Своими руками приспособление для изгиба арматуры
как сделать своими руками (чертежи)
При возведении дома на нескольких этапах строительства требуется применение арматуры:
- При устройстве фундамента;
- При возведении перекрытий;
- При устройстве армопояса.
Арматура поставляется на строительную плщадку в виде прямых бетонных прутьев, и, чтобы проложить по периметру дома, в некоторых местах её потребуется согнуть. Неправильная гибка арматуры (с подрезами, подогревом мест сгиба) может привести к уменьшению прочностных характеристик. Для «правильного» сгибания используются специальные инструменты – арматурогибы.
Сфера применения гибочных станков для арматуры
Гибочные станки бывают с ручным и с электрическим приводом. Первые чаще применяются для упрощения работ на стройке и для решения бытовых задач:
- Для гибки арматуры непосредственно на стройплощадке при возведении зданий и сооружения на этапе армирования ЖБ-конструкций;
- Для изготовления отдельных изделий из железобетона;
- Для изготовления каркасов, рам, креплений;
- Для производства деталей машин и механизмов.
Станки с электрическим приводом применяются при массовом производстве металлических и ЖБ-изделий.
Особенности оборудования
Арматурогибы ручные встречаются в трёх разных исполнениях:
- На основе простого рычага – в этой системе чем длиннее рычаг, тем меньше сил для сгибания нужно приложить.
- Статичные, которые служат для надёжной фиксации прута. С такими станками для сгибания нужно использовать дополнительные устройства – ключи.
- На системе рычагов – благодаря системе из нескольких рычагов позволяют производить сгибание своими силами арматуры диаметром до 16 мм под любым углом.
Электрические арматурогибы работают на электрическом моторе и не требуют применения усилий оператора для выполнения операций изгиба – оператору достаточно управлять станком с помощью ножной педали. Существуют электрические станки с ЧПУ.
Принцип сгибания арматуры
Принцип работы гибочного станка основан на том, чтобы арматура прочно фиксировалась (одного или двух концов) и по нажатию оператора, усиленного рычагом или системой рычагов, сгибалась под нужным углом.
Согласно строительным нормам, угол сгиба стержня должен быть таким, чтобы в готовом ЖБ-изделии бетон не повредился и не покрошился на месте сгиба. Не допускается изгиб стержня по надрезу или под действием повышенной температуры – это снизит прочностные характеристики прута, и, как следствие, будущей конструкции.
Арматуру можно гнуть только «на холодную». Самый простой гибочный станок состоит из двух соединенных болтом уголков. В наипростейшем, но не самом надёжном, варианте их можно даже не сваривать между собой.
Выполнение изгиба
При выполнении изгиба следует соблюдать строительные нормативны для конкретного типа арматуры: например, допустимый угол загиба А-III составляет 90 градусов, при условии, что радиус загиба не меньше 6-8 диаметров стрежня. Если арматурный пруток сгибается на 180%, прочность снизится уже на 10%.
Как сделать приспособление для гибки арматуры
Небольшого диаметра стержни можно гнуть на простых приспособлениях. Для изготовления рамок, хомутов из прутов 6-8 мм можно использовать деревянную опору (кусок бревна) и три куска арматуры в качестве упоров. Два стержня забиваются в опору по одной оси, один между ними – на расстоянии от оси, равном диаметру сгибаемой арматуры. Тонкую арматуру можно также гнуть об уголок с нижним упором, приваренном к любой вертикальной поверхности (стене, столбу).
Конструкция самодельного гибочного станка
Самодельный гибочный станок – более сложное и более надёжное устройство. Арматурогиб своими руками изготавливается из металлической пластины не меньше 6-8 мм толщиной и арматурных прутков, уголков.
Последовательность действий
- Изготовить основание станка (станину). Чем больше диаметр стержней, которые планируется изгибать на инструменте, тем надёжней станок должен быть закреплён на полу.
- К станине приварить металлическую плиту с заранее приваренным осевым штырём или уголком, на который будет опираться арматурный стержень.
- Соорудить поворотную платформу. На платформе монтируются рычаг (в качестве рычага можно использовать кусок трубы) и центральный и гибочный штыри (упоры), вокруг которых будет гнуться арматура.
Расстояние между упорами выбирается исходя из максимального размера сгибаемой арматуры. Чертежи самодельного арматурогиба, приведены на рисунке ниже:
Самодельные против заводских
Как можно видеть из статьи, изготовить самодельный станок достаточно просто и дёшево. Однако, заводские ручные арматурогибы стоят ненамного дороже самодельных и имеют качество сборки лучше кустарного. За изготовление самодельного станка имеет смысл взяться тому, у кого уже есть опыт изготовления самодельных инструментов.
Преимущества ручных арматурогибов
Ручные арматурогибы часто применяются и в профессиональной, и в бытовой сфере, потому что:
- служат для упрощения и ускорения строительных работ;
- при этом они просты в применении;
- они портативны, мало весят;
- несмотря на свою портативное исполнение, могут работать с большими объемами,
- не требуют дополнительного обслуживания и ремонта;
- если они заводского производства, то редко ломаются и долго служат.
Станок для гибки арматуры своими руками (чертеж + фото)
Мы остановились на простом варианте станка для гибки арматуры который можно сделать своими руками. Еще вы узнаете простые способы гибки арматуры вручную.
Если вы начали возводить новый дом, то, для укрепления бетонного фундамента вам понадобится сделать армированный каркас. Арматурный прут выпускается, как любой металлопрокат, исключительно в прямом виде. А ведь для того, чтобы изготовить каркас из арматуры, ее надо определенным образом погнуть. Причем выполнять эту операцию придется непосредственно на месте строительства. Рациональный выход есть лишь один — это сделать станок для гибки арматуры своими руками.
Потраченное время и средства на самодельный станок для гибки арматуры окупиться еще на стадии строительства фундамента вашего дома. Его можно будет также использовать и в дальнейшем. Например, для изготовления закладных деталей, таких, как оконные или дверные перемычки. Но и после этого он не раз сможет вам пригодиться для сборки различных стальных конструкций.
Принцип сгибания арматуры
Сгибание арматурного прута представляет собой процесс контролируемого изменения направления центральной оси. При этом в месте деформации одни слои металла будут растягиваться, а другие — сжиматься.
Одним из основных определяющих факторов при сгибании является величина усилия, прикладываемая к месту деформации. Она напрямую зависит от вида стали и диаметра сечения арматуры. Таким образом, можно сразу определиться, чем лучше и толще арматурный пруток, тем больше сил понадобиться прикладывать для его сгибания.
Эти определения должны послужить нам основой для дальнейших расчетов при изготовлении приспособления для сгибания арматуры своими руками.
Как согнуть арматуру без специального устройства
И все-таки начнем с того, что вам срочно надо согнуть небольшое количество тонкого металлического прутка. Для этого разберем несколько способов, как гнуть арматуру с помощью подручных средств.
Здесь стоит знать , что пытаясь сгибать, особенно легированную арматуру, своими руками нужно осознанно рассчитывать свои действия, в противном случае — это может привести к получению серьезных травм. Легированный металлопрокат при попытке его деформировать будет всячески пытаться отпружинить и способен при этом нанести непоправимый вред вашему здоровью. Так что будьте осторожны и внимательны.
Выделим три наиболее простых способа, как согнуть арматуру с величиной диаметра до 8 мм самостоятельно без применения специальных устройств, а именно:
- С помощью двух отрезков металлической трубы. Так, нам понадобятся трубки диаметром 15 мм с длиной 0,5 и 1 метр, которые одеваем на арматуру. На полуметровый кусок трубы становимся ногами, а метровый, соответственно, начинаем поднимать до необходимого нам угла загиба.
- Если к полутораметровой металлической трубе 32 диаметра или 50 мм стальному уголку приварить при помощи электросварки пятисантиметровый кусок трубы 25-32 мм в диаметре, то получится универсальный гибочный рычаг. Останется только либо встать на арматуру, либо упереть ее обо что-нибудь прочное.
- Не очень длинные кусочки арматуры можно согнуть с помощью больших тисков и кувалды. Только при этом способе не стоит торопиться и надо бить с небольшим усилием, растягивая процесс, в противном случае можно просто сломать арматурный пруток.
Основным недостатком применения таких способов для сгибания арматуры является то, что радиус поворота получается достаточно большой и нередко угол получается несколько кривой и не лежит своими сторонами строго в одной плоскости.
Хотя, при хороших физических данных и небольших диаметрах металлического прутка, эти способы, как правило, на практике являются самыми универсальными арматурогибами в домашних условиях.
Как сделать приспособление для гибки арматуры
Если все-таки объем работ большой и у вас вполне хватает технических знаний, то сделать своими руками ручной гибочный станок для арматуры вполне по силам каждому, поэтому тем более не стоит покупать его на строительном рынке.

Вариант арматурогиба из подручных средств
Перед тем, как приступить к изготовлению, необходимо выполнить детальные чертежи узлов будущего приспособления. Для этого рекомендуется ознакомиться в интернете с готовыми образцами, выполненными по стандартной схеме или выбрать какую-нибудь другую методику, чем гнуть арматуру.
Простой арматурогиб своими руками проще всего выполнить, основываясь на общем принципе действия такого рода устройств, а именно состоящего из трех основных частей:
- массивного основания,
- поворотного механизма в виде большого рычага,
- прочного упора.
Чтобы изготовить такое приспособление, вполне подойдут подручные материалы и инструменты, имеющиеся в любом нормальном гараже. Итак, приготовим необходимые для этого инструменты, тут нам понадобятся:
- углошлифовальная машина с отрезными кругами и шлифовальным диском,
- электрическая дрель с набором сверл по металлу,
- электросварочный аппарат с электродами,
- стандартный набор ручных слесарных инструментов.
Хоть важным этапом и является подготовка комплектующих деталей и узлов, здесь попытаемся приспособить различные подручные материалы. В крайнем случае, недостающее можно одолжить либо у соседа, либо докупить на строительном рынке.
Последовательность действий
- Делаем основание. Для этого берем листовой металл толщиной в 3-5 мм размерами 100 на 200 мм, либо можно взять кусок швеллера 10-15 размера длиной 200-300 мм.
По углам основания просверливаем отверстия для возможности крепления к верстаку или другому массивному предмету. По центру конструкции с помощью электросварки прочно приваривается осевой упор. Это стальной вал высотой в 50 мм и диаметром в 14 мм. Для этой детали можно взять любой подходящий по размерам болт М14, у которого необходимо сточить на наждаке головку, оставив толщину в 3 мм — это даст возможность создать прочное сварное соединение с основанием. - Изготавливаем поворотный механизм. Для этого подойдет стальная полоса толщиной в 5 мм, шириной в 50 мм и длиной как минимум в один метр. За неимением полосы необходимой длины можно взять меньшую, но наварить длину рычага за счет стальной трубы 32-50 мм в диаметре. К одному краю полосы привариваем электросваркой отрезок металлической трубы длиной в 50 мм и 15 мм в диаметре, который будет одеваться как валик на осевой упор. Отступаем 50 мм от валика по продольной оси и привариваем поворотный упор, для которого подойдет стальной болт М10 также со сточенной заранее головкой. На поворотный упор также можно изготовить и надеть кольцо, которое будет служить вальцом, что позволит улучшить работу приспособления. Как вариант, можно изготовить рычаг из 50 мм стального уголка, для этого необходимо у места крепления за осевой упор срезать 50 мм вертикально полки, оставшаяся часть полки будет служить поворотным упором.
- Привариваем к основанию электросваркой неподвижный упор, для которого подойдет отрез 50 мм уголка в 50-100 мм длиной. Место его крепления должно находиться в 100-200 мм от осевого упора со смещением от центральной оси основания не более 20 мм, что как бы определяется толщиной арматуры.
- Производим сборку готовой конструкции. Прочно прикрепляем основания нашего готового приспособления к слесарному верстаку или другому подобному массивному предмету окружающей обстановки. Одеваем на осевой упор валик поворотного механизма с рычагом.
- Производим обкатку готового станка для гибки арматуры и проверяем его работу на холостом ходу, используя для этого мягкий металл. Если все работает, то приступаем к изготовлению нужных нам деталей из арматуры.
Если станок для гибки арматуры имеет свой стационарный каркас, то стоит посоветовать выполнить пару дополнительных его улучшений, а именно:
- нанести линейную разметку в обе стороны от осевого упора, что позволит отмерять длину сгибаемой части прутка без применения рулетки;
- нанести вокруг осевого упора радиальную разметку основных углов в 30, 45 и 60 градусов, что также намного сделает удобней работу на таком станке.
Достоинства
Приспособления для гибки арматуры своими руками имеет ряд преимуществ перед стационарными станками заводского изготовления такие, как:
- простая конструкция,
- недорогая в изготовлении,
- хорошая надежность.
- мобильность,
- не нужен источник электроэнергии.
Если это устройство покажется сложным в реализации, можете перенять опыт фирмы «КаркасЭлитСтрой», которые предоставили эти чертежи станка для гибки арматуры:

Основание станка

Петля станка

Общий вид станка
Альтернативные способы работы с арматурой
Если вы все-таки собираетесь профессионально изготавливать различные металлоконструкции самостоятельно, то тут стоит посоветовать приобрести недорогой станок заводского изготовления, который будет иметь массу полезных приспособлений в своей конструкции. Обычно такие станки работают на электроприводе и имеют:
- движущаяся часть,
- несколько валов,
- двусторонние упоры.
Посмотреть, как работает такой заводской станок для сгибания стальной арматуры, вы можете на данном видео.
А вот для того, чтобы полностью понимать физику происходящих процессов и не допускать брака в своей работе с различным металлическим профилем, вам пригодится следующая таблица:

Таблица минимальных радиусов гиба арматуры, прутка и кругляка
Как сделать приспособление для гибки арматуры
Здравствуйте, уважаемые читатели и самоделкины!При создании фундамента, армопояса, и других различных железобетонных конструкций, практически всегда приходится гнуть арматуру.
В данной статье автор YouTube канала «best-chart» расскажет Вам, как сделать специальное приспособление для гибки арматуры.

Это устройство достаточно просто изготовить в условиях небольшой мастерской. При этом потребуется небольшой объем сварочных работ.
Материалы, необходимые для самоделки.
— Стальной уголок
— Стальная труба ½ дюйма, кругляк диаметром 14 мм
— Болты М8, шайбы, саморезы по дереву с потайной головкой
— Листовая ДСП
— Лепестковый зачистной диск.
Инструменты, использованные автором.
— Болгарка
— Шуруповерт, сверла по металлу DeWalt
— Тиски
— Метчикодержатель с храповым механизмом, метчик
— Сварочный полуавтомат, маска хамелеон
— Магнитные уголки для сварки
— Электронный штангенциркуль, маркер, рулетка, угольник.
Процесс изготовления.
Материалы для этого приспособления весьма доступны, роль упора и рычага будет играть стальной уголок 50X50 мм. У автора нашелся такой уголок длиной около метра. Упор он сделал длиной 30 см, а рычаг — 60 см.
Полудюймовая водопроводная труба пойдет на изготовление двух втулок. Ее внутренний диаметр — чуть более 14 мм, и в нее отлично входит стальной 14-мм круглый пруток.
Эти материалы нарезаются по длине, и зачищаются от ржавчины болгаркой с «коралловым» диском.


Часть прутка приваривается к краю рычага, таким образом получается основа для рукоятки.


В верхней части импровизированной оси сверлится отверстие. В нем нарезается резьба М8.
Подложив шайбы с двух сторон втулки из полудюймовой трубы, получается удобная вращающаяся рукоятка. Остается только закрутить болт М8.
К краю упора приваривается 60-мм отрезок прутка с нарезанной в нем резьбой.
Эта, как и следующая детали должны быть приварены строго вертикально. Для этого мастер использует магнитные уголки для сварки.
Ответная часть в виде втулки приваривается ко второму краю рычага, и усиливается треугольным обрезком уголка.
Внутренние углы рычага и упора нужно срезать таким образом, чтобы угол при их сведении составлял около 75-80 градусов.
Сверху подкладывается шайба, и закручивается болт.
Нижнюю часть упора можно приварить к тяжелой металлической пластине.
Автор поступил проще, просверлив в нем несколько отверстий, и прикрутив к дверце от старого шкафа саморезами.


На поверхности рычага можно сделать сантиметровую разметку, для удобства использования.

Испытания мастер проводит на 8-мм арматуре. Она достаточно легко гнется, однако рычаг желательно сделать длиннее, от 80 см до метра.


Можно продолжить, и сделать из арматуры скобу или даже квадрат.
Конечно, поверхности готового устройства стоит покрасить, чтобы избежать образования ржавчины.
Благодарю автора за простое, но полезное приспособление для гибки арматуры!

Всем хорошего настроения, крепкого здоровья, и интересных идей!
Авторское видео можно найти здесь.
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Простое приспособление для гибки прутов и арматуры
Здравствуйте, уважаемые читатели и самоделкины!При изготовлении различных металлоконструкций и строительных работах, достаточно часто приходится сгибать стальные пруты, арматуру, или полосу.
В данной статье автор YouTube канала «Mr Tool Junction» расскажет Вам, как сделать специальное гибочное приспособление, с помощью которого легко решаются эти задачи.

Этот проект не очень сложен в изготовлении, а при наличии сварочного аппарата может быть сделан за полчаса.
Материалы, необходимые для самоделки.
— Стальная пластина, труба, уголок
— Шариковые подшипники Z809 8×22×7 мм
— Болт, гайка М27
— Винты с головкой под шестигранный шлиц, шайбы, барашковая гайка М8.
Инструменты, использованные автором.
— Болгарка, отрезной диск— Тиски, автоматический керн
— Метчикодержатель с храповым механизмом, метчик
— Сверлильный станок, кобальтовые сверла по металлу, напильник
— Сварочный полуавтомат, маска хамелеон
— Магнитные уголки для сварки, маркер.
Процесс изготовления.
Основной частью устройства послужит вот такой болт М27. Его длина слишком большая, и автор укорачивает его в два раза.


В качестве основания подойдет 12-мм квадратная стальная пластина, на середине которой автор размечает контуры головки болта.

Затем кернятся центры, и высверливается пара сквозных отверстий диаметром 8 мм.


С нижней стороны основания эти отверстия рассверливаются под головки болтов.


Основание снова прикладывается к головке, и на нее переносится разметка полученных отверстий.
Затем в головке сверлом по металлу делаются ответные отверстия диаметром 6,5 мм, и в них нарезается резьба М8.
Для фиксации устройства в тисках, потребуется закрепить на его нижней части основания кусочек стального уголка 35X35 мм. В уголке делается пара сквозных 8-мм отверстий.


Разместив эту деталь на основании, и перенеся метки отверстий, мастер делает ответные отверстия с резьбой М8 в пластине. Для удобства нарезания резьбы метчиком, можно использовать метчикодержатель с храповым механизмом.
Далее на конце болта делается глубокая прорезь. В нее будут вставляться сгибаемые заготовки.
В качестве рычага автор использует кусок стальной трубы, в которой нужно просверлить сквозное отверстие для болта М8.
Автор хотел обойтись без использования сварочного аппарата, но дойдя до рычага стало ясно, что без него не обойтись. Трубку рычага нужно приварить к одной из граней гайки, и зачистить швы.
Все детали готовы, и первым прикручивается болт к основанию.
Затем, парой таких же болтов с головками под шестигранный шлиц, фиксируется уголок.

Через отверстие в рычаге продевается длинный болт М8, и на него нанизываются подшипники 8×22×7 мм. Сверху накидывается шайба, и навинчивается барашковая гайка.
Гибочное приспособление зажимается в тисках, и на болт навинчивается гайка с рычагом. При этом «вилка» должна полностью выступать над гайкой.


Вот так легко устройство справляется со стальным квадратом.
На краях прорези следует сточить остатки резьбы, чтобы они не оставляли следов на изделиях.
С его помощью можно делать декоративные элементы.
Арматуру так вообще можно в узлы завязывать.
Конечно, можно приварить элементы устройства (а не делать разборное соединение), что ускорит процесс его создания.
Благодарю автора за простое, но полезное приспособление для гибки арматуры и прутов.
Всем хорошего настроения, крепкого здоровья, и интересных идей!
Подписывайтесь на телеграм-канал сайта, чтобы не пропустить новые статьи.
Авторское видео можно найти здесь.
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Арматурогиб — станок для гибки арматуры своими руками
При выполнении строительных мероприятий, связанных с усилением фундаментных оснований и армированием перекрытий, возникает потребность в гнутье стальных прутков. Арматурные стержни также изгибают для сооружения теплиц и изготовления стальных конструкций. Для этого используется самодельное и профессиональное оборудование. Планируя изготовить станок для гибки арматуры своими руками, чертежи можно разработать самому или купить. Остановимся детально на конструкции, изучим технологию. Подробно рассмотрим, как сделать ручной станок для гибки арматуры своими руками.
Станок для гнутья арматуры – классификация и конструкция
Станок для изгиба арматуры – это оборудование, позволяющее придать арматурному металлопрокату необходимую конфигурацию.

Устройства делятся на типы в зависимости от следующих критериев:
- конструктивных особенностей;
- типа привода;
- диаметра сгибаемого стержня.
Станок для загибания арматуры бывает следующих типов:
- механическое устройство с ручным приложением усилий;
- механизированное оборудование с питанием от электрической сети.
Принцип работы оборудования для деформации арматуры заключается в сгибании стального стержня, зафиксированного между роликоопорами путем приложения усилий со стороны упорного ролика. Специальные станки позволяют изгибать металлические пруты под необходимым радиусом.
Оборудование с ручным приводом отличается рядом преимуществ:
- простым принципом работы, напоминающим функционирование трубогиба;
- уменьшенной массой изгибающего механизма, составляющей от 12 до 20 кг;
- мобильностью, позволяющей, при необходимости, быстро переносить оборудование;
- малым объемом затрат, позволяющим изготовить станок для гнутья арматуры своими руками.

Механизированное оборудование с электрическим приводом применяется на промышленных предприятиях при серийном изготовлении гнутых элементов. Промышленный арматурогиб отличается следующими моментами:
- увеличенной производительностью, позволяющей за одну минуту загнуть 5-6 арматурных элементов;
- возможностью изгибать промышленный арматурный металлопрокат с увеличенным диаметром;
- повышенной до 5 кВт мощностью электроприводной станции, позволяющей прилагать значительные усилия;
- возможностью работы в автоматическом режиме с дистанционным управлением, а также на ручном управлении;
- стационарной конструкцией, предусматривающей эксплуатацию оборудования на месте установки без перемещения;
- увеличенной до 0,5 т массой, затрудняющей транспортировку без применения грузоподъемных приспособлений;
- достаточно высокой стоимостью, позволяющей приобрести устройство только с целью промышленного применения.
В условиях промышленных предприятий часто совмещают процесс рубки с деформацией арматурного металлопроката. Для этого используют специальное оборудование. В конструкции таких агрегатов применяется:
- мощный гидравлический привод;
- электромеханические системы;
- электромагнитные механизмы.

В зависимости от диаметра металла, который необходимо деформировать, гибочные устройства делятся на следующие группы:
- облегченные, осуществляющие изгиб прутьев диаметром до 2 см;
- средние, изгибающие металлические стержни сечением до 4 см;
- тяжелые, предназначены для загибания заготовок диаметром до 9 см.
Улучшенное качество изгиба обеспечивают гидравлические устройства. При деформации металла не происходит растрескивание, а также образование складок, являющихся источником внутренних напряжений.
Какой инструмент для гибки арматуры предлагается на рынке
На рынке предлагаются бытовые, а также промышленные модели специального гибочного оборудования. Заслуживает внимания ручной арматурогиб модели Afacan, предлагаемый в следующих модификациях:
- Afacan 10E. Работает со стержнями сечением 0,6–1,2 см;
- Afacan 12E. Изгибает прокат диаметром 1–1,2 см;
- Afacan 16РТ. Деформирует прутки диаметром до 1,6 см.
Предлагаются также ручные универсальные гибщики, предназначенные для загибания арматурных стержней диаметром 0,6–2 см.

Имеется возможность приобрести или арендовать следующие виды промышленных установок для гнутья:
- СГА-1. При установленной мощности привода 3 кВт легко деформирует стержни диаметром до 3,2 см, обеспечивая их изгиб на 160 градусов;
- GW-40. Конструкция устройства с трехкиловатным приводом позволяет изгибать на 180 градусов металлопрокат, диаметр которого достигает 4 см;
- Г-40. Кинематика устройства, оснащенного ступенчатым передаточным механизмом, позволяет многократно деформировать пруток сечением до 3,2 см;
- Г-50. Это промышленная установка, укомплектованная приводной станцией мощностью 4 кВт, деформирует арматурные прутки диаметром до 5 см.
Принимая решение о приобретении гибочного оборудования, проконсультируйтесь со специалистами. Они дадут профессиональный совет, помогут правильно подобрать устройство в зависимости от поставленных задач.
Гибка арматуры своими руками – нюансы технологии
До начала работ необходимо подготовить заготовки требуемых размеров. Процесс ручной гибки происходит по простому алгоритму:
- Стержень устанавливается на посадочную площадку и выставляется между фиксирующими опорами.
- Определяется центр участка, который будет деформироваться под воздействием прилагаемых усилий.
- Приводной рычаг вручную поворачиваться относительно оси, воздействуя на зажатый пруток.
- Арматурный прокат деформируется на необходимый угол в процессе приложения усилий к рычагу.
- Изогнутая деталь, соответствующая по конфигурации требованиям документации, извлекается.

Конструкция оборудования позволяет производить деформацию зажатого стержня в любом направлении. Для безопасности и удобства выполнения работ важно надежно закрепить гибочный механизм на устойчивой поверхности.
Выполнение гибочных операций на механизированных устройствах с приводом требует ознакомления с принципами работы оборудования и специальной подготовки. До начала работ следует тщательно изучить руководство по эксплуатации, а также требования техники безопасности. Конструкция многих агрегатов с гидравлическим или электромеханическим приводом предусматривает подачу команд путем нажатия на педаль. При этом заготовки подаются в рабочую зону руками.
Порядок работы на промышленном гибочном оборудовании:
- Установите гибочный ролик необходимого диаметра, соответствующий размеру сечения металлопроката.
- Настройте механизм устройства на требуемый угол загиба, находящийся в интервале от 0 до 180 градусов.
- Расположите пруток в посадочной площадке рабочего ролика, зафиксируйте его на опорных стойках.
- Нажмите на педаль включения агрегата и произведите деформацию прутка до необходимой конфигурации.
Прекратите нажимать педаль, когда заготовка приобретет требуемую форму. Затем извлеките ее из рабочего механизма. Важно соблюдать правила безопасности, не допускать попадания пальцев или одежды в зону вращения роликов.

Как устроен гибочный ручной станок для арматуры
Конструкция самодельного гибочного устройства несложная. Малогабаритное приспособление для гибки арматуры включает следующие части:
- рабочий стол, выполненный в виде стальной пластины толщиной 6–8 мм;
- зафиксированные на основе упоры, которые ограничивают перемещение стержня;
- поворотный рычаг с прижимным роликом, деформирующим стальные прутки.
Возможна также простая конструкция, состоящая из автомобильного домкрата, к которому прикреплен пуансон, и вертикальной стойки с закрепленными на ней подвижными опорами. Этот вариант устройства является переносным. Механизм позволяет легко изогнуть арматурный стержень, который касается подвижных роликов и изгибается при перемещении домкратного штока.
Собираем приспособление для гибки арматуры своими руками
Приняв решение собрать простое приспособление для гибки арматуры своими руками, чертежи можно заменить обычными эскизами. В них важно предусмотреть конструктивные особенности устройства, а также габаритные и присоединительные размеры. Рассмотрим, как изготовить арматурогиб ручной своими руками. Для выполнения работ подготовьте следующие материалы:
- стальной швеллер с толщиной стенки 6 мм и длиной 0,8–1 м для металлоконструкции;
- две стальные петли от ворот цилиндрической формы диаметром 3–4 см и длиной 10 см;
- уголок с размером полки 2,2–3,2 см, прямоугольный профиль 4х2 см и пруток диаметром 1,2 см для сборки пуансона и корпусных элементов.

Потребуется также оборудование:
- автомобильный подъемник – домкрат, способный развивать усилие до 2–2,5 тонн;
- электросварочный аппарат с электродами;
- болгарка, укомплектованная кругом по металлу;
- линейка и чертилка для разметки;
- молоток и уровень.
Собирайте станок для гибки арматуры своими руками, соблюдая последовательность операций:
- Произведите разметку и нарежьте 5-сантиметровые заготовки, используя арматуру, профиль прямоугольного сечения и уголок.
- Соберите пуансон, вварив в прямоугольный профиль арматурные отрезки и соединив конструкцию в верхней плоскости с уголком.
- Подсоедините к штоку домкрата упорную пластину из швеллера, зафиксируйте ее в нижней плоскости пуансона.
- Сварите несущую раму т-образной конфигурации, используя прямоугольный профиль и швеллер.
- В нижней части металлоконструкции приварите ограничители, обеспечивающие фиксированное положение домкрата.
- Приварите к боковым поверхностям вертикальной стойки уголки на одном уровне, проверьте правильность расположения.
- Соедините электросваркой неподвижную часть петли с уголком и вертикальной стойкой, обеспечив свободное вращение подвижной части.
Собирая гибочный станок для арматуры своими руками, обратите внимание на расстояние между верхним уровнем пуансона и нижней частью подвижных цилиндров (петель). Интервал должен соответствовать размерам арматурного прутка, который планируется изгибать. Используя этот принцип, можно также изготовить ручной станок для гибки проволоки увеличенного диаметра. Существуют различные конструкции устройств, в которых процесс изгиба можно осуществить без использования домкрата, применяя обычный рычаг с роликом.
Подводим итоги
Определившись с конструкцией устройства, можно самостоятельно изготовить гибочный механизм, предназначенный для придания стальным пруткам необходимой формы. Важно ответственно подойти к разработке документации. Следует использовать проверенные чертежи, по которым изготавливалось гибочное оборудование, или самостоятельно создать эскиз натурного образца. Для домашних умельцев предоставляется широкое поле деятельности. Результат – самостоятельно изготовленное гибочное устройство, применение которого позволит сэкономить денежные средства.
как сделать самодельный гибочный станок
Арматурные стержни различных профилей, диаметров и классов прочности – металлоизделия, необходимые при возведении монолитных и монолитно-сборных фундаментов. Арматура повышает устойчивость бетонных конструкций к растягивающим нагрузкам. Для усиления угловых бетонных элементов в соответствии с нормативной документацией необходимо применять только гнутые стержни.
Требования к гибке арматурных стержней
Для гибки арматуры большого сечения используют мощные станки заводского производства, для стержней небольшого сечения можно применять ручные устройства, изготовленные своими руками. Такие самодельные приспособления вполне подходят для изгибания монтажных петель, крючков, лапок. Устройства-самоделки используются для изгибания прутов диаметров не более 14 мм при необходимости гибки небольших партий арматуры. Чаще всего популярны среди частных застройщиков.
Для сохранения рабочих характеристик прутов при их изгибании соблюдают следующие условия:
- Угол сгиба не должен быть меньше 90°.
- Радиус скругления в месте сгиба – не менее 10-15 диаметров.
- Применяемое оборудование должно соответствовать диаметру обрабатываемых стержней и классу прочности арматурной стали, иначе на внутренней стороне полученного угла могут образоваться складки, а на наружной – трещины. Также важными моментами являются: правильная настройка приспособления и надежная фиксация стержня.
Не рекомендуется практиковать народные методы с применением высокотемпературного воздействия, включающие следующие этапы:
- надрез болгаркой места сгиба арматурного стержня;
- подогрев места сгиба паяльной лампой или другим источником открытого огня;
- гибка на требуемый угол.
При использовании такого метода в месте изгиба снижаются механические характеристики из-за надрезов и воздействия высоких температур. При воздействии нагрузок на такой стержень он может разрушиться. Если в проекте нет разрешения на применение подобного способа гибки, использовать его не рекомендуется.
Принцип действия станков для гибки арматуры
Принцип работы гибочных станков самостоятельного и заводского производства примерно одинаков:
- металлоизделие размещается между центральным и упорным пальцем;
- посредством гибочного пальца прут изгибают под заданным в проекте углом;
- гибка может осуществляться в правую или левую сторону.
В устройствах с мехприводом имеется вращающийся диск, на котором фиксируют центральный и изгибающий пальцы. В зазор между ними укладывают пруток. Стержень одним концом упирается в ролик, который стационарно крепится на корпусе. При вращении диска гибочный палец воздействует на арматурный стержень, который изгибается на требуемый угол вокруг центрального валика.
Как сделать станки для гибки арматуры простейшей конструкции?
Простейшее приспособление – кусок швеллера с прорезями. На таком примитивном устройстве можно изгибать стержни диаметром до 8 мм с достаточно большим радиусом угла гибки. Процедура гибки требует приложения серьезных физических усилий.
Для самостоятельного изготовления более сложного гибочного устройства понадобятся: стальной уголок 40х40 мм, деревянный брусок, крепежные элементы. Собрать такой самодельный станок для гибки арматуры несложно, но подходит он только для гибки прута малого сечения, в основном для изготовления монтажных петель и других изделий из арматуры с гладкой поверхностью.
Этапы проведения работ:
- уголок разрезается на 2 части;
- в одной из частей изготавливаются отверстия под саморезы, затем этот отрезок крепится к деревянному бруску;
- вторая часть – подвижная, крепится на брусок болтом, выполняет функции рычага.
Использование этой конструкции не обеспечивает высокую производительность и требует приложения значительных физических усилий.
Подобная конструкция может быть выполнена не на брусе, а на швеллере или профильной трубе. Максимальный диаметр обрабатываемых арматурных стержней – 14 мм.
Схема станка для гибки арматуры из двух стальных труб
С помощью этого устройства можно изгибать арматурные изделия даже большого сечения. Чем больше сечение стержней, которые требуется согнуть, тем длиннее должны быть трубы. Диаметр труб – 1/2-3/4".
Этапы гибки:
- один край арматуры вставляют в первый отрезок трубы, а второй – надевают на свободный край стержня;
- один из отрезков трубы фиксируют в тисках, вкапывают в землю, для полной надежности бетонируют;
- второй отрезок трубы загибают вверх на требуемый угол.
Более надежными и высокопроизводительными являются электромеханические станки заводского производства. Гибочный механизм приводится в действие с помощью электропривода. Максимальные диаметры арматурных стержней, на которые рассчитано устройство, указываются в маркировке. Для ускорения процесса можно приобрести станок, выполняющий две операции: рубку в размер и гибку.
Обучение с подкреплением 101. Изучите основы подкрепления… | Швета Бхатт
Обучение с подкреплением (RL) - одна из самых актуальных тем исследований в области современного искусственного интеллекта, и ее популярность только растет. Давайте рассмотрим 5 полезных вещей, которые нужно знать, чтобы начать работу с RL.
Обучение с подкреплением (RL) - это метод машинного обучения, который позволяет агенту учиться в интерактивной среде методом проб и ошибок, используя обратную связь по своим действиям и опыту.
Хотя как контролируемое обучение, так и обучение с подкреплением используют сопоставление между вводом и выводом, в отличие от контролируемого обучения, где обратная связь, предоставляемая агенту, представляет собой правильный набор действий для выполнения задачи, обучение с подкреплением использует вознаграждений и наказаний в качестве сигналов для положительного и отрицательное поведение.
По сравнению с обучением без учителя, обучение с подкреплением отличается с точки зрения целей. В то время как цель обучения без учителя состоит в том, чтобы найти сходства и различия между точками данных, в случае обучения с подкреплением цель состоит в том, чтобы найти подходящую модель действий, которая максимизирует общего совокупного вознаграждения агента.На рисунке ниже показан цикл обратной связи «действие-вознаграждение» типовой модели RL.
Вот некоторые ключевые термины, которые описывают основные элементы проблемы RL:
- Среда - Физический мир, в котором работает агент
- Состояние - Текущая ситуация агента
- Вознаграждение - Обратная связь от среда
- Политика - Метод сопоставления состояния агента действиям
- Значение - Будущее вознаграждение, которое агент получит, выполняя действие в определенном состоянии
Проблема RL может быть лучше всего объяснена с помощью игр.Давайте возьмем игру PacMan , где цель агента (PacMan) состоит в том, чтобы съесть еду в сетке, избегая при этом призраков на своем пути. В этом случае сеточный мир - это интерактивная среда для агента, в которой он действует. Агент получает награду за поедание еды и наказание, если его убивает призрак (проигрывает игру). Состояния - это местоположение агента в мире сетки, а общая совокупная награда - это агент, выигравший игру.
Чтобы построить оптимальную политику, агент сталкивается с дилеммой: исследовать новые состояния и одновременно максимизировать общую награду.Это называется компромиссом между и эксплуатацией . Чтобы уравновесить и то и другое, лучшая общая стратегия может включать в себя краткосрочные жертвы. Следовательно, агент должен собрать достаточно информации, чтобы принять наилучшее общее решение в будущем.
Марковские процессы принятия решений (MDP) - это математические основы для описания среды в RL, и почти все задачи RL могут быть сформулированы с использованием MDP. MDP состоит из набора конечных состояний S среды, набора возможных действий A (s) в каждом состоянии, действительной функции вознаграждения R (s) и модели перехода P (s ’, s | a).Однако в реальных условиях окружающей среды, скорее всего, не хватает каких-либо предварительных знаний о динамике окружающей среды. В таких случаях пригодятся безмодельные методы RL.
Q-Learning - это широко используемый подход без модели, который можно использовать для создания самовоспроизводящегося агента PacMan. Он вращается вокруг понятия обновления значений Q, которое обозначает значение выполнения действия a в состоянии s . Следующее правило обновления значения является ядром алгоритма Q-обучения.
Вот видео-демонстрация агента PacMan, который использует глубокое обучение с подкреплением.
Q-Learning и SARSA (State-Action-Reward-State-Action) - два широко используемых алгоритма RL без моделей. Они различаются своими стратегиями разведки, в то время как их стратегии эксплуатации схожи. В то время как Q-обучение - это метод вне политики, в котором агент изучает значение на основе действия a *, полученного из другой политики, SARSA - это метод на основе политики, при котором он изучает значение на основе своего текущего действия a , полученного из его текущая политика.Эти два метода просты в реализации, но им не хватает универсальности, поскольку они не позволяют оценивать значения для невидимых состояний.
Это можно преодолеть с помощью более продвинутых алгоритмов, таких как Deep Q-Networks (DQNs) , которые используют нейронные сети для оценки Q-значений. Но DQN могут обрабатывать только дискретные низкоразмерные пространства действий.
Глубокий детерминированный градиент политик (DDPG) - это не связанный с политикой алгоритм, не связанный с политикой, критикующий субъект, который решает эту проблему путем изучения политик в многомерных пространствах непрерывных действий.На рисунке ниже представлена архитектура "актер-критик" .
Поскольку RL требует большого количества данных, поэтому он наиболее применим в областях, где смоделированные данные легко доступны, например, игровой процесс, робототехника.
- RL довольно широко используется при создании ИИ для компьютерных игр. AlphaGo Zero - первая компьютерная программа, победившая чемпиона мира в древней китайской игре го. Другие включают игры ATARI, нарды и т. Д.
- В робототехнике и промышленной автоматизации RL используется, чтобы позволить роботу создать для себя эффективную адаптивную систему управления, которая учится на собственном опыте и поведении.Работа DeepMind над Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Policy updates является хорошим примером того же. Посмотрите это интересное демонстрационное видео.
Другие приложения RL включают механизмы резюмирования абстрактного текста, диалоговые агенты (текст, речь), которые могут учиться на взаимодействиях с пользователем и улучшаться со временем, изучая оптимальную политику лечения в сфере здравоохранения, и агентов на основе RL для онлайн-торговли акциями.
Для понимания основных концепций RL можно обратиться к следующим ресурсам.
- Обучение с подкреплением - Введение , книга отца обучения с подкреплением - Ричарда Саттона и его научного руководителя Эндрю Барто . Онлайн-черновик книги доступен здесь.
- Учебные материалы из Дэвид Сильвер , включая видеолекции, - отличный вводный курс по RL.
- Вот еще один технический учебник по RL от Pieter Abbeel и John Schulman (Open AI / Berkeley AI Research Lab).
Для начала создания и тестирования агентов RL могут быть полезны следующие ресурсы.
- Этот блог о том, как обучить агент нейронной сети ATARI Pong с помощью градиентов политики из необработанных пикселей, автор Андрей Карпати поможет вам запустить и запустить свой первый агент глубокого обучения с подкреплением всего за 130 строк кода Python.
- DeepMind Lab - это платформа с открытым исходным кодом, похожая на трехмерную игру, созданную для агентных исследований искусственного интеллекта в богатой моделируемой среде.
- Project Malmo - еще одна платформа для экспериментов с ИИ для поддержки фундаментальных исследований в области ИИ.
- OpenAI gym - это набор инструментов для создания и сравнения алгоритмов обучения с подкреплением.
Введение в различные алгоритмы обучения с подкреплением. Часть I (Q-Learning, SARSA, DQN, DDPG) | by Kung-Hsiang, Huang (Steeve)
Обычно установка RL состоит из двух компонентов: агента и среды.
Иллюстрация обучения с подкреплением (https://i.stack.imgur.com/eoeSq.png)Затем среда относится к объекту, над которым действует агент (например, к самой игре в игре Atari), а агент представляет Алгоритм RL. Среда начинается с отправки состояния агенту, который затем на основе своих знаний предпринимает действия в ответ на это состояние.После этого среда отправляет пару следующих состояний и вознаграждение обратно агенту. Агент обновит свои знания с помощью награды, возвращаемой средой, чтобы оценить свое последнее действие. Цикл продолжается до тех пор, пока среда не отправит терминальное состояние, которое заканчивается эпизодом.
Большинство алгоритмов RL следуют этому шаблону. В следующих параграфах я кратко расскажу о некоторых терминах, используемых в RL, чтобы облегчить наше обсуждение в следующем разделе.
Определение
- Действие (A): все возможные действия, которые может предпринять агент.
- Состояние (S): текущая ситуация, возвращаемая средой.
- Награда (R): немедленный возврат из среды для оценки последнего действия.
- Политика (π): Стратегия, которую агент использует для определения следующего действия на основе текущего состояния.
- Стоимость (V): ожидаемая долгосрочная доходность с учетом скидки, в отличие от краткосрочного вознаграждения R. Vπ (s) определяется как ожидаемая долгосрочная доходность π политики раскола текущего состояния.
- Значение Q или значение действия (Q): значение Q аналогично значению Value, за исключением того, что оно принимает дополнительный параметр, текущее действие a . Qπ (s, a) относится к долгосрочному возврату текущего состояния s , предпринимая действия a в соответствии с политикой π.
Без модели по сравнению с На основе модели
Модель предназначена для моделирования динамики окружающей среды. То есть модель изучает вероятность перехода T (s1 | (s0, a)) из пары текущего состояния s 0 и действия a в следующее состояние s 1 . Если вероятность перехода успешно изучена, агент будет знать, насколько вероятно войти в определенное состояние с учетом текущего состояния и действия.Однако алгоритмы, основанные на моделях, становятся непрактичными по мере роста пространства состояний и пространства действий (S * S * A для табличной настройки).
С другой стороны, алгоритмы без моделей полагаются на метод проб и ошибок для обновления своих знаний. В результате ему не требуется место для хранения всей комбинации состояний и действий. Все алгоритмы, обсуждаемые в следующем разделе, попадают в эту категорию.
Соответствие политике и политике Вне политики
Агент в соответствии с политикой изучает значение на основе своего текущего действия a, производного от текущей политики, тогда как его противоположная часть изучает его на основе действия a *, полученного из другой политики.В Q-обучении такой политикой является жадная политика. (Мы поговорим об этом подробнее в Q-Learning и SARSA)
2.1 Q-Learning
Q-Learning - это внеполитический, не модельный алгоритм RL, основанный на хорошо известном уравнении Беллмана:
Уравнение Беллмана (https : //zhuanlan.zhihu.com/p/21378532? refer = intelligentunit)E в приведенном выше уравнении относится к математическому ожиданию, а ƛ - к коэффициенту дисконтирования. Мы можем переписать его в виде Q-значения:
Уравнение Беллмана в форме Q-значения (https: // zhuanlan.zhihu.com/p/21378532?refer=intelligentunit)Оптимальное значение Q, обозначенное как Q *, может быть выражено как:
Оптимальное значение Q (https://zhuanlan.zhihu.com/p/21378532?refer= Intelligentunit)Цель состоит в том, чтобы максимизировать Q-значение. Прежде чем углубиться в метод оптимизации Q-value, я хотел бы обсудить два метода обновления значений, которые тесно связаны с Q-обучением.
Итерация политики
Итерация политики запускает цикл между оценкой политики и ее улучшением.
Итерация политики (http://blog.csdn.net/songrotek/article/details/51378582)Оценка политики оценивает функцию ценности V с помощью жадной политики, полученной в результате последнего улучшения политики. С другой стороны, улучшение политики обновляет политику действием, которое максимизирует V для каждого состояния. Уравнения обновления основаны на уравнении Беллмана. Он продолжает повторяться до схождения.
Псевдокод для изменения политики (http://blog.csdn.net/songrotek/article/details/51378582)Итерация значения
Итерация значения содержит только один компонент.Он обновляет функцию ценности V на основе оптимального уравнения Беллмана.
Оптимальное уравнение Беллмана (http://blog.csdn.net/songrotek/article/details/51378582) Псевдокод для изменения значений (http://blog.csdn.net/songrotek/article/details/51378582)После итерация сходится, оптимальная политика напрямую получается путем применения функции максимального аргумента для всех состояний.
Обратите внимание, что эти два метода требуют знания вероятности перехода p , что указывает на то, что это алгоритм на основе модели.Однако, как я упоминал ранее, алгоритм на основе модели страдает проблемой масштабируемости. Так как же Q-Learning решает эту проблему?
Q-Learning Update Equation (https://www.quora.com/What-is-the-difference-between-Q-learning-and-SARSA-learning)α относится к скорости обучения (т.е. насколько быстро мы приближается к цели). Идея Q-Learning во многом основана на итерациях значений. Однако уравнение обновления заменяется приведенной выше формулой. В результате нам больше не нужно беспокоиться о вероятности перехода.
Псевдокод Q-обучения (https://martin-thoma.com/images/2016/07/q-learning.png)Обратите внимание, что следующее действие a ' выбрано для максимизации Q-значения следующего состояния. следования текущей политике. В результате Q-обучение относится к категории вне политики.
2.2 Состояние-действие-награда-государство-действие (SARSA)
SARSA очень напоминает Q-обучение. Ключевое различие между SARSA и Q-Learning заключается в том, что SARSA - это алгоритм, соответствующий политике. Это означает, что SARSA изучает значение Q на основе действия, выполняемого текущей политикой, а не жадной политикой.
SARSA Update Equation (https://www.quora.com/What-is-the-difference-between-Q-learning-and-SARSA-learning)Действие a_ (t + 1) - это действие, выполняемое в следующее состояние s_ (t + 1) согласно текущей политике.
Псевдокод SARSA (https://martin-thoma.com/images/2016/07/sarsa-lambda.png)Из псевдокода выше вы можете заметить, что выполняется выбор двух действий, которые всегда соответствуют текущей политике. Напротив, Q-обучение не имеет ограничений для следующего действия, пока оно максимизирует Q-значение для следующего состояния.Следовательно, SARSA - это алгоритм, основанный на политике.
2.3 Deep Q Network (DQN)
Хотя Q-обучение - очень мощный алгоритм, его основной недостаток - отсутствие общности. Если вы рассматриваете Q-обучение как обновление чисел в двумерном массиве (пространство действий * пространство состояний), оно, по сути, напоминает динамическое программирование. Это указывает на то, что для состояний, которые агент Q-Learning не видел раньше, он не знает, какое действие предпринять. Другими словами, агент Q-Learning не имеет возможности оценивать значение для невидимых состояний.Чтобы справиться с этой проблемой, DQN избавляется от двумерного массива, введя нейронную сеть.
DQN использует нейронную сеть для оценки функции Q-value. Входом для сети является ток, а выходом - соответствующее значение Q для каждого действия.
DQN Пример Atari (https://zhuanlan.zhihu.com/p/25239682)В 2013 году DeepMind применил DQN к игре Atari, как показано на рисунке выше. Входными данными является необработанное изображение текущей игровой ситуации. Он прошел через несколько слоев, включая сверточный слой, а также полностью связанный слой.Результатом является Q-значение для каждого действия, которое может предпринять агент.
Вопрос сводится к следующему: Как мы обучаем сеть?
Ответ заключается в том, что мы обучаем сеть на основе уравнения обновления Q-обучения. Напомним, что целевое Q-значение для Q-обучения:
Целевое Q-значение (https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf)ϕ эквивалентно состоянию s, в то время как обозначает параметры в нейронной сети, которые не входят в область нашего обсуждения.Таким образом, функция потерь для сети определяется как квадрат ошибки между целевым значением Q и выходным значением Q из сети.
Псевдокод DQN (https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf)Еще два метода также важны для обучения DQN:
- Experience Replay : Поскольку обучающие образцы в типичном RL настройки сильно коррелированы и менее эффективны для данных, это приведет к более сложной конвергенции для сети. Одним из способов решения проблемы распространения образцов является воспроизведение опыта.По сути, образцы переходов сохраняются, которые затем случайным образом выбираются из «пула переходов» для обновления знаний.
- Отдельная целевая сеть : Целевая Q-сеть имеет ту же структуру, что и сеть, оценивающая значение. Каждые шаги C, согласно приведенному выше псевдокоду, целевая сеть сбрасывается на другую. Таким образом, колебания становятся менее сильными, что приводит к более стабильным тренировкам.
2.4 Глубокий детерминированный градиент политики (DDPG)
Хотя DQN добилась огромного успеха в задачах более высокого измерения, таких как игра Atari, пространство действий все еще остается дискретным.Однако для многих задач, представляющих интерес, особенно для задач физического контроля, пространство действий является непрерывным. Если вы слишком точно распределите пространство действия, вы получите слишком большое пространство действия. Например, предположим, что степень свободной случайной системы равна 10. Для каждой степени вы делите пространство на 4 части. У вас будет 4¹⁰ = 1048576 действий. Также чрезвычайно сложно сходиться в таком большом пространстве действий.
DDPG опирается на архитектуру «актер-критик» с двумя одноименными элементами: актер и критик.Актер используется для настройки параметра 𝜽 для функции политики, то есть для определения наилучшего действия для определенного состояния.
Функция политики (https://zhuanlan.zhihu.com/p/25239682)Критик используется для оценки функции политики, оцененной субъектом в соответствии с ошибкой временной разницы (TD).
Ошибка разницы во времени (http://proceedings.mlr.press/v32/silver14.pdf)Здесь строчные буквы v обозначают политику, выбранную субъектом. Знакомо? Да! Это похоже на уравнение обновления Q-обучения! TD-обучение - это способ научиться предсказывать значение в зависимости от будущих значений данного состояния.Q-обучение - это особый тип TD-обучения для изучения Q-ценности.
Архитектура актера-критика (https://arxiv.org/pdf/1509.02971.pdf)DDPG также заимствует идеи воспроизведения опыта и отдельной целевой сети от DQN . Другой проблемой для DDPG является то, что он редко выполняет исследование действий. Решением для этого является добавление шума в пространство параметров или пространство действий.
Action Noise (слева), Parameter Noise (справа) (https: //blog.openai.com / better-exploration-with-parameter-noise /)Утверждается, что добавление в пространство параметров лучше, чем в пространство действий, согласно этой статье, написанной OpenAI. Один из часто используемых шумов - это случайный процесс Орнштейна-Уленбека.
Псевдокод DDPG (https://arxiv.org/pdf/1509.02971.pdf)Я обсудил некоторые базовые концепции Q-обучения, SARSA, DQN и DDPG. В следующей статье я продолжу обсуждать другие современные алгоритмы обучения с подкреплением, включая NAF, A3C и т. Д.В конце я кратко сравним каждый из рассмотренных мной алгоритмов. Если у вас возникнут какие-либо проблемы или вопросы относительно этой статьи, не стесняйтесь оставлять комментарии ниже или подписываться на меня в твиттере.
.What is, Algorithms, Applications, Example
- Home
-
Testing
-
- Back
- Agile Testing
- BugZilla
- Cucumber
- Database Testing
- ETL Testing
- Назад
- JUnit
- LoadRunner
- Ручное тестирование
- Мобильное тестирование
- Mantis
- Почтальон
- QTP
- Назад
- Центр качества (ALM)
- Центр качества (ALM)
- Управление тестированием
- TestLink
-
-
SAP
-
- Назад
- ABAP
- APO
- Начинающий
- Basis
- BODS
- BI
- BPC
- CO
- Назад
- CRM
- Crystal Reports
- QM4000
- QM4
- Заработная плата
- Назад
- PI / PO
- PP
- SD
- SAPUI5
- Безопасность
- Менеджер решений
- Successfactors
- Учебники SAP
-
-
- Apache
- AngularJS
- ASP.Net
- C
- C #
- C ++
- CodeIgniter
- СУБД
- JavaScript
- Назад
- Java
- JSP
- Kotlin
- Linux
- Linux
- Kotlin
- Linux js
- Perl
- Назад
- PHP
- PL / SQL
- PostgreSQL
- Python
- ReactJS
- Ruby & Rails
- Scala
- SQL 000
- SQL 000 0003 SQL 000 0003 SQL 000
- UML
- VB.Net
- VBScript
- Веб-службы
- WPF
Обязательно учите!
-
- Назад
- Бухгалтерский учет
- Алгоритмы
- Android
- Блокчейн
- Бизнес-аналитик
- Создание веб-сайта
- Облачные вычисления
- COBOL
- Встроенные системы
- 9000 Дизайн 9000 Эталон
- 900 Эталон
- 9000 Проектирование 900 Ethical
- Учебные пособия по Excel
- Программирование на Go
- IoT
- ITIL
- Jenkins
- MIS
- Сеть
- Операционная система
- Назад
- Prep
Большие данные
-
- Назад
- AWS
- BigData
- Cassandra
- Cognos
- Хранилище данных
- DevOps Back
- DevOps Back
- HBase
- HBase2
- MongoDB
- NiFi
Добро пожаловать в курс глубокого обучения с подкреплением, часть 1: DQN | автор: Takuma Seno
В этой статье я представляю Deep Q-Network (DQN), который является первым методом глубокого обучения с подкреплением, предложенным DeepMind. После публикации статьи в журнале Nature в 2015 году к этой области присоединились многие исследовательские институты, потому что глубокая нейронная сеть может позволить RL напрямую работать с многомерными состояниями, такими как изображения, благодаря методам, используемым в DQN. Посмотрим, чего добилась DQN.
Учебная среда Arcade: платформа оценки для общих агентов была опубликована в 2013 году и предлагает учебные среды для ИИ.У ALE есть много игр, изначально разработанных для классической игровой консоли Atari 2600. Вероятно, некоторые из игр, такие как Pong, SpaceInvaders, PacMan и Breakout, хорошо известны всем.
Игры Atari, доступные в ALEЭтот эмулятор имеет миссию, которая предлагает платформу, на которой ИИ может играть во множество игр без каких-либо конкретных функций. До того, как DQN был опубликован, агенту RL в качестве входных данных требовались созданные вручную функции. Например, позиции захватчиков явно извлекаются, когда агент RL играет SpaceInvaders.Но эта информация совершенно бесполезна в игре Breakout. Поэтому агенты не могут полагаться на такие функции, чтобы играть во все игры в ALE.
AlexNet получил невероятную оценку в ILSVRC 2012, соревновании по классификации изображений с использованием DNN.
AlexNetСамое замечательное в DNN - это извлечение представлений функций посредством обратного распространения ошибки.
изученных весов сверточного слоя в AlexNetКлассификаторы больше не нуждаются в функциях ручной разработки из-за этой способности.После соответствующего множества обратных распространений DNN знает, какая информация, такая как цвет или форма, важна для выполнения задачи.
Люди естественно думают, что DNN позволяет агенту RL связывать изображения со значениями. Однако все не так просто.
Сравнение наивной DQN и линейной модели (с методами DQN) из NatureNaive DQN имеет 3 сверточных слоя и 2 полностью связанных слоя для оценки значений Q непосредственно из изображений. С другой стороны, линейная модель имеет только 1 полностью связанный слой с некоторыми методами обучения, обсуждаемыми в следующем разделе.Обе модели изучают значения Q в режиме обучения Q. Как видно из приведенной выше таблицы, наивная DQN дает очень плохие результаты, хуже, чем даже линейная модель, потому что DNN легко переоснащается в онлайн-обучении с подкреплением.
DQN представлен в двух статьях: «Игра в Atari с глубоким обучением с подкреплением на NIPS в 2013 году» и «Управление на уровне человека посредством глубокого обучения с подкреплением в Nature» в 2015 году. Интересно, что в период с 2013 по 2015 год было всего несколько статей о DRN. Причина в том, что люди не могли воспроизвести реализацию DQN без информации в версии Nature.
Агент DQN играет в BreakoutDQN преодолевает нестабильное обучение, используя в основном 4 метода.
- Воспроизведение опыта
- Целевая сеть
- Вознаграждение за вырезание
- Пропуск кадров
Я объясняю каждый метод по отдельности.
Experience Replay изначально предлагается в книге «Обучение с подкреплением для роботов с использованием нейронных сетей» в 1993 году. DNN легко переигрывает текущие эпизоды. После того, как DNN переоборудован, трудно произвести различный опыт.Чтобы решить эту проблему, Experience Replay сохраняет опыт, включая переходы между состояниями, вознаграждения и действия, которые являются необходимыми данными для выполнения Q-обучения, и создает мини-пакеты для обновления нейронных сетей. Этот метод имеет следующие достоинства.
- уменьшает корреляцию между опытом обновления DNN.
- увеличивает скорость обучения с помощью мини-пакетов.
- повторно использует прошлые переходы, чтобы избежать катастрофического забывания.
При вычислении ошибок TD целевая функция часто изменяется с DNN.Нестабильная целевая функция затрудняет обучение. Таким образом, метод Target Network фиксирует параметры целевой функции и заменяет их последней сетью каждые тысячи шагов.
Целевая функция Q в красном прямоугольнике фиксирована.Каждая игра имеет разные шкалы очков. Например, в Pong игроки могут получить 1 очко, выиграв игру. В противном случае игроки получают -1 балл. Однако в SpaceInvaders игроки получают от 10 до 30 очков за победу над захватчиками. Эта разница сделает обучение нестабильным.Таким образом, техника Clipping Rewards фиксирует очки, при которых все положительные награды имеют значение +1, а все отрицательные награды - -1.
ALE может обрабатывать 60 изображений в секунду. Но на самом деле люди не совершают столько действий за секунду. AI не нужно вычислять значения Q каждый кадр. Таким образом, метод пропуска кадров заключается в том, что DQN вычисляет значения Q каждые 4 кадра и использует последние 4 кадра в качестве входных данных. Это снижает вычислительные затраты и позволяет получить больше опыта.
Все вышеперечисленные методы позволяют DQN добиться стабильного обучения.
DQN подавляет наивный DQNВ версии Nature он показывает, насколько опыт воспроизведения и целевая сеть способствуют стабильности. Производительность
с воспроизведением опыта и без него и целевой сетью Воспроизведение опытаочень важно в DQN. Целевая сеть также увеличивает свою производительность.
DQN добился контроля на человеческом уровне во многих играх Atari с помощью более 4 техник. Однако есть игры, в которые DQN не может играть. В этой серии я представлю статьи, которые борются с ними.
Далее я предлагаю TensorFlow реализацию DQN.
- Добро пожаловать в раздел «Глубокое обучение с подкреплением», часть 2: DQN в TensorFlow (скоро)
Машинное обучение 101 | Под наблюдением, без присмотра, с усилением и не только | by BrainStation
Машинное обучение включает в себя широкий набор идей, инструментов и методов, которые используют специалисты по данным и другие специалисты.
Давайте посмотрим на некоторые из этих концепций и на то, как их можно использовать для решения проблем.
Самые простые задачи относятся к контролируемому обучению . При обучении с учителем у нас есть доступ к примерам правильных пар ввода-вывода, которые мы можем показать машине на этапе обучения.Распространенный пример распознавания рукописного ввода обычно рассматривается как контролируемая обучающая задача. Мы показываем компьютеру несколько изображений рукописных цифр вместе с правильными метками для этих цифр, и компьютер изучает шаблоны, которые связывают изображения с их метками.
Научиться выполнять задачи таким образом на явном примере относительно легко для понимания и несложно реализовать, но есть важная задача: мы можем сделать это, только если у нас есть доступ к набору данных правильных пар ввода-вывода. .В примере с почерком это означает, что в какой-то момент нам нужно отправить человека для классификации изображений в обучающем наборе. Это трудоемкая работа и часто невыполнимая, но там, где данные действительно существуют, алгоритмы контролируемого обучения могут быть чрезвычайно эффективными для широкого круга задач.
Задачи машинного обучения с учителем можно в общих чертах разделить на две подгруппы: регрессия и классификация . Регрессия - это проблема оценки или прогнозирования непрерывной величины.Какая будет стоимость S&P 500 через месяц после сегодняшнего дня? Какого роста будет взрослый ребенок? Сколько наших клиентов уйдут к конкуренту в этом году? Это примеры вопросов, которые подпадают под понятие регрессии. Чтобы решить эти проблемы в рамках контролируемого машинного обучения, мы собираем прошлые примеры пар ввода / вывода «правильный ответ», которые решают одну и ту же проблему. Для входных данных мы бы идентифицировали функций , которые, по нашему мнению, будут предсказывать результаты, которые мы хотим предсказать.
Для первой проблемы мы могли бы попытаться собрать в качестве характеристик исторические цены акций под S&P 500 на заданные даты вместе со стоимостью S&P 500 месяц спустя. Это сформирует наш обучающий набор, на основе которого машина попытается определить некоторые функциональные отношения между функциями и возможными значениями S&P 500.
Классификация имеет дело с распределением наблюдений по дискретным категориям, а не с оценкой непрерывных количеств.В простейшем случае есть две возможные категории; этот случай известен как двоичная классификация . Многие важные вопросы можно сформулировать в терминах бинарной классификации. Уйдет ли данный клиент от нас к конкуренту? Есть ли у данного пациента рак? Есть ли в данном изображении хот-дог? Алгоритмы для выполнения двоичной классификации особенно важны, потому что многие из алгоритмов для выполнения более общего вида классификации, где есть произвольные метки, представляют собой просто набор двоичных классификаторов, работающих вместе.Например, простое решение проблемы распознавания рукописного ввода состоит в том, чтобы просто обучить связку двоичных классификаторов: 0-детектор, 1-детектор, 2-детектор и т. Д., Которые выводят их уверенность в том, что изображение является их соответствующая цифра. Классификатор просто выводит цифру, классификатор которой имеет наибольшую достоверность.
С другой стороны, существует совершенно другой класс задач, называемый неконтролируемым обучением . Задачи контролируемого обучения находят шаблоны, в которых у нас есть набор «правильных ответов», на которых можно учиться.В задачах обучения без учителя обнаруживаются закономерности, которых нет у нас. Это может быть связано с тем, что «правильные ответы» ненаблюдаемы или невозможно получить, или, может быть, для данной проблемы нет даже «правильного ответа» как такового.
Большой подкласс неконтролируемых задач - это проблема кластеризации . Кластеризация относится к группировке наблюдений вместе таким образом, что члены общей группы похожи друг на друга и отличаются от членов других групп. Распространенное применение здесь - маркетинг, где мы хотим идентифицировать сегменты клиентов или потенциальных клиентов с аналогичными предпочтениями или покупательскими привычками.Основная проблема кластеризации состоит в том, что часто бывает трудно или невозможно узнать, сколько кластеров должно существовать или как они должны выглядеть.
Источник: https://arxiv.org/abs/1511.06434Очень интересный класс неконтролируемых задач - это генеративное моделирование . Генеративные модели - это модели, имитирующие процесс генерации обучающих данных. Хорошая генеративная модель сможет генерировать новые данные, которые в некотором смысле напоминают обучающие данные.Этот тип обучения является неконтролируемым, потому что процесс , который генерирует данные, не подлежит непосредственному наблюдению - наблюдаются только сами данные.
Последние разработки в этой области привели к поразительным, а иногда и ужасающим достижениям в области создания изображений. Изображение здесь создается путем обучения своего рода модели обучения без учителя, называемой моделью Deep Convolutional Generalized Adversarial Network, для создания изображений лиц и запроса изображений улыбающегося человека.
Новый тип задачи обучения, который в последнее время стал очень популярным, называется обучение с подкреплением .При обучении с подкреплением мы не предоставляем машине примеры правильных пар ввода-вывода, но мы предоставляем машине метод количественной оценки ее производительности в виде сигнала вознаграждения . Методы обучения с подкреплением похожи на то, как учатся люди и животные: машина пробует множество разных вещей и получает вознаграждение, когда что-то делает хорошо.
Обучение с подкреплением полезно в тех случаях, когда пространство решений огромно или бесконечно, и обычно применяется в тех случаях, когда компьютер можно рассматривать как агента, взаимодействующего со своей средой.Одна из первых успешных историй этого типа модели была создана небольшой командой, которая обучила модель обучения с подкреплением для игры в видеоигры Atari, используя в качестве входных данных только пиксельный вывод игры. Модель в конечном итоге смогла превзойти людей в трех играх, и вскоре после этого компания, создавшая модель, была приобретена Google за более чем 500 миллионов долларов.
Чтобы реализовать контролируемое обучение для проблемы игры в видеоигры Atari, нам потребуется набор данных, содержащий миллионы или миллиарды примеров игр, в которые играют настоящие люди, чтобы машина могла учиться.Напротив, обучение с подкреплением дает машине вознаграждение в зависимости от того, насколько хорошо она выполняет свою задачу. Простые видеоигры хорошо подходят для этого типа задач, так как счет хорошо работает в качестве награды. Машина продолжает учиться путем моделирования, какие модели максимизируют ее вознаграждение.
Часто гибридные подходы между некоторыми или всеми этими различными областями приводят к хорошим результатам. Например, важной задачей в некоторых областях является задача обнаружения аномалии . Алгоритм обнаружения аномалий отслеживает некоторый сигнал и указывает, когда происходит что-то странное .Хороший пример - обнаружение мошенничества. Нам нужен алгоритм, который отслеживает поток транзакций по кредитным картам и помечает странные транзакции. Но что значит странное? Эта проблема подходит для гибридного подхода с учителем и без учителя. Конечно, есть некоторые известные шаблоны, которые мы хотели бы, чтобы алгоритм мог обнаруживать, и мы можем обучить модель контролируемого обучения, показывая ей примеры известных шаблонов мошенничества. Но мы также хотим иметь возможность обнаруживать ранее неизвестные примеры потенциального мошенничества или других аномальных действий, которые могут быть выполнены с помощью методов обучения без учителя.
Многие из самых продвинутых инструментов требуют обширных сложных знаний в области продвинутой математики и статистики, а также разработки программного обеспечения. Для новичка, желающего начать, это может показаться ошеломляющим, особенно если вы хотите работать с некоторыми из захватывающих новых типов моделей, которые галлюцинируют жуткие образы улыбающихся мужчин или управляют беспилотными автомобилями.
Хорошая новость в том, что вы можете многое сделать с помощью базовых функций, которые широко доступны. В R и Python реализованы различные модели контролируемого и неконтролируемого обучения, которые находятся в свободном доступе и легко настраиваются на вашем собственном компьютере, и даже простые модели, такие как линейная или логистическая регрессия, могут использоваться для выполнения интересных и важных задач машинного обучения.
Хотите узнать больше о науке, лежащей в основе машинного обучения? Узнайте больше о нашем курсе Data Science .
Этот пост изначально был опубликован в блоге BrainStation.
.Как заземлить себя | 9 эффективных методов заземления
Обзор : это подробное руководство исследует научные аспекты и преимущества заземления и заземления, включая девять эффективных способов заземления.
______________
Вы идете босиком по пляжу.
Почувствуйте, как тепло солнца касается вашей кожи. Слушайте ритм грохочущих волн. Почувствуйте запах океанского ветра, который пронизывает вас.
Теперь обратите внимание на свои ноги.Вы чувствуете покалывание в ступнях или ногах, когда по телу поднимается тепло?
Возможно, вы замечали подобное ощущение, когда ходили босиком по траве. В такие моменты вы заземлены. Это одна из причин, по которой многих людей привлекает океан.
Быть заземленным может означать две вещи:
- Полностью присутствовать в вашем теле и / или
- Чувство связи с землей.
Мы все пережили то, что нас заземлили. Мы чувствуем себя «как дома». Но это мимолетный опыт.
К счастью, существуют методы заземления, которые помогают нам укорениться в нашем теле. Методы заземления, описанные в этом руководстве, могут:
Таким образом, упражнения на заземление могут повысить вашу общую работоспособность.
Но сначала давайте посмотрим, что происходит, когда вас не обвиняют.
13 признаков необоснованности
Вы не обоснованы, если вы:
- Легко отвлекаться
- Пространство вне
- Задумываться или размышлять
- Участвуйте в личной драме
- Испытывать беспокойство и постоянное беспокойство
Вы также лишены основания, если вы:
- Одержимый желанием материальных вещей
- Легко обмануть себя или других
- Одержимый своим личным изображением
Физические признаки отсутствия заземления включают:
- Воспаление
- Плохой сон
- Хроническая боль
- Усталость
- Плохое кровообращение
Незаземленность - всемирная эпидемия.Эта эпидемия настолько укоренилась, что мало кто из нас даже осознает проблему.
Незаземленность - коренная причина многих человеческих страданий.
Доказательства того, что заземление работает
Хотя основные преимущества методов заземления проистекают из самого опыта, наш разум часто заранее ищет доказательства.
Исследования заземления начали проводиться в последние 15 лет. Он все еще находится в зачаточном состоянии, но результаты многообещающие.
Заземление:
Все эти исследования обнадеживают, но вам не нужны внешние научные доказательства. Если вы примете образ мыслей ученого, вы можете позволить своему телу стать вашей лабораторией. Затем вы можете сами оценить результаты.
ЧАСТЬ I: Заземление в кузове
Первая часть заземления - это укорениться в вашем физическом теле.
Заземление аналогично центру . Центр обширен, включая ваше тело, а также ваш разум, сердце и дух.
Когда вы научитесь заземляться, вам будет легче найти свой Центр. Техники заземления предназначены для перераспределения энергии из головы или разума в тело. Это дает почти мгновенный успокаивающий эффект.
Большая часть нашего стресса и беспокойства возникает из-за разрыва связи с нашим телом. Чем больше вы укоренились в своем теле, тем меньше стресса и беспокойства вы испытываете.
Как заземлить себя: 5 способов заземления
Попробуйте прямо сейчас один из следующих способов заземления, чтобы увидеть эффекты.
Покройте свою корону
Я не совсем понимаю, почему это упражнение на заземление так эффективно, но оно почти всегда работает. Когда вы не заземлены, положите одну руку на макушку головы. Это оно. Если это поможет, закройте глаза, чтобы не отвлекаться.
Время : от 30 секунд до 1 минуты.
Feel Your Feet
Я часто использую эту технику со своими клиентами, потому что она очень быстрая и эффективная. Сидя или стоя, сосредоточьте все свое внимание на ступнях.Обращайте внимание на любые ощущения.
Время : от 30 секунд до 1 минуты.
Следуй своему дыханию
Закройте глаза и на вдохе проследите, как воздух входит в ваш нос и попадает в легкие. На выдохе следите за тем, как воздух выходит из легких и выходит через нос или рот.
Этот метод заземления становится более эффективным с практикой. Ключ в том, чтобы наблюдать за дыханием, а не заставлять его умом. Пусть ваше тело ведет за собой, а ваш разум будет следовать за вами.
Время : от 1 минуты до 10 минут.
Стой как дерево
Мы обсуждали эту мощную технику заземления в предыдущем руководстве по древней стоячей медитации.
Встаньте, поставив ступни параллельно друг другу на ширине плеч. Голова должна парить над телом, подбородок опущен, спина прямая. Положите руки на бок или положите их на пупок.
Погрузите весь вес и напряжение вашего тела в ступни (не нарушая осанки), позволяя им погрузиться в землю.Чтобы поддержать этот процесс заземления, представьте, что корни вырастают из подошвы ваших ног и уходят глубоко в землю под вами.
Время : от 1 минуты до 10 минут.
Чтобы получить полное руководство о том, как исправить осанку и накапливать энергию в положении стоя, щелкните здесь.
Примите холодный душ
Этот метод заземления имеет много преимуществ для здоровья. Было показано, что воздействие холода повышает иммунитет, уменьшает жир и улучшает настроение (за счет активации дофамина).Если вы не привыкли принимать холодный душ, в конце горячего душа сделайте воду теплой / прохладной в течение 30 секунд.
В течение следующих трех недель сделайте воду немного прохладнее и оставайтесь под ней дольше. К концу трех недель ваше тело привыкнет к холоду. Это бодрящий и заземляющий опыт. Я рекомендую это, если у вас нет высокого кровяного давления.
Время : от 30 секунд до 5 минут.
ЧАСТЬ 2: Заземление на Землю
Категория упражнений по заземлению называется «заземление».«Когда я прочитал книгу« Заземление »(аудиокнига) несколько лет назад, я был очарован этой идеей.
Заземление означает соединение вашего физического тела (слоя кожи) с Землей. Каждая бытовая розетка имеет заземляющий провод. (Это третий зубец; это полукруглое отверстие под двумя другими зубцами).
В случае короткого замыкания заземляющий провод обеспечивает путь для поглощения электрического тока землей. Без заземляющего провода ваше тело, касающееся устройства (электрической коробки, прибора, электроинструмента и т. Д.)) может завершить наземный путь. Это вызывает шок, если не поражение электрическим током.
С точки зрения заземления, в наших телах уже происходит короткое замыкание, что приводит к распространению физических, эмоциональных и психических расстройств. Подключение к Земле заземляет нас, перебалансируя нашу электрическую систему.
Польза заземления для здоровья
Теория заключается в том, что заземление позволяет переносить отрицательно заряженные электроны с поверхности Земли в тело. Эти электроны нейтрализуют положительно заряженные свободные радикалы, вызывающие хроническое воспаление.
Избыток свободных радикалов повреждает клеточные мембраны и ДНК, что приводит к раку и другим заболеваниям. Поскольку заземление снижает вязкость (густоту) крови и уменьшает воспаление, оно может поддерживать здоровье сердечно-сосудистой системы.
У большинства из нас сверхактивная симпатическая нервная система (чрезмерное эмоциональное напряжение). Предварительные исследования показывают, что заземление оказывает успокаивающее и уравновешивающее действие на нервную систему.
Биофизик Джеймс Ошман объясняет:
В тот момент, когда ваша ступня касается Земли или вы подключаетесь к Земле через провод, ваша физиология меняется.Начинается немедленная нормализация. И включается противовоспалительный переключатель. Люди остаются воспаленными, потому что они никогда не связываются с Землей, источником свободных электронов, которые могут нейтрализовать свободные радикалы в организме, вызывающие болезни и разрушение клеток. Заземление - это самое простое и глубокое изменение образа жизни, которое может сделать каждый.
Все больше исследований показывают, что заземление помогает естественным образом исцелять людей от самых разных болезней.
Велосипедисты на Тур де Франс часто страдают от болезней, тендинита и плохого сна из-за экстремального физического и психического стресса, вызванного гонкой.
Американская команда экспериментировала с заземлением после ежедневных соревнований. Они сообщили о лучшем сне, меньшем количестве болезней, отсутствии тендинита и более быстром восстановлении после болезни. По моему опыту, преимущества заземления выходят далеко за рамки лечения болезней.
Я считаю, что заземление имеет негласные умственные и эмоциональные преимущества, необходимые для психологического развития и максимальной производительности.
Биоэлектрическое тело
Люди - существа энергии. Электрические токи и связанные с ними магнитные поля наполняют и окружают человеческий организм.
Эти токи составляют сеть или систему интерактивных энергетических полей, которые управляют функционированием тела. В энергетической медицине это называется биополем человека.
источник
Эта тонкая энергия называется прана, в аюрведической медицине и ци, в китайской медицине. Однако эти древние термины, вероятно, включают другие формы энергии, помимо электромагнитных полей (например, звуковую энергию).
В этих древних индийских и китайских традициях понимается, что энергия жизненной силы течет через тело (выходя за его пределы).Блокировки и дисбаланс в потоке этой энергии приводят к болезни.
Современные формы энергетической терапии, такие как Рейки, работают по схожему принципу.
Электромагнитная Земля
Согласно китайской мысли, ци нашего тела исходит из Небесной ци и Земной ци.
Небесная ци относится к энергии солнца и космоса. Ци Земли образуется из естественной энергетической паутины Земли, ее магнитного поля и естественного тепла.
Оказывается, Земля также имеет энергетическую анатомию, совместимую с нашей.Энергетические центры, энергетические каналы, магнитные поля исходят от Земли.
Земля похожа на массивную батарею, восполняемую солнечным излучением, молнией и теплом из расплавленного ядра. Он заряжается каждую минуту от 5000 ударов молнии где-нибудь в мире.
Подключиться к Земле
В то время как некоторые ранние версии обуви были сделаны из папируса, большая часть обуви была сделана из воловьей, медвежьей, оленьей кожи, дерева и холста.
Войдите в индустриальную эпоху.Первые туфли на резиновой подошве появились в Англии в 1876 году. К началу Второй мировой войны обувь на синтетической подошве была обычным явлением. Мы, как народ, с тех пор не поправились.
Если вы помните из школьной физики, вещества, называемые проводниками , позволяют электричеству легко проходить через них. Другие вещества под названием изоляторы препятствуют прохождению электричества.
Если вы находитесь на улице во время грозы, лучше всего сесть в машину, потому что шины резиновые.Резина - изолятор; он защитит вас от ударов молнии в землю. Обувь на резиновой подошве нарушила нашу связь с Землей .
Эксперт в области здравоохранения Дэвид Вулф называет обычную обувь «самым опасным изобретением в мире».
Авторы Заземления объясняют:
Заземление естественным образом защищает хрупкие биоэлектрические цепи тела от статических электрических зарядов и помех. Что наиболее важно, это облегчает прием свободных электронов и стабилизирующие электрические сигналы и энергию Земли.Заземление устраняет электрическую нестабильность и дефицит электронов, о которых вы даже не подозревали. Он наполняет и перезаряжает ваше тело тем, о чем вы даже не подозревали ... или что вам нужно.
С современной точки зрения ходьба босиком по земле может показаться примитивной. Однако с инстинктивной точки зрения мы должны ходить босиком.
Как заземлить себя: 4 упражнения на заземление
Упражнения по заземлению, позволяющие связать вас с Землей, просты: просто снимите обувь и носки и выйдите на улицу.
Стой на Земле: лучше всего подходят трава, камень, песок или грязь. Вы можете стоять на одном месте, ходить или лечь.
Как и в любой другой электрической цепи, для заземления требуется только одна точка контакта.
Одна нога на земле заземлит вас, но я обнаружил, что две ноги на земле обеспечивают более сильный эффект заземления.
Для исцеления исследователи движения «Заземление» рекомендуют оставаться босиком на Земле не менее 20 минут два раза в день.
Но даже если вы можете подключиться к Земле всего на 10 минут во время обеда, она вам пригодится.
- Избегайте опрыскивания травы пестицидами, так как они будут впитываться через ваши ноги.
- Будьте осторожны в местах, где может быть разбитое стекло или мусор.
- Не ходить босиком по асфальту.
Если вы не можете ходить босиком, я рекомендую надеть заземляющую обувь.
Вот четыре метода заземления, которые помогут вам повторно подключиться к Земле:
Осознанная ходьба
Просто гуляйте и оставайтесь рядом со своим окружением.
Мой любимый способ заземления - ходить босиком по своей собственности и окрестным лесам. В зависимости от того, насколько активен мой ум, может пройти всего несколько минут, прежде чем я стану более умственно спокойным и сосредоточенным. Ходьба босиком дает дополнительное преимущество в виде массажа акупунктурных точек на ногах, как в рефлексотерапии.
Особый интерес представляет точка Почки-1 (K-1) или «пузырящаяся скважина» в центре стопы. Ходьба босиком помогает стимулировать эту точку. При ходьбе обязательно используйте всю ступню: пятку, подушечку пальцев, пальцы ног.
Время : от 10 до 20 минут.
Катиться, как кошка
Вы когда-нибудь замечали, как по Земле катаются кошки и собаки?
Я часто задавался вопросом, умеют ли они инстинктивно выделять отрицательную энергию. Попробуйте испачкаться и кататься по Земле. Вы поймете, почему это делают кошки. Хорошее настроение .
Время : Сколько хотите.
Стой как дерево
Мы рассмотрели эту технику заземления выше.
Эта стоячая медитация под названием Чжань Чжуан лучше всего работает на природе (на свежем воздухе) и даже лучше, когда выполняется босиком на Земле.
Китайцы даже делают туфли для тайцзи на хлопковой подошве (но я обнаружил, что они наполнены полиэстером, что противоречит цели).
Лучшая альтернатива - башмаки заземления.
Время : от 1 минуты до 10 минут.
Визуализация заземления
Почувствуйте землю под собой и сосредоточьтесь на себе.Теперь сосредоточьтесь на своем сердце.
Присутствуйте с энергией жизни, исходящей из вашего сердца. Теперь представьте себе центр Земли. Это может быть ядро магмы, круг света или что угодно, что приходит в голову.
Затем визуализируйте изогнутый луч света или энергии, идущий от вашего сердца к ядру Земли. Дополнительный изогнутый энергетический луч проходит от ядра к сердцу (образуя заостренный овал). Почувствуйте связь между вашим сердцем и ядром Земли.
Время : от 2 до 5 минут.
Заземление и заземление
Когда я впервые прочитал о заземлении, это было зимой. Я не был готов ходить по мерзлой земле, поэтому купил ряд продуктов для заземления.
В основе движения «Заземление» лежит новая отрасль производства продуктов, предназначенных для заземления путем подключения продукта к заземляющему проводу в вашем доме.
Вы можете приобрести:
Эти продукты, похоже, работают, но сообщенные положительные результаты могут быть эффектом плацебо.Честно говоря, я не знаю наверняка, но предварительные исследования показывают, что они действительно полезны для здоровья.
Я лично использую многие из этих продуктов. Например, у меня есть универсальный коврик для заземления под клавиатурой, с которой я сейчас печатаю.
Универсальный коврик для заземления на рабочем столе
Комплект чехла для матраса Elite с заземлением
Коврик для заземления
Заземляющие браслеты для запястья и тела
Минималистские башмаки и сандалии для заземления
Хотя обувь с заземлением не дает мне таких ощущений, как прогулка босиком, я, , может, , все же ощущать эффект заземления.
Вы также можете заземлить себя дома без каких-либо продуктов. В помещении керамическая плитка и бетонный пол могут заземлить вас, если вы ходите босиком.
Ковролин, винил и паркет не подойдут. Но эффекты не такие мощные, как прямой контакт с самой Землей.
( Заявление об отказе от ответственности : партнерские ссылки выше.)
Действительно ли заземляющие устройства работают?
Если бы я попытался заземлить десять с лишним лет назад, уверен, я бы ничего не почувствовал.У меня была небольшая чувствительность к движениям и ощущениям в моем теле.
Однако после многих лет практики цигун я стал лучше осознавать свое тело. Когда я соединяю ноги с Землей, я могу наблюдать различные ощущения. Я также могу обнаружить легкую вибрацию, исходящую от земли, когда я в центре.
Несколько месяцев пользовался прокладками и простынями. За исключением заземляющих башмаков, я смог обнаружить очень незначительные эффекты от их использования. Конечно, это не означает, что заземляющие устройства не работают.
Если бы я еще не оптимизировал свой сон для шишковидной железы, возможно, я испытал бы на себе преимущества заземляющих листов, как сообщают многие другие.
Обновление от 17.04.19: У меня был обширный обмен мнениями с Мартином Цукером, соавтором книги «Заземление». Он также предположил, что, вероятно, из-за моего текущего состояния здоровья я не чувствую последствий.
Кроме того, я живу в лесу, где вся электрическая проводка находится под землей, и поблизости нет вышек сотовой связи.Мой интернет-модем отключен вечером, и в спальне нет электронных устройств.
Все это означает сверхнизкие уровни электромагнитных частот (ЭМП). Как следствие, в чем-то вроде заземляющих листов нет необходимости.
Но когда я работаю перед компьютером, я использую универсальную заземляющую площадку под клавиатурой, а также медную заземляющую пластину, которую я построил для своих ног. Я считаю, что использование этих инструментов для заземления помогает мне оставаться спокойнее и сосредоточенным, когда я работаю.
Заземлите себя с помощью цифрового приложения?
Хорошо, то, что я собираюсь с вами сейчас поделиться, может звучать как научная фантастика.
Эрик Томпсон - основатель компании Subtle Energy Sciences.
Используя технологию квантового резонанса, Эрик разработал метод кодирования цифровых изображений и звуковых файлов с определенными энергетическими сигнатурами.
В результате получилось то, что он назвал цифровыми мандалами, сочетающими красивое цифровое искусство со слоями различных звуковых технологий, связанных с энергией.
Если вы открыты для изучения новых технологий, обратите внимание на Earth Pulse .
Эта цифровая медиапрограмма транслирует усиленную энергетическую сигнатуру резонанса Шумана через ваши электронные устройства.
По сути, вы можете использовать его, чтобы превратить устройства, производящие вредные ЭМП, во что-то, что защитит вас от вредных ЭМП - и заставит вас почувствовать себя более заземленным!
У меня всегда есть хотя бы одна из мандал Эрика, работающая на моем компьютере и других устройствах (обычно более одной).
Используйте код CEOSAGE30 для скидки 30%.
Так вот, если у вас нет энергетической чувствительности, вы можете сначала ничего не почувствовать. Если это так, Эрик предлагает различные способы усиления и оптимизации эффектов.
(отказ от ответственности: партнерская ссылка)
Максимально эффективные упражнения по заземлению
Если вы сознательно заземляете себя в своем теле (Часть I), а затем укореняетесь в Земле (Часть II), вы можете усилить эффекты заземления.
Чем больше времени вы проводите за компьютером или подключением к смартфону, тем больше пользы вы получите от техники заземления и упражнений на заземление.
Некоторые люди считают, что нет достоверных доказательств того, что электромагнитные частоты (ЭМП) и волны излучения от электронных устройств, таких как мобильный телефон, вредны.
Однако доказательства продолжают расти.
В конечном счете, вам нужно только больше укорениться в своем теле, чтобы положить конец спорам.Воздействие как ЭМП, так и / или излучения этих устройств становится заметным в вашем энергетическом теле.
Вопрос не в том, действуют ли на вас эти электромагнитные и радиационные волны; в какой степени вы их чувствуете.
Тем не менее, заземление себя в своем теле и ежедневное заземление могут быть важным выбором в образе жизни для тех, кто заинтересован в долгой и яркой жизни.
Изучение цигун или практика Метода Мастерства (если у вас мало времени) могут научить вас чувствовать и перемещать энергию в своем теле.
Резюме: как заземлить себя
Методы заземления предоставляют мощные методы повышения осведомленности о своем теле. Эти упражнения обладают разнообразной пользой для здоровья.
Заземление - это упражнение по заземлению, которое восстанавливает вашу связь с Землей. Исследования показывают, что заземление уменьшает воспаление, удаляя свободные радикалы.
Для творческих профессионалов техники заземления и упражнения по заземлению - это способы:
- Успокоить и очистить разум,
- Зарядка вашей энергии и
- Успокаивает эмоции.
Таким образом, упражнения на заземление помогут повысить общую умственную и физическую работоспособность. Ходить по Земле босиком - это успокаивающее и радостное занятие.
Эти техники заземления помогают пробудить ваши инстинкты и приблизить вас к себе.
Читать далее
7 мощных инструментов для медитации, которые помогут вам тренировать свой ум для повышения эффективности
Полный обзор 4 лучших очков, блокирующих синий свет
Детоксифицируйте свою шишковидную железу, повысьте мощность мозга и увеличьте жизнеспособность с помощью этих 11 пищевых добавок и продуктов
Листы заземления: действительно ли они помогают улучшить ваш сон?
Что вы думаете?
Добавьте свои комментарии ниже.
.