может повредить оборудование, распространение шума и вибрации также может привести к заселению близлежащих зданий.


Способы установки

Способы установки домкратом

Домкратные сваи чаще всего используются для опор существующих конструкций. Выкапывая грунт под конструкцией, можно вставить короткие куски сваи и вдавить их в землю, используя в качестве реакции нижнюю часть существующей конструкции.


Виды свайного строительства

Несвижные сваи

При использовании несмещаемых свай почва удаляется, а образовавшаяся яма заполняется бетоном или, иногда, сборная бетонная свая опускается в яму и заливается раствором. Глины особенно подходят для этого типа образования свай, поскольку в глинах требуется только стенка скважины. опора близко к поверхности земли. При бурении более неустойчивого грунта, такого как гравий, может потребоваться какая-либо форма обсадной трубы или опоры, например, бентонитовая суспензия.В качестве альтернативы раствор или бетон можно вводить из шнека, вращающего гранулированный грунт. Таким образом, существует четыре типа несмещаемых свай.

Этот метод строительства создает неравномерную поверхность раздела между стволом сваи и окружающей почвой, что обеспечивает хорошее сопротивление поверхностному трению при последующей нагрузке.


Несвижные сваи

Буронабивные сваи малого диаметра

Они обычно имеют диаметр 600 мм или меньше и обычно изготавливаются с использованием штатива.Оборудование состоит из штатива, лебедки и троса для управления различными инструментами. Основные инструменты показаны на этой диаграмме.

В зернистых почвах основной инструмент состоит из тяжелой цилиндрической оболочки с режущей кромкой и откидной заслонкой внизу. Для проведения раскопок этого типа необходима вода. При перемещении оболочки вверх и вниз на дне ствола скважины происходит разжижение грунта (так как под оболочкой создается низкое давление, поскольку разжиженный грунт быстро перемещается вверх), и он течет в оболочку и

.

Полевые испытания и упрощенный метод расчета для статической буровой узловой сваи

Для изучения несущих характеристик нового типа статического бурового узлового фундамента (SDRN), который состоит из сваи PHC, бамбуковой сваи и цементного грунта , были проведены полевые испытания трех свай путем установки датчиков внутреннего напряжения арматуры для сбора данных испытаний. Результаты испытаний показывают, что сваи SDRN находились в упругом состоянии, и кривые осадки-осадки медленно менялись до достижения предельной прочности.По мере увеличения нагрузок на головку сваи, трение вала сваи постепенно увеличивалось, а осевые силы постепенно уменьшались по глубине сваи. С учетом взаимодействия сваи, цементных грунтов и окружающих грунтов предложен упрощенный метод расчета осадки и несущей способности свай SDRN. При соответствующих параметрах результаты расчетов, полученные по предлагаемой методике, сравнивались с данными натурных экспериментов, что свидетельствует о приемлемых соглашениях; Таким образом, можно сделать вывод, что применимость и прогностическая способность предложенного метода были проверены.

1. Введение

Благодаря преимуществам с точки зрения экономики и высокой скорости забивки по сравнению с буронабивными сваями, предварительно напряженные пустотные бетонные сваи (PHC) в последнее время широко используются в глубоких мягких грунтах в Китае. Тем не менее, трение вала сваи PHC всегда невелико при использовании в мягких грунтах, в результате чего легко достигается конечное несущее состояние, и после этого возникают большие осадки. Процесс строительства сваи PHC оказывает сильное сдавливающее действие на окружающую инфраструктуру и почвы [1, 2].Как новый тип сборных железобетонных свай, бамбуковые сваи широко используются для эффективного улучшения несущих свойств фундаментов. Тем не менее, аналогичные проблемы, связанные с упомянутыми выше сваями PHC, также возникали в процессе строительства бамбуковых свай. Благодаря незначительному сдавливающему эффекту в процессе строительства статическая буровая узелковая свая (SDRN) получила широкое распространение в глубоких мягких грунтах провинции Чжэцзян в Китае. Сделан вывод о том, что статическая буровая узелковая свая (SDRN) впервые была использована в Японии, а затем внедрена в Китае [3, 4]; Свая SDRN состоит из сваи PHC, бамбуковой сваи и окружающих цементированных грунтов.Метод статического бурения с укоренением является новым и экологически безопасным, он оказывает незначительное влияние на окружающие фундаменты и значительно снижает выбросы бурового раствора [4–6]. Процесс строительства можно резюмировать следующим образом: (1) Бурение скважины: установите буровой станок в проектное положение и просверлите сваю с помощью специального шнека с регулируемой скоростью бурения в соответствии с геологическими условиями. В процессе бурения скважина ремонтируется и защищается путем закачки бентонитовой суспензии с высоким содержанием воды.(2) Расширяющийся конец сваи: используемый здесь буровой станок специально изготовлен с расширяемым крылом, которое увеличивает диаметр на дне отверстия для заливки увеличенного основания сваи; весь процесс контролируется системой автоматического управления. (3) Заливка цементного раствора на конце сваи и со стороны ствола сваи: многократное поднятие и опускание бурового станка во время процесса затирки, чтобы цементная паста вводилась в основание расширяющейся лунка и зацементированный грунт успешно формируется.Заливка цементного раствора со стороны сваи: извлечение бурового раствора и заливка цементного раствора со стороны сваи вдоль отверстия и повторное перемешивание при извлечении бурового станка. (4) Посадка: установка сваи в отверстие, заполненное цементным раствором, после бурения машина вытащена. Весь процесс контролируется, чтобы гарантировать, что свая остается вертикальной и достигает заданной глубины. Процесс строительства статической буровой сваи с узловатой корневой системой также показан на рисунке 1.


Для изучения несущих характеристик статической буровой сваи с корневой системой при вертикальной нагрузке были проведены полномасштабные разрушающие и неразрушающие полевые испытания на трех статических буровых установках с корневой системой. сваи были вынесены.Испытанные сваи были прикреплены тензодатчиками для исследования механизма передачи нагрузки статических буровых корневых свай. Расчетные нагрузки и распределение осевых сил были получены в результате полевых испытаний, что свидетельствует о важных несущих характеристиках этого свайного фундамента нового типа.

Для оценки осадки сваи и моделирования механизма передачи нагрузки между стволом сваи и окружающим грунтом были предложены различные методы прогнозирования несущей способности и осадки свайного фундамента при вертикальных нагрузках в течение последних нескольких десятилетий.Однако считается, что исследования методов расчета этой сваи нового типа (SDRN) пока далеко отстают от инженерной практики. Многие исследователи предлагали упрощенные аналитические методы, учитывающие относительное смещение между стволом сваи и окружающим грунтом [7–10]. Используя функции передачи нагрузки для описания поведения взаимодействия сваи и грунта, метод передаточной функции был предложен для описания механизма передачи нагрузки Сидом и Ризом [11], а позже был расширен многими другими исследователями [10, 12, 13].Несмотря на то, что вышеупомянутые методы имеют много преимуществ в анализе механизма осадки и передачи нагрузки для одиночной сваи, они не подходят для этой композитной сваи нового типа (SDRN) и не применимы из-за взаимодействия между сваей PHC и бамбуковой совместной сваей, окружающие почвы и цементный грунт. Что касается сложного механизма взаимодействия между сваями и окружающими грунтами, наиболее надежным методом оценки реакции одиночной сваи на вертикальные нагрузки должно быть испытание статической нагрузкой на сваи в полевом масштабе.Тем не менее, высокая стоимость и трудоемкость являются проблемами, вызванными статическими нагрузочными испытаниями свай на месте. Между тем, упрощенные методы, позволяющие быстро оценить несущие характеристики одиночной сваи этой сваи нового типа (SDRN), а также нелинейность между цементным грунтом и окружающим грунтом, редко доступны в инженерной практике. Цель данной статьи - получить лучшее представление о поведении статической буровой узловой сваи (SDRN) на основе анализа полевых испытаний и предложить упрощенный метод расчета для прогнозирования несущей способности и осадки для этой сваи нового типа. с учетом взаимодействия сваи, цементных грунтов и окружающих грунтов.Проведенный сравнительный анализ результатов расчетных и полевых испытаний показал, что предлагаемый метод достаточно точен для прогнозирования поведения свайного фундамента нового типа.

2. Полевые условия и описание испытательной сваи

Три статические буровые узловые сваи были испытаны в полевых условиях, и датчики напряжения арматуры, используемые для измерения напряжения арматуры в арматурном каркасе, были встроены в сваи во время производственного процесса в мастерской, и хорошая защита была получена во время строительства, как показано на рисунке 2.Измерители напряжения арматурных стержней были расположены на 1,5 м, 18 м, 28 м, 39 м, 46,5 м и 53,5 м под головкой испытательных свай, соответственно, и каждая позиция закладной секции имела набор из четырех датчиков, как показано на рисунке. 3 (а).


Для оптимального проектирования в испытательных сваях использовалась композитная свая, сочетающая в себе сваю PHC в верхней части с соответствующим бамбуковым соединением сваи в нижней части, как показано на рисунке 3 (b). Размер узловых свай, использованных в полевых испытаниях, составлял: 650–500 (100) мм в нижней части статической буровой узловой сваи на 15 м и 600 (110) мм в верхней части сваи на 40 м.Детальное значение типа 650-500 (100) мм состоит в том, что внешний диаметр бамбукового соединения в свае составляет 650 мм, внешний диаметр остальных частей составляет 500 мм, а толщина стенки сваи составляет 100 мм. 600 (110) мм означает, что внешний диаметр сваи составляет 600 мм, а толщина стенки трубной сваи составляет 110 мм. Подробное значение вышеуказанных размеров также показано на Рисунке 3 (b).

Полевые испытания были проведены в Шанхае, Китай, и на том же месте были испытаны три статические буровые узловые сваи с укоренением.Геотехнические свойства и параметры полевого грунта представлены в таблице 1.


Количество слоев Название слоя почвы Высота нижнего слоя слоев (м) Толщина слоя почвы (м) Удельное сопротивление пробиванию (м) Значение предельного сопротивления трению стороны сваи (кПа) Предельное сопротивление трению конца сваи (кПа)

①-1 Разное заполнить 1.09 1.09 15
②-1 Илистая глина −0,31 1,4 0,65 40
②-3 Песчаная илистая почва −3,61 3,3 2,75 15
Глина илистая илистая −7,51 3,9 0,46 25
Глина грязная −17.04 9,53 0,61 40
⑤-1 илистая глина −25,41 8,37 1,04 55
⑤-3 илистая глина с ил −36,11 10,7 1,63 65
⑤-4 Глина илистая −38,41 2,3 2,13 65
Глина ил −42.31 3,9 4,28 65
⑧-1 Илистая глина −47,21 4,9 2,01 60
⑧-2 илистая почва с прослоями с илистой глиной −55,17 7,96 7,04 80 3500
Ил - 15,21 110 8500

Полевые испытания проводились в соответствии с методом медленной поддерживающей нагрузки, описанным в Китайском техническом кодексе по испытаниям свай фундамента зданий [14].Нагрузка создавалась за счет реакции домкратов на вершину сваи и постепенно увеличивалась. Величина нагрузки на каждом этапе была выбрана равной 1/8 ~ 1/12 максимальной расчетной нагрузки для испытания, а величина первой ступени нагрузки была вдвое больше, чем на последующих ступенях нагрузки. На каждом шаге нагрузки, оседание головы сваи регистрировалось после приложения нагрузки и сохранялось в течение 5, 15, 30, 45 и 60 мин. В дальнейшем оседание регистрировалось каждые 30 мин. Каждое приращение нагрузки сохранялось после нагрузки до тех пор, пока два последовательных смещения в течение каждого часа не стали меньше нуля.1 мм. Испытание на разгрузку было выполнено путем уменьшения нагрузки с приращениями, которые в два раза превышают приращения нагрузки. Эти требования были основаны на типовых критериях, рекомендованных Техническим кодексом Китая по испытаниям свай фундамента [14]. Испытанные противодействующие силы сваи обеспечивались реактивной рамой перегрузки и системой измерения гидравлического домкрата. Система испытаний на статическую нагрузку для свайного фундамента была адаптирована для измерения и сбора данных с датчиков напряжения арматуры.

Диаметр скважины 750 мм для трех тестовых свай.Диаметр расширения у основания сваи составляет 1200 мм, а длина расширения составляет 2750 мм для трех испытанных свай. В процессе строительства бурения скорость бурения долота автоматически контролируется системой автоматического мониторинга по собранным данным автоматических устройств. Подробные параметры испытанных свай показаны в Таблице 2.


Испытанная свая Длина сваи (м) Диаметр сваи (мм) Максимальная прилагаемая нагрузка сваи (кН ) Осадка головки сваи (мм) Смещение оголовка сваи (мм) Остаточная осадка (мм) Скорость восстановления (%)

S-1 55 600 (650–500) 10000 73.49 46,53 26,96 63,3
S-2 55 600 (650–500) 8000 81,88 55,72 26,16 68,1
S-3 55 600 (650–500) 9600 24,01 21,51 2,50 89,6

Скорость бурения (м / мин) Толщина обрабатываемых слоев почвы буровой конструкции (м)
0–20 20–42 42–47 47–52 52–55

Сваи испытательные S-1 0.92 0,78 0,10 1,41 0,60
S-2 0,99 0,61 0,29 1,60 1,45
S-3 0,61 1,22 0,13 1,50 0,61

3. Результаты испытаний статической нагрузкой
3.1. Реакция на смещение сваи

Предел несущей способности одиночной сваи можно определить как нагрузку, возникающую при быстром увеличении смещения на головке сваи при постоянной нагрузке.Разрушение пробивки обычно связано с оседанием головы сваи, которое намного превышает допустимый диапазон для проектных норм. Если точка погружения не ясна, предельную нагрузку можно получить путем анализа кривой «нагрузка-перемещение». Кривая «нагрузка-смещение» является полезным инструментом для определения предельной несущей способности одиночной сваи при нагрузке сжатия. Испытания вертикальной сжимающей статической нагрузки были выполнены через 45 дней после установки испытываемых свайных конструкций с использованием метода медленного обслуживания и дополнительной нагрузки в соответствии с Китайским техническим кодексом по испытаниям свай фундамента здания [14].Кривые нагрузка-оседание для трех испытанных свай показаны на рисунке 4.


Из рисунка 4 видно, что испытательная свая S-1 нагружена до 8800 кН, а совокупная осадка составляет 36,65 мм и стабильна. . Приложенная нагрузка продолжает увеличиваться до 9600 кН, а кривые осадки испытательной сваи S-1 резко падают. Предел несущей способности испытательной сваи С-1 определен как 8800 кН. Испытательная свая S-2 нагружена до 8000 кН, а совокупная осадка - 24.01 мм и стабильна, поэтому предельная несущая способность испытательной сваи С-2 составляет не менее 8000 кН. Испытательная свая S-3 нагружена до 8800 кН, а совокупная осадка составляет 35,70 мм и устойчива. Приложенная нагрузка на головку сваи S-3 затем продолжает увеличиваться до 9600 кН, и кривые осадки испытательной сваи S-3 также показывают резкое падение, как и испытательная сваа S-1, и предельная несущая способность испытательной свая С-3 также определена на 8800 кН.

После испытаний на статическую нагрузку испытательные сваи начинают разгружаться, и кривые разгрузки-перемещения также показаны на рисунке 4.Остаточные осадки для испытанных свай S-1, S-2 и S-3 составляют 26,96 мм, 2,50 мм и 26,16 мм соответственно, а показатели отскока для трех указанных выше испытанных свай составляют 63,3%, 89,6% и 68,1% соответственно.

3.2. Осевые силы и боковое трение испытательных свай

Как упоминалось выше, испытанные сваи оснащены датчиками напряжения арматурных стержней, и средние осевые силы испытываемых свай могут быть рассчитаны на основе измеренной частоты вибрации датчика напряжения в поперечном сечении. используя следующее уравнение: где - осевое усилие сваи в расчетном сечении, - модуль упругости бетона, - модуль упругости стального стержня, - площадь чистого поперечного сечения бетонной сваи без учета площади сечения арматуры, общая площадь арматуры в сечении сваи, и - деформация, которая рассчитывается по следующему уравнению: где - коэффициент скорости (кН / Гц 2 ), - измеренное значение частоты при нагружении и ступени, - начальная частота встроенных датчиков, - площадь одиночного армирования.Распределение осевых усилий сваи на датчиках заделки секций может быть получено с помощью приведенных выше уравнений (1) и (2), показанных на рисунке 5.

Из рисунка 5 видно, что осевые силы трех испытуемых сваи постепенно уменьшаются по глубине сваи с разными уровнями нагрузки на головку сваи. На той же глубине осевые силы сваи начинают расти с увеличением прилагаемых нагрузок на головку сваи.

Боковое трение по каждой свае под сжимающей нагрузкой можно рассчитать, разделив разницу двух последовательных осевых сил на площадь вала сваи между двумя тензодатчиками.Следовательно, боковое трение - это средняя величина, соответствующая расстоянию между двумя тензодатчиками. В качестве нового типа композитного свайного фундамента при расчете подшипников статических узловых свай с укороченным бурением сваи PHC и зацементированный грунт вокруг сваи рассматриваются как один объект при расчете бокового трения из-за высокой прочности сцепления между стержнем сваи и окружающий цемент. Среднее трение вала сваи любых двух соседних секций можно получить по следующему уравнению: где - осевая сила на измеренном участке и , - осевая сила на измеренном участке и - 1, - диаметр сваи, - расстояние между двумя тестируемыми участками соответственно.Распределение среднего бокового трения сваи вдоль испытательной сваи показано на рисунке 6.

Можно видеть, что мобилизация бокового трения сваи связана с приложенными головными нагрузками, а боковые трения сваи постепенно развиваются с увеличением приложенной нагрузки. нагрузка на головку сваи до тех пор, пока трение между сваей и окружающим грунтом не будет полностью мобилизовано. На рисунке 6 также показано, что оно будет немного уменьшаться с увеличением приложенной нагрузки в некоторых слоях грунта после полного развития бокового трения сваи.На Рисунке 6 также можно увидеть, что боковые трения сваи постепенно развиваются полностью от вершины до конца.

3.3. Анализ подвижных торцевых нагрузок сваи

Подвижная базовая нагрузка сваи также может быть оценена с помощью уравнений (1) и (2). Увеличение подвижных торцевых нагрузок сваи с увеличением нагрузок на головку сваи показано на рисунке 7 (a), а соотношения приложенных нагрузок на головку сваи показаны на рисунке 7 (b). Из рисунка 7 видно, что подвижные концевые нагрузки сваи увеличиваются приблизительно линейно с увеличением нагрузок на головку сваи, за исключением фаз разрушения при испытаниях на статическую нагрузку для сваи S-1 и сваи S-3.

Из рисунков 4 и 7 и многих проверенных статистических данных свай можно вывести, что взаимосвязь между концевыми нагрузками сваи и оседанием также может быть выражена трехлинейной моделью на основе существующих результатов исследований (Xie et.al, 2013; Jiang et.al, 2010) [15, 16], где - сопротивление конца сваи и осадки на концах сваи, а соотношение между оседанием нагрузок на концах сваи показано на рисунке 8.


Когда смещение грунт торца сваи находится внутри, жесткость грунта торца сваи равна, и с увеличением смещения концов сваи подвижные концевые нагрузки возрастают линейно.В то время как величина смещения грунта на концах сваи находится между и, жесткость грунта на концах сваи составляет, и увеличение нагрузок на конец сваи замедляется. Когда смещение грунта торца сваи превышает это значение, нагрузки на конец сваи больше не изменяются при смещении конца сваи.

Значения приведены Randolph и Wroth [17]: где - жесткость на сдвиг, а - коэффициент Пуассона для грунта основания сваи.

Значение можно предсказать по измеренной кривой «нагрузка-оседание».Кожное трение почти полностью развивается, когда оседание в головке сваи значительно увеличивается с увеличением нагрузки на головку сваи. Повышенная нагрузка на головку сваи поддерживается сопротивлением конца сваи. То есть, и значения представлены где - отношение увеличенной нагрузки к увеличенной осадке на головке сваи, [10].

4. Упрощенный метод расчета

Несмотря на то, что существует много методов расчета осадки свайного фундамента и механизма передачи нагрузки одиночной сваи, эти методы для этой композитной сваи нового типа не очень применимы из-за наличия цементных грунтов и взаимодействие свайных, цементных грунтов и окружающих грунтов.

Лабораторные экспериментальные исследования и данные инженерных измерений показывают, что механическое поведение поверхности контакта сваи с грунтом является нелинейным [10, 18], а нелинейное поведение между цементным грунтом и окружающим грунтом в этой статье описывается простым гиперболическая нелинейная модель, как показано на рисунке 9 (а).

Из гиперболической зависимости, показанной на рисунке 9 (а), можно увидеть, что трение стороны сваи нелинейно увеличивается с постепенным увеличением прилагаемых нагрузок на голову сваи.Когда относительное смещение сваи-цементный грунт достигает значения S u , напряжение сдвига ствола сваи почти достигает предельного значения

.

Введение в различные алгоритмы обучения с подкреплением. Часть I (Q-Learning, SARSA, DQN, DDPG) | Автор: Kung-Hsiang, Huang (Steeve)

Обычно установка RL состоит из двух компонентов: агента и среды.

Иллюстрация обучения с подкреплением (https://i.stack.imgur.com/eoeSq.png)

Затем среда относится к объекту, над которым действует агент (например, к самой игре в игре Atari), а агент представляет Алгоритм RL. Среда начинается с отправки состояния агенту, который затем на основе своих знаний предпринимает действие в ответ на это состояние.После этого среда отправляет пару следующих состояний и вознаграждение обратно агенту. Агент обновит свои знания с помощью награды, возвращаемой средой, чтобы оценить свое последнее действие. Цикл продолжается до тех пор, пока среда не отправит терминальное состояние, которое заканчивается эпизодом.

Большинство алгоритмов RL следуют этому шаблону. В следующих параграфах я кратко расскажу о некоторых терминах, используемых в RL, чтобы облегчить наше обсуждение в следующем разделе.

Определение

  1. Действие (A): все возможные действия, которые может предпринять агент.
  2. Состояние (S): текущая ситуация, возвращаемая средой.
  3. Награда (R): немедленный возврат из среды для оценки последнего действия.
  4. Политика (π): Стратегия, которую агент использует для определения следующего действия на основе текущего состояния.
  5. Стоимость (V): ожидаемая долгосрочная доходность с учетом скидки, в отличие от краткосрочного вознаграждения R. Vπ (s) определяется как ожидаемая долгосрочная доходность π политики раскола текущего состояния.
  6. Q-значение или значение действия (Q): Q-значение аналогично значению Value, за исключением того, что оно принимает дополнительный параметр, текущее действие a . Qπ (s, a) относится к долгосрочному возврату текущего состояния s , предпринимая действия a в соответствии с политикой π.

Без модели по сравнению с На основе модели

Модель предназначена для моделирования динамики окружающей среды. То есть модель изучает вероятность перехода T (s1 | (s0, a)) из пары текущего состояния s 0 и действия a в следующее состояние s 1 . Если вероятность перехода успешно изучена, агент будет знать, насколько вероятно войти в определенное состояние с учетом текущего состояния и действия.Однако алгоритмы, основанные на модели, становятся непрактичными по мере роста пространства состояний и пространства действий (S * S * A для табличной настройки).

С другой стороны, алгоритмы без моделей полагаются на метод проб и ошибок для обновления своих знаний. В результате ему не требуется место для хранения всей комбинации состояний и действий. Все алгоритмы, обсуждаемые в следующем разделе, попадают в эту категорию.

Соответствие политике и политике Вне политики

Агент, подключенный к политике, изучает значение на основе своего текущего действия, производного от текущей политики, тогда как его часть, не связанная с политикой, изучает его на основе действия a *, полученного из другой политики.В Q-обучении такой политикой является жадная политика. (Мы поговорим об этом подробнее в Q-Learning и SARSA)

2.1 Q-Learning

Q-Learning - это внеполитический алгоритм RL без моделей, основанный на хорошо известном уравнении Беллмана:

Уравнение Беллмана (https : //zhuanlan.zhihu.com/p/21378532? refer = intelligentunit)

E в приведенном выше уравнении относится к математическому ожиданию, а ƛ - к коэффициенту дисконтирования. Мы можем переписать его в виде Q-значения:

Уравнение Беллмана в форме Q-значения (https: // zhuanlan.zhihu.com/p/21378532?refer=intelligentunit)

Оптимальное значение Q, обозначенное как Q *, может быть выражено как:

Оптимальное значение Q (https://zhuanlan.zhihu.com/p/21378532?refer= Intelligentunit)

Цель состоит в том, чтобы максимизировать Q-значение. Прежде чем погрузиться в метод оптимизации Q-value, я хотел бы обсудить два метода обновления значений, которые тесно связаны с Q-обучением.

Итерация политики

Итерация политики запускает цикл между оценкой политики и ее улучшением.

Итерация политики (http://blog.csdn.net/songrotek/article/details/51378582)

Оценка политики оценивает функцию ценности V с помощью жадной политики, полученной в результате последнего улучшения политики. С другой стороны, улучшение политики обновляет политику действием, которое максимизирует V для каждого состояния. Уравнения обновления основаны на уравнении Беллмана. Он продолжает повторяться до схождения.

Псевдокод для изменения политики (http://blog.csdn.net/songrotek/article/details/51378582)

Итерация значения

Итерация значения содержит только один компонент.Он обновляет функцию ценности V на основе оптимального уравнения Беллмана.

Оптимальное уравнение Беллмана (http://blog.csdn.net/songrotek/article/details/51378582) Псевдокод для изменения значений (http://blog.csdn.net/songrotek/article/details/51378582)

После итерация сходится, оптимальная политика напрямую получается путем применения функции максимального аргумента для всех состояний.

Обратите внимание, что эти два метода требуют знания вероятности перехода p , что указывает на то, что это алгоритм на основе модели.Однако, как я упоминал ранее, алгоритм, основанный на модели, страдает проблемой масштабируемости. Так как же Q-Learning решает эту проблему?

Q-Learning Update Equation (https://www.quora.com/What-is-the-difference-between-Q-learning-and-SARSA-learning)

α относится к скорости обучения (т.е. насколько быстро мы приближается к цели). Идея Q-Learning во многом основана на итерациях значений. Однако уравнение обновления заменяется приведенной выше формулой. В результате нам больше не нужно беспокоиться о вероятности перехода.

Псевдокод Q-обучения (https://martin-thoma.com/images/2016/07/q-learning.png)

Обратите внимание, что следующее действие a ' выбрано для максимизации Q-значения следующего состояния. следования текущей политике. В результате Q-обучение относится к категории вне политики.

2.2 Состояние-действие-награда-государство-действие (SARSA)

SARSA очень напоминает Q-обучение. Ключевое различие между SARSA и Q-Learning заключается в том, что SARSA - это алгоритм, соответствующий политике. Это означает, что SARSA изучает значение Q на основе действия, выполняемого текущей политикой, а не жадной политикой.

SARSA Update Equation (https://www.quora.com/What-is-the-difference-between-Q-learning-and-SARSA-learning)

Действие a_ (t + 1) - это действие, выполняемое в следующее состояние s_ (t + 1) согласно текущей политике.

Псевдокод SARSA (https://martin-thoma.com/images/2016/07/sarsa-lambda.png)

Из псевдокода выше вы можете заметить, что выполняются два выбора действий, которые всегда соответствуют текущей политике. Напротив, Q-обучение не имеет ограничений для следующего действия, пока оно максимизирует Q-значение для следующего состояния.Следовательно, SARSA - это алгоритм, основанный на политике.

2.3 Deep Q Network (DQN)

Хотя Q-обучение - очень мощный алгоритм, его основной недостаток - отсутствие универсальности. Если вы рассматриваете Q-обучение как обновление чисел в двумерном массиве (пространство действий * пространство состояний), оно, по сути, напоминает динамическое программирование. Это означает, что для состояний, которые агент Q-Learning не видел раньше, он не знает, какое действие предпринять. Другими словами, агент Q-Learning не имеет возможности оценивать значение для невидимых состояний.Чтобы справиться с этой проблемой, DQN избавляется от двумерного массива, введя нейронную сеть.

DQN использует нейронную сеть для оценки функции Q-значения. Входом для сети является ток, а выходом - соответствующее значение Q для каждого действия.

Пример DQN для Atari (https://zhuanlan.zhihu.com/p/25239682)

В 2013 году DeepMind применил DQN к игре Atari, как показано на рисунке выше. Входными данными является необработанное изображение текущей игровой ситуации. Он прошел через несколько слоев, включая сверточный слой, а также полностью связанный слой.Результатом является Q-значение для каждого действия, которое может предпринять агент.

Вопрос сводится к следующему: Как мы обучаем сеть?

Ответ заключается в том, что мы обучаем сеть на основе уравнения обновления Q-обучения. Напомним, что целевое значение Q для Q-обучения:

Целевое значение Q (https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf).

Смотрите также