Главное меню

Сварка внахлест арматуры


таблицы размеров стыковки всех диаметров по СНиП, правила соединения перехлеста

Армирование – ответственная часть устройства всех монолитных конструкций, от которого зависит долговечного и надежного будущего строения. Процесс заключается в создании каркаса из металлических стержней. Он размещается в опалубку и заливается бетоном. Чтобы создать этот каркас, прибегают к вязке или сварочным работам. При этом большую роль при вязке играет правильно рассчитанный нахлест для арматуры. Если он недостаточный, то соединение окажется недостаточно прочным, а это сказывается на эксплуатационных характеристиках. Поэтому важно разобраться, какой именно делать нахлест при вязке.

Виды соединений

Существует два основных метода крепления арматуры, согласно строительным нормам и правилам (СНиП), а именно пункту 8.3.26 СП 52-101-2003. В нем прописано, что соединение стержней может выполняться следующими типами стыковки:

  1. Стыковка прутьев арматуры без сварки, внахлест.
    • внахлест с использованием деталей с загибами на концах (петли, лапки, крюки), для гладких прутьев используются исключительно петли и крючки;
    • внахлест с прямыми концами арматурных прутьев периодического профиля;
    • внахлест с прямыми концами арматурных прутьев с фиксацией поперечного типа.
  2. Механическое и сварное соединение.
    • при использовании сварочного аппарата;
    • с помощью профессионального механического агрегата.


Требования СНиП указывают на то, что бетонное основание нуждается в установке минимум двух неразрывных каркасов из арматуры. Их делают посредством фиксации стержней внахлест. Для частного домостроения подобный способ используется чаще всего. Это связано с тем, что он доступный и дешевый. Созданием каркаса может заняться даже новичок, так как нужны сами прутья и мягкая вязальная проволока. Не нужно быть сварщиком и иметь дорогостоящее оборудование. А в промышленном производстве чаще всего встречается метод сварки.

Обратите внимание! Пункт 8.3.27 гласит, что соединения арматуры внахлест без применения сварки, используется для стержней, рабочее сечение которых не превышает 40 мм. Места с максимальной нагрузкой, не должны фиксироваться внахлест вязкой или сваркой.

Соединение прутьев методом сварки

Нахлест стержней методом сварки используется исключительно с арматурой марки А400С и А500С. Только эти марки считаются свариваемыми. Это сказывается и на стоимости изделий, которая выше обычных. Одним из распространенных классов является класс А400. Но сращивание изделий ими недопустимо. Нагреваясь, материал становится менее прочным и теряет свою устойчивость к коррозии.

В местах, где есть перехлест арматуры, сваривание запрещается, несмотря на класс стержней. Почему? Если верить зарубежным источникам, то есть большая вероятность разрыва места соединения, если на него будут воздействовать большие нагрузки. Что касается российских правил, то мнение следующее: использовать дуговую электросварку для стыковки разрешается, если размер диаметров не будет превышать 25 мм.

Важно! Длина сварочного шва напрямую зависит от класса арматурного прута и его диаметра. Для работы используют электроды, сечение которых от 4 до 5 мм. Требования, регламентированные в ГОСТах 14098 и 10922, сообщают, что делать нахлест методом сварки можно длиной меньше 10 диаметров арматурных прутьев, используемых для работ.

Стыковка арматуры методом вязки

Это самый простой способ обеспечить надежную конструкцию из арматурных прутьев. Для этой работы используется самый популярный класс стержней, а именно, А400 AIII. Соединение арматуры внахлест без сварки выполняется посредством вязальной проволоки. Для этого два прутка приставляются друг к другу и обвязываются в нескольких местах проволокой. Как говорилось выше, согласно СНиП, есть 3 варианта фиксации арматурных прутьев вязкой. Фиксация прямыми концами периодического профиля, фиксация с прямыми концами поперечного типа, а также пользуясь деталями с загибами на концах.

Выполнять соединение прутьев арматуры внахлест абы как нельзя. Существует ряд требований к этим соединениям, чтобы они не стали слабым местом всей конструкции. И дело не только в длине нахлеста, но и других моментах.

Важные нюансы и требования для соединения вязкой

Хоть процесс соединения прутьев с использованием проволоки проще, чем их соединение сварочным аппаратом, назвать его простым нельзя. Как любая работа, процесс требует четкого соблюдения правил и рекомендаций. Только тогда можно сказать, что армирование монолитной конструкции выполнено правильно. Занимаясь соединением арматуры с нахлестом методом вязки, следует обращать внимание на такие параметры:

Мы упоминали, что размешать арматурный стык, сделанный внахлест, на участке с самой высокой степенью нагрузки и напряжения нельзя. К этим участкам относятся и углы здания. Получается, что нужно правильно рассчитать места соединений. Их расположение должно приходиться на участки железобетонной конструкции, где нагрузка не оказывается, или же она минимальная. А что делать, если технически соблюсти это требование невозможно? В таком случае размер нахлеста прутьев зависит от того, сколько диаметров имеет арматура. Формула следующая: размер соединения равен 90 диаметров используемых прутьев. Например, если используется арматура Ø20 мм, то размер нахлеста на участке с высокой нагрузкой составляет 1800 мм.

Однако техническими нормами четко регламентированы размеры подобных соединений. Нахлест зависит не только от диаметра прутьев, но и от других критериев:

Нахлест при разных условиях

Так какой же нахлест арматуры при вязке? Какие есть точные данные? Начнем с рассмотрения примеров. Первый фактор, от которого зависит нахлест – это диаметр прутьев. Наблюдается следующая закономерность: чем больше диаметр используемой арматуры, тем больше становится нахлест. Например, если используется арматура, диаметром 6 мм, то рекомендуемый нахлест составляет 250 мм. Это не означает, что для прутьев сечением в 10 мм он будет такой же. Обычно, используется 30-40 кратноя величина сечения арматуры.

Пример стыковки арматуры 25 диаметра в балке, при помощи вязки. Величина перехлеста 40d=1000 мм.

Итак, чтобы упростить задачу, используем специальную таблицу, где указан, какой нахлест используется для прутьев разного диаметра.

Диаметр используемой арматуры А400 (мм)Количество диаметровПредполагаемый нахлест (мм)
1030300
1231,6380
1630480
1832,2580
2230,9680
2530,4760
2830,7860
3230960
3630,31090
40381580

С этими данными каждый сможет выполнить работу правильно. Но есть еще одна таблица, указывающая на нахлест при использовании сжатого бетона. Он зависит от класса используемого бетона. При этом чем выше класс, тем разбежка стыков арматуры меньше.

Сечение арматуры А400, которая используется для работы (мм)Длина нахлеста, в зависимости от марки бетона (мм)
В20 (М250)В25 (М350)В30 (М400)В35 (М450)
10355305280250
12430365355295
16570490455395
18640550500445
22785670560545
25890765695615
28995855780690
321140975890790
36142012201155985

Что касается растянутой зоны бетона, то в отличие от сжатой зоны, нахлест будет еще больше. Как и в предыдущем случае, с увеличением марки раствора длина уменьшается.

Сечение арматуры А400, которая используется для работы (мм)Длина нахлеста, в зависимости от марки бетона (мм)
В20 (М250)В25 (М350)В30 (М400)В35 (М450)
10475410370330
12570490445395
16760650595525
18855730745590
221045895895775
2511851015930820
28132511401140920
321515130011851050
361895162514851315

Если правильно расположить нахлест друг относительно друга и сделать его нужной длины, то скелет основания получит значительные увеличения прочности. Соединения равномерно распределяются по всей конструкции.

Согласно нормам и правилам (СНиП), минимальное расстояние между соединением должно составлять 61 см. Больше – лучше. Если не соблюдать эту дистанцию, то риск, что конструкция при сильных нагрузках и в ходе эксплуатации будет деформироваться, возрастает. Остается следовать рекомендациям, для создания качественного армирования.

Сварка арматуры внахлест | арматура и металлопрокат

Основное назначение – перераспределение нагрузок на растяжение и сжатие.

Методика применяется в том случае, если необходимо перераспределить сжимающие и растягивающие нагрузки.

Сразу отметим, что этот способ сварки используют только в случаях, когда создаваемая конструкция в будущем не будет подвергаться серьезным нагрузкам. Как статичным, так и динамическим. Наиболее опасны для такого соединения нагрузки на изгиб. Суть такого вида сварки состоит в соединении прутков арматуры продольной их частью между собой со смещением по вертикальной оси на 15-30 см. Чем больше площадь соприкосновения арматурных прутков, тем прочнее будет соединение.

Ключевые нюансы этого способа:

Важно проводить сварку с двух сторон. И это иногда создает определенные сложности. Например, если сварной шов будет проходить сверху и снизу. Если верхнюю часть зафиксировать легко, то вот с нижним могут возникнуть проблемы – до него не всегда получается добраться. И тогда соединение можно считать весьма ненадежным. Перед сваркой необходимо провести подготовительные работы. В местах соединения прутки зачищаются металлической щеткой. Так же существует способ, позволяющий добиться усиления крепости соединения. Для этого нужно стесать болгаркой места соединения стержней до плоского состояния обоих. Режим сварки арматуры зависит от ее диаметра. Арматура от 5 до 8 мм. толщиной сваривается 3-х миллиметровым электродом. При толщине до 10 мм. электрод берется 4 мм. толщиной. Стержни более 10 см. свариваются электродом на 5 мм. Предельно внимательным нужно относиться к выбираемой силе тока. Ниже приведена таблица с нужными параметрами.

Диаметр,

миллиметры

Ток,

амперы

5

200

6

250

8

300

10

350

20

450

Навигация по записям

Сварка внахлест арматуры и плоских деталей согласно ГОСТ электродуговым и контактным методом

Сваривание внахлест чаще всего применяют при точечной контактной сварке. В других случаях получается слишком большой расход материалов и рабочего времени, требуется проваривать шов с двух сторон.

При соединении внахлест разделка кромок не требуется, но сами кромки должны быть аккуратно обрезаны, без заусенцев от механической обрезки или наплывов от газового резака.

Торцы кромок и прилегающие области в пределах двух сантиметров должны быть зачищены до металлического блеска, при необходимости обезжирены.

Электродуговой метод

В зависимости от положения нахлесточного соединения в пространстве, сварка должна производиться по технологиям, разработанным для конкретного вида сварочного соединения. Чтобы предотвратить появление ржавчины требуется проварить нахлестовое соединение с одной и другой стороны.

Сварку внахлест электродуговым методом обычно применяют при монтажных и сборочных работах стальных конструкций. Для сварщика технология внахлест не представляет трудностей, если имеется возможность кантовать свариваемое изделие.

Естественно, если необходимо приварить внахлест листовую заготовку к металлическому потолку, то возникнут трудности с потолочным швом.

При сварке внахлест, в зависимости от конкретных требований, соединение заготовок производится одним или двумя швами.

Шов проходит по краю одной или другой поверхности свариваемого изделия. Технология практически исключает прожоги. Требования к краям изделия не такие жесткие, как при сварке встык.

При сборке деталей допускается некоторая нестыковка, неточности в размерах. Главное, чтобы внешние габариты соответствовали требованиям.

Простота сварки внахлест имеет и свою отрицательную сторону:

При сварке внахлест шов формируется в углу, образованном торцом одной детали и боковой поверхностью другой детали. Это, по сути, соответствует угловому соединению. Поэтому к нахлесточному соединению применяют техники, использующиеся при угловых соединениях.

Контактный метод

Самым распространенным методом сваривания листовых материалов является соединение их внахлест. Его осуществляют с помощью рельефов (специальных выступов). Обычно применяют рельефы сферической формы. Рельефная сварка относится к разновидностям контактного метода.

При сварочном процессе внахлест рельефы формуют с применением холодной штамповки, что вызывает образование лунки. Если использовать материалы с высокой пластичностью, то можно получить рельефы любой сложности. Если рельефы получить затруднительно по каким-либо причинам, то можно использовать специальные вставки.

По сравнению с контактным сварочным процессом рельефный метод имеет некоторые отличия. Так, сварное соединение получается не за счет плавления металла, а за счет пластической деформации.

Данный вид сваривания используется при массовом производстве. Соединения получаются красивыми, без следов от электродов. Сваривание происходит по самому краю кромок, при этом не требуется предварительная подготовка поверхностей.

Контактная сварка в этом плане более требовательная, в ней сварочные точки не могут располагаться слишком близко к краю стыка. Между собой они тоже на должны находиться близко из-за шунтирующих токов.

Несмотря на это, контактная сварка внахлест очень распространена в автомобилестроении и приборостроении, широко применяется в изготовлении бытовой техники. Сам принцип действия контактной сварки предполагает нахлесточное соединение.

Применение к арматуре

При любом строительстве требуется армирование бетона для получения прочных конструкций. Чтобы обеспечить прочность, необходимо создавать каркасы из арматуры. Для этого проводят соединение арматуры с помощью вязальной проволоки или сварки.

Получение прочного каркаса из отдельных стержней арматуры является сложной задачей. Необходимо соблюдать технологию и множество правил.

Например, сварку арматуры внахлест используют, когда требуется все нагрузки равномерно распределить по поверхности. При этом необходимо учитывать, что нахлест применяется в местах наименьшего напряжения. Желательно брать арматурные стержни одного диаметра, при этом толщина арматуры не должна быть больше 20 мм.

Технология внахлест производится с учетом двух рельефов и швов. Сварочный процесс осуществляется аппаратом ручной электродуговой сварки.

Сварное соединение типа тавр должно иметь инвентарную форму, в ванне применяется только один электрод. Если сварка осуществляется под флюсом, то применять присадочную проволоку не нужно.

Нахлест арматуры в строительстве в случае применения сварки разрешается только при использовании стержней марок А400С и А500С. Арматура этого класса хорошо сваривается.

Недостатком является высокая стоимость этих марок. Наибольшее применение получила арматура марки А400, но она при нагревании теряет свои прочностные свойства и устойчивость к коррозии.

Требования к технологии

По западным стандартам запрещено производить сварочный процесс в областях перехлеста арматурных стержней, независимо от их марки. По российским нормирующим документам сваривание разрешено при толщине арматуры, не превышающей 25 мм.

При сварочных работах необходимо учитывать диаметр электродов. При использовании электродов толщиной 4-5 мм, длина нахлеста арматурных стержней будет более 10 диаметров свариваемых стержней. Этого требует ГОСТ 14098 и ГОСТ 10922.

Сваривание стержней арматуры можно осуществлять внахлест электрошлаковым полуавтоматом, ручной электродуговой, ванно-шовной, контактной сваркой.

Длинные швы делают для монтажа горизонтальных и вертикальных элементов арматурного каркаса. Такое соединение позволяет использовать вариант с накладками или внахлест.

Хотя соединение внахлест производится длинными швами, допускается также использование дуговых точек. Допустимо делать нахлестку короткой и длинной, а шов двусторонним или односторонним.

Длина сварного стыка накладки и арматурного прутка может быть разной. При этом допускается смещать накладки по длине. Сваривание арматурных стержней производится разнообразными фланговыми швами.

При сваривании арматурных стержней вертикального расположения необходимо на 10-20 % уменьшить сварочный ток. При использовании двусторонних швов возможно появление горячих трещин. Для предотвращения этого требуется точно соблюдать технологию сварки и правильно подбирать вид электрода.

особенности технологических процессов для осуществления работ

При строительстве зданий и сооружений с применением монолитного бетона обязательно производят армирование бетонных конструкций с использованием арматуры. Арматура – это стержень с гладким или специальным ребристым покрытием, изготавливаемый из стали специальных марок. Также широкое распространение в последнее время получила арматура из полимерных материалов.


Типы соединений арматуры внахлест

Соединения арматуры железобетонных конструкций регламентируются по ГОСТ 10922-2012. Существуют различные виды изделий из арматуры: отдельные стержни, арматурные сетки, арматурные каркасы, закладные изделия. Каждый вид изделий требует соединения арматурных стержней между собой в различных пространственных положениях: встык, внахлёст, крестообразное или специальное соединения. Выбор вида изделия, диаметр и класс арматуры, способ её соединения будет зависеть от возводимой бетонной конструкции. Основными способами соединения арматурных стержней являются:

  1. Вязка арматуры вязальной проволокой. Производится для соединения стержней внахлёст или с крестообразным расположением.
  2. Механическое соединение специальными резьбовыми или опрессовочными муфтами. Применяется для стыкового соединения арматуры одинакового диаметра.
  3. Сварное соединение арматуры. Выполняется различными способами сварки во всех пространственных положениях, регламентируется по ГОСТ 14098-2014.

Сварка арматуры внахлест

Оптимальным способом соединения арматуры является сварка различными способами. При сварке прочность соединения выше, имеет большую производительность, меньше трудозатрат.

На практике чаще всего применяют стыковое соединение с усиливающими стержнями, нахлесточное соединение стержней и нахлесточное соединение стержней с пластинами или фасонными деталями.

Стыковое соединение с усиливающими стержнями представляет собой два стержня, расположенных на одной оси, по бокам от стержней в месте их соединения располагаются усиливающие стержни (С21-Рн, С21-Мн). Сварка производится по линии соприкосновения основных и усиливающих стержней. Для сварки стержней большого диаметра можно применить сварку с двух сторон.

Во избежание деформаций стержней сварку производят короткими швами в шахматном порядке. Такой способ соединения применим для сварки арматуры любых классов диаметром более 10 мм.

Нахлесточное соединение представляет собой два стержня, расположенных в параллельных осях и имеющих одну общую линию соприкосновения (С23-Рэ, С-23-Мэ). Сварка производится по линии соприкосновения. Таким способом можно соединять арматуру разного диаметра, при этом размеры и характеристики шва выбираются по стержню с меньшим диаметром.

Двухсторонние швы допускается выполнять для арматуры класса А240 и Ас300 и длиной шва, равной четырём диаметрам стержня.

Нахлесточное соединения стержня с пластиной или фасонной деталью представляет собой стержень, установленный на пластину и имеющий одну линию соприкосновения с ней (Н1-Рш и следующие). Ручная дуговая сварка применяется для стержней диаметром от 10 до 32 мм и толщиной пластины от 4 мм. При этом сварка ведётся от края пластины вдоль линии соприкосновения со стержнем и заканчивается выходом шва на поверхность пластины. При применении контактной сварки выбирают стержни диаметром 6-16 мм и пластины с толщиной не менее 4 мм. При этом пластины должны иметь специальную форму поверхности.

Перед выполнением сварочных работ свариваемые поверхности очищают от загрязнений механическим способом. При наличии влаги производят просушку стержней газопламенными горелками. При наличии любых загрязнений, влаги или ржавчины качество сварочного шва резко ухудшается.

Сборку изделий осуществляют на специализированных сварочных столах, стендах, кондукторов с применением фиксирующих устройств. При проведении монтажных работ на строительной площадке необходимо укрытие места сварки от атмосферных осадков и ветра.

Основным способом сварки для проведения монтажных работ на строительной площадке является электродуговая сварка. Стационарные источники сварочного тока имеют характеристики выше, чем переносные сварочные аппараты, но неудобны для монтажных работ, так как потребуются дополнительные сварочные кабели. Такими источниками производят укрупнённую сборку с дальнейшей транспортировкой изделия к месту установки. Монтаж изделия в месте установки производят переносными сварочными аппаратами инверторного типа. Они имеют малый вес, стабильную работу, точную настройку сварочного тока, что способствует повышению производительности и качества сварных соединений.

Примерная стоимость инверторов для сварки на Яндекс.маркет

Выбор сварочных материалов и режимов сварки будет зависеть от класса и диаметра арматуры. При сварке стержней разного диаметра режимы выбираются по меньшему диаметру.

По окончании сварочных работ производится зачистка сварного соединения от шлака и брызг, визуальный контроль сварочного шва. При наличии дефектов производят ремонт сварного соединения или вырезают его полностью и сваривают снова.


Как грамотно сделать нахлест арматуры при вязке и сварке

Соединяя стальные пруты, армируя ленточный фундамент, у многих возникает естественный вопрос: как грамотно выполнить нахлест арматуры, и какова должна быть его длинна. Ведь правильная сборка металлического силового каркаса, позволит предотвратить деформацию и разрушение монолитной бетонной конструкции от воздействующих на нее нагрузок и увеличить безаварийный срок ее эксплуатации. Каковы технические особенности выполнения стыковых соединений, рассмотрим в данной статье.

Типы соединения арматуры внахлест

Согласно требованиям СНиП бетонное основание должно иметь не менее двух сплошных безразрывных контуров арматуры. Выполнить данное условие на практике позволяет стыковка армирующих прутов внахлест. При этом соединения в стыках могут быть нескольких типов:

Первый вариант соединения широко используется в частном домостроении благодаря простоте исполнения, доступности и невысокой стоимости материалов. В данном случае применяется распространенный класс арматуры A400 AIII. Стыковка нахлеста арматурных стержней без использования сварки может осуществляться как с применением вязальной проволоки, так и без нее. Второй вариант чаще всего используется в промышленном домостроении.

Согласно строительным нормам и правилам соединение арматуры нахлестом при вязке и сварке предусматривает использование прутов диаметром до 40мм. Американский институт цемента ACI допускает использование стержней с максимальным сечением 36мм. Для армирующих прутьев, диаметр которых превышает указанные значения, использовать соединения внахлест не рекомендуется, по причине отсутствия экспериментальных данных.

Согласно строительной нормативной документации запрещено выполнять нахлест арматуры при вязке и сварке на участках максимального сосредоточения нагрузки и местах максимального напряжения металлических прутов.

Соединение нахлеста арматурных стержней сваркой

Для дачного строительства сварка нахлеста арматуры считается дорогим удовольствием, по причине высокой стоимости металлических стержней марки А400С или А500С. Они относятся к свариваемому классу. Что существенно повышает стоимость материалов. Использовать пруты без индекса «С», например: распространенный класс A400 AIII, недопустимо, так как при нагревании металл значительно теряет свою прочность и коррозионную стойкость.

Тем не менее, если Вы решили использовать стержни свариваемого класса (А400С, А500С, В500С), их соединения следует сваривать электродами 4…5 миллиметрового диаметра. Протяженность сварочного шва и самого нахлеста зависит от используемого класса арматуры.

Протяженность сварочного шва при нахлесте
Класс арматурных стержней Протяженность сварного шва нахлеста в диаметрах соединяемой арматуры
А400С 8 ᴓ
А500С 10 ᴓ
В500С 10 ᴓ

Исходя из приведенных данных видно, что при использовании при вязке стальных прутов класса В400С величина нахлеста, соответственно и сварного шва, составит 10 диаметров свариваемой арматуры. Если для силового каркаса фундамента взяты стержни ᴓ12 мм, то протяженность шва составит 120 мм, что, по сути, будет соответствовать ГОСТу 14098 и 10922.

Согласно американским нормам нельзя сваривать перекрестия арматурных стержней. Действующие нагрузки на основание могут вызвать возможные разрывы, как самих прутьев, так и мест их соединения.

Соединение арматуры внахлест при вязке

В случаях использования распространенных прутов марки А400 АIII, что бы передать расчетные усилия от одного стержня другому используют способ соединения без сварки. При этом места нахлеста арматуры связывают специальной проволокой. Такой метод имеет свои особенности и к нему предъявляются особые требования.

Варианты нахлеста арматуры

В соответствие с действующим СНиП безсварочное соединение стержней при монтаже силового каркаса ЖБИ может производиться одним из следующих вариантов:

Вязать такими соединениями можно профилированную арматуру диаметром до 40 миллиметров, хотя американский стандарт ACI-318-05 допускает к использованию стержни диаметром не более 36 мм.

Использование стержней с гладким профилем требует применять варианты нахлестного соединения либо путем приварки поперечной арматуры, либо использовать стержни с крюками и лапками.

Основные требования к выполнению соединений нахлестом

При выполнении вязки стыков арматуры нахлестом существуют определенные строительной документацией правила. Они определяют следующие параметры:

Учет этих правил позволяет создавать надежные железобетонные конструкции, и увеличивать срок их безаварийной работы. Теперь обо всем подробнее.

Где располагать при вязке нахлестные соединения арматуры

СНиП не допускает расположение мест вязки арматуры нахлестом в областях наибольшей нагрузки на них. Не рекомендуется располагать стыки и в местах, где стальные стержни испытывают максимальное напряжение. Все стыковочные соединения прутов лучше всего размещать в ненагруженных участках ЖБИ, где конструкция не испытывает напряжения. При заливке ленточного фундамента перепуски окончаний арматуры разносят в места с минимальным крутящим моментом и с минимальным изгибающим моментом.

В случае отсутствия технологической возможности выполнить данные условия, протяженность нахлеста армирующих стержней берется из расчета 90 диаметров стыкуемых прутов.

Какую делать величину нахлеста арматуры при вязке

Поскольку вязка арматуры внахлест определяется технической документацией, то там четко указана протяженность стыковочных соединений. При этом величины могут колебаться не только от диаметра используемых прутов, но и от таких показателей как:

Сращивание арматурных стержней при выполнении нахлеста

В целом же протяженность нахлеста прутов арматуры при вязке определяется влиянием усилий, возникающих в стержнях, воспринимаемых сил сцеплением с бетоном, воздействующими по всей длине стыка, и силами, оказывающими сопротивления в анкеровке армирующих прутов.

Основополагающим критерием при определении длинны напуска арматуры при вязке, берется ее диаметр.

Для удобства расчетов нахлеста армирующих стержней при вязке силового каркаса монолитного фундамента предлагаем воспользоваться таблицей с указанными величинами диаметра и их напуска. Практически все величины сводятся к 30-ти кратному диаметру применяемых стержней.

Величина напуска арматуры в диаметрах
Диаметр арматурной стали А400, мм Величина нахлеста
в диаметрах в мм
10 30 300 мм
12 31,6 380 мм
16 30 480 мм
18 32,2 580 мм
22 30,9 680 мм
25 30,4 760 мм
28 30,7 860 мм
32 30 960 мм
36 30,3 1090 мм

В зависимости от нагрузок и назначения железобетонных изделий длина нахлестных соединений стержневой стали изменяется в сторону увеличения:

Напуск арматуры в зависимости от назначения ЖБИ
Вид нагрузки Назначение ЖБИ
Горизонтальное использование, в диаметрах Вертикальное использование, в диаметрах
В сжатом бетоне 33,8 ᴓ 48,3 ᴓ
В растянутом бетоне 47,3 ᴓ 67,6 ᴓ

В зависимости от марки бетона и характера нагрузки, применяемого для заливки монолитной ленты фундамента и прочих железобетонных элементов, минимальные рекомендуемые величины перепуска арматуры в процессе вязки будут следующими:

Для сжатого бетона
Диаметр армирующей стали А400 используемой в сжатом бетоне, мм Длина нахлеста армирующих стержней для марок бетона (класс прочности бетона), в мм
М250 (В20) М350 (В25) М400 (В30) М450 (В35)
10 355 305 280 250
12 430 365 335 295
16 570 490 445 395
18 640 550 500 445
22 785 670 560 545
25 890 765 695 615
28 995 855 780 690
32 1140 975 890 790
36 1420 1220 1155 985

 

Для растянутого бетона
Диаметр армирующей стали А400 используемой в растянутом бетоне, мм Длина нахлеста армирующих стержней для марок бетона (класс прочности бетона), в мм
М250 (В20) М350 (В25) М400 (В30) М450 (В35)
10 475 410 370 330
12 570 490 445 395
16 760 650 595 525
18 855 730 745 590
22 1045 895 895 275
25 1185 1015 930 820
28 1325 1140 1040 920
32 1515 1300 1185 1050
36 1895 1625 1485 1315

Как расположить друг относительно друга арматурные перепуски

Для увеличения прочности силового каркаса фундамента очень важно правильно располагать нахлесты арматуры относительно друг друга в обеих плоскостях тела бетона. СНиП и ACI рекомендуют разносить соединения, таким образом, чтоб в одном сечении было не более 50% перепусков. При этом расстояние разбежки, как определено в нормативных документах, должно быть не менее 130% длинны стыковочного соединения стержней.

Взаимное расположение арматурных перепусков в теле бетона

Если центры нахлеста вязаной арматуры находятся в пределах указанной величины, то считается, что соединения стержней располагается в одном сечении.

Согласно нормам ACI 318-05 взаимное расположение стыковочных соединений должно находиться на расстоянии не менее 61 сантиметра. Если дистанция будет не соблюдена, то повышается вероятность деформации бетонного монолитного основания от нагрузок, оказываемых на него в процессе возведения здания и его последующей эксплуатации.

контактная, внахлест, встык ванным методом

Арматура может применяться как по отдельности, так в составе сложных конструкций. Для создания сложных конструкций арматурные запчасти часто соединяются друг с другом. Основной способ соединения — это проведение сварочных работ. Сварка осуществляется с помощью оборудования, которое выполняет локальный нагрев краев деталей с последующим расплавлением и затвердеванием. Сварка арматуры может выполняться различными способами — внахлест, встык, ванным способом, контактным методом. Но какие электроды следует применять для сваривания арматурных изделий? Как правильно определить силу тока? И как проконтролировать качество проведенных работ? В нашей статье мы узнаем ответы на эти вопросы.

Краткие сведения

Сварка арматуры является основным методом соединения арматурных прутков. С помощью сваривания можно соединить прутки любой длины и формы. Сварка может вестись встык, нахлестом и крестообразным способом. В фабричном производстве также применяется точечная контактная сварка. Для проведения работ применяется стандартное сварочное оборудование с автоматической или полуавтоматической подачей электрода в активную зону. Сварение прутков рекомендуется проводить при подаче в активную зону инертных газов — это улучшает качество сварного шва, препятствует появлению коррозии в активной зоне.

Сварка помогает создать конструкцию любой формы — сетку, квадраты, треугольники, многоугольники. Сварка арматуры ГОСТ проводится в защитной одежде (костюм, маска, рукавицы), которая будет защищать человека от воздействия высоких температур. Сварочные работы рекомендуется проводить в сухом проветриваемом помещении, хотя при необходимости сварку можно проводить в любое время при отсутствии сильного ветра и/или осадков (дождь, туман, снег). Сварочные работы регулируются отечественными и международными нормами. Основной регулирующий закон — ГОСТ 14098-2014 (обратите внимание, что старый ГОСТ 14098-91 действовал до 2014 года).

Сварочные методики

Для сварки арматуры применяется несколько технологий. Основные методики — сварка арматуры ванным способом, сварное соединение внахлест, создание крестообразных соединений, контактная технология. Ниже мы рассмотрим каждую методику более подробно.

Встык ванным методом

Ванная сварка арматуры — оптимальный метод сварения арматурных прутков. Ванночкой называют U-образную скобу, к которой будет привариваться стальные прутки. Ванная технология позволяет получить качественный надежный шов, который не растрескается под действием механических ударов или химически активных веществ. К тому же ванная технология уменьшает контакт прутков с окружающей средой, поэтому риск коррозии в данном случае будет минимальным.

Сварочные работы проводятся так:

  1. С помощью металлической щетки нужно зачистить края стержней на 3-4 сантиметра (у концов должен появиться характерный металлический блеск). Для более качественной, быстрой обработки щетка должна иметь оцинкованное покрытие. После зачистки нужно промыть и обезжирить края, чтобы они стали чистыми.
  2. Теперь нужно поместить края внутрь ванночки. Некоторые мастера для более надежной фиксации обвязывают ванночку проволокой, а во время сварки проволока быстро удаляется из активной зоны. Новичкам манипуляции с проволокой делать не рекомендуется, поскольку есть большой риск приваривания проволоки к поверхности ванночки.
  3. Сварку следует проводить на высоких токах (оптимальная сила тока — 400 ампер при диаметре электрода 5 миллиметров) с помощью автоматического или полуавтоматического оборудования. Сперва выполняется плавление края одного прутка — потом второго. После этого операция повторяется до тех пор, пока ванночка полностью не покроется расплавленным металлом.

Главным преимуществом ванной технологии является небольшой расход расходного материала. Еще один крупный плюс — возможность проведения сварочных работ при отрицательных температурах (силу тока нужно увеличить на 15-20%). В качестве ванночки могут использовать как стальные скобы, так и скобы из других металлических сплавов (медь, латунь, дюралюминий, чугун). Также допускается применение графитовых ванночек.

Сварка арматуры внахлест

Если сварная конструкция не будет подвергается серьезной механической нагрузке, то в таком случае можно применять сварение арматуры внахлест. Главные плюсы технологии — простота, высокая скорость работ, минимум расходных материалов, неплохая надежность. Нахлест арматуры при сварке должен быть полным, чтобы получился прочный большой шов. Сварочные работы рекомендуется проводить с нижнего, а не с верхнего положения (это обеспечит более активное расплавление металла в активной зоне). Также можно выполнять боковую сварку внахлест под углом наклона до 15-20 градусов.

Оптимальный алгоритм действий:

  1. Зачистите поверхность арматуры с помощью металлической щетки или грубой наждачной бумаги. Также рекомендуется сделать обезжиривание поверхности, чтобы получить высококачественный сварной шов в активной зоне.
  2. Наложите сварные прутки друг на друга. Оптимальный уровень нахлеста — от 15 до 30 сантиметров. Скреплять детали проволокой не рекомендуется, поскольку при нагреве проволока быстро расплавится.
  3. Выполните обварку сверху минимум в двух местах (по краям). Потом выполните обварку снизу (по центру).

Крестообразное сварение

Если делать большую объемную решетку, то можно выполнить крестообразную сварку арматурных прутков. Все работы нужно проводить в строго горизонтальном или вертикальном положении, чтобы прутки надежно давили друг на друга. Делать сварку под углом не рекомендуется, поскольку будет проблематично получить надежный качественный шов (расплавленный металл будет активно стекать или испаряться). Крестообразную технологию также не рекомендуется выполнять при отрицательной температуре окружающей среды.

Особенности крестообразной технологии:

Контактная сварка

Точечная контактная сварка арматуры является надежным методом соединения прутков друг с другом. Для сварения требуется применения станкового сварочного оборудования, которое обладает большой массой. Поэтому на практике эта технология получила мало распространения, хотя ее часто применяют в фабричном производстве. Контактное точечное сварение выглядит так:

  1. Прутки помещаются в станок, который имеет вид промышленных клещей. Станочные клещи надежно фиксируют детали, а во время сварения их положение не меняется.
  2. Потом рабочий выполняет настройку станка с помощью электронной панели. Рабочий может выбрать все технологические особенности операции (сила тока, глубина обработки, температура нагрева).
  3. Потом рабочий запускает станок, который выполняет сварку контактным методом. При работе сдавливающие поверхности нагреваются до высоких температур, что приводит к расплавлению арматуры.
  4. Во время работы возможно перемещение прутков с помощью подвижной консоли. Новые станки могут также выполнять перемещение сдавливающих нагревателей, что делает такие станки более универсальными, простыми в использовании.

Правила подбора электродов

Для сварения арматурных прутков рекомендуется использоваться электроды марок Э42, СМ-11, АНО-5, АНО-6, ВСЦ-4, УОНИ-13. Преимущества — высокое качество сварного шва, минимальный расход во время сварочных работ, хорошая температурная устойчивость, отсутствие коррозийного риска. Электроды этих марок могут работать при низких температурах окружающей среды, что будет весьма кстати в зимнее время. Для сварения стандартной арматуры диаметром 5-10 миллиметров применяются электроды диаметром 2-4 миллиметра. Для более крупных запчастей применяются электродные детали диаметром 4-6 миллиметров.

Также не забудьте проконтролировать силу сварочного тока:

Качество работы

После проведения сварочных работ рекомендуется проконтролировать качество полученного шва. Правила ГОСТ не дают точных указаний относительно проведения проверочных работ. Обратите внимание, что следует выполнять после полного остывания соединения (в идеале проверку нужно проводить на следующий день). Большинство мастеров на практике применяют следующие методы проверки:

Заключение

Подведем итоги. Для соединения арматурных прутков можно применять сварку. Основные сварочные методики — стыковое соединение ванным методом, сварка внахлест, крестообразное соединение, контактная сварка. Каждая из технологий обладает своими преимуществами и недостатками. Оптимальным методом соединения арматуры является сварка встык ванным методом, при котором прутки соединяются друг с другом с помощью U-образной металлической дуги.

Еще один хороший метод соединения арматуры — это точечная технология сварки. Она позволяет получить очень прочный качественный шов, однако для ее применения требуются тяжелые станки. Для проведения сварочных работ могут применяться различные электроды — Э42, СМ-11, АНО-5, АНО-6, ВСЦ-4, УОНИ-13. После сварочных работ посмотрите качество шва.

Используемая литература и источники:

Поверхностные дефекты, ухудшающие качество сварки | Качество и проблемы сварки | Основы автоматизированной сварки

В принципе, сварочные процессы должны соединять материалы в соответствии с чертежами на основе соответствующей конструкции сварки. Кроме того, важно обеспечить качество сварки, в том числе внешний вид и прочность сварного шва. На этой странице представлены типичные дефекты поверхности, ухудшающие качество сварки.

Обязательно к прочтению всем, кто занимается сваркой! Это руководство включает в себя базовые знания в области сварки, такие как типы и механизмы сварки, а также подробные сведения об автоматизации сварки и устранении неисправностей.Скачать

Ямки (открытые дефекты) - это поверхностные дефекты, образующиеся в результате затвердевания газовых полостей внутри металла шва после выхода газа с поверхности валика. Газовые полости, оставшиеся внутри валика, являются внутренним дефектом, известным как газовые раковины. Причины этих дефектов включают использование неподходящего защитного газа; недостаточный раскислитель; масло, ржавчина, галька или другие вещества, приставшие к поверхности канавки в основном материале; и влага, содержащаяся в материале.

Поднутрение - это канавка на носке сварного шва, образованная основным материалом на выходе из сварного шва. Типичные причины - слишком высокий сварочный ток или скорость сварки. Слишком большая ширина плетения также может быть причиной подрезов.

Перекрытие происходит, когда расплавленный металл течет по поверхности основного материала, а затем охлаждается без сплавления с основным материалом. Типичной причиной перекрытия является подача слишком большого количества сварочного металла из-за низкой скорости сварки. Перекрытие угловых сварных швов вызвано падением чрезмерного количества расплавленного металла под действием силы тяжести.Необходимая контрмера - пересмотреть условия сварки (например, установить более высокую скорость сварки или более низкий сварочный ток).

Армирование - это металл сварного шва, нарастающий над поверхностью, превышающий требуемый размер в канавке или угловом шве. Типичной причиной является высокая скорость сварки (скорость движения источника тепла), из-за которой наплавление металла шва в канавке оказывается недостаточным.

  1. Недостаточное армирование

Поверхностное растрескивание приводит к образованию трещин на поверхности горячих сварных швов сразу после сварки.Он широко делится на крекинг при затвердевании и крекинг при разжижении. Растрескивание при затвердевании происходит при затвердевании сварного шва. Растрескивание в результате разжижения возникает при многослойной сварке, когда предыдущий сварочный слой плавится при последующей сварке. Другая классификация относится к сформированному положению и форме трещины, например к продольному растрескиванию, растрескиванию пальцев, поперечному растрескиванию, растрескиванию кратера и так далее.

  1. Продольное растрескивание
  2. Растрескивание пальцев ног
  3. Поперечное растрескивание
  4. Кратерное растрескивание

Это дефект, вызванный мгновенным зажиганием дуги на основном материале.Другими словами, зажигание дуги - это место неудачного зажигания дуги, которое не оплавилось при последующей сварке и осталось на основном материале. Удар дуги может стать причиной растрескивания основного материала.
Подобный дефект может возникнуть, когда крупные частицы брызг прилипают и остаются на поверхности.

Этот дефект возникает, когда валик изгибается и отклоняется от линии сварки. Возможные причины включают в себя изгиб или изгиб автоматически подаваемой сварочной проволоки, которые не исправляются должным образом, или направления линии сварки и изгиба проволоки под прямым углом друг к другу.Этот дефект также может возникать, когда настройки скорости подачи проволоки и сварочного тока не совпадают.

Это состояние, когда части канавки не свариваются и остаются открытыми, потому что процесс не может образовывать бортик, продолжающийся от начальной точки до конечной точки канавки. Когда этот дефект обнаруживается при роботизированной сварке около начальной или конечной точки, может быть проблема в управлении роботом. Если подача дуги, газа или проволоки нестабильна, канавка также может оставаться открытой в середине валика.

Дом

.

% PDF-1.4 % 185 0 obj> endobj xref 185 63 0000000016 00000 н. 0000003314 00000 н. 0000001556 00000 н. 0000003398 00000 н. 0000003588 00000 н. 0000003824 00000 н. 0000004052 00000 н. 0000004292 00000 н. 0000004369 00000 п. 0000004667 00000 н. 0000004921 00000 н. 0000005321 00000 п. 0000005583 00000 н. 0000005869 00000 н. 0000006115 00000 п. 0000006430 00000 н. 0000006585 00000 н. 0000006717 00000 н. 0000007309 00000 н. 0000007448 00000 н. 0000007809 00000 н. 0000008158 00000 н. 0000008290 00000 н. 0000008427 00000 н. 0000008844 00000 н. 0000010232 00000 п. 0000010389 00000 п. 0000010636 00000 п. 0000011820 00000 п. 0000012134 00000 п. 0000012267 00000 п. 0000013268 00000 п. 0000014215 00000 п. 0000014352 00000 п. 0000014651 00000 п. 0000015098 00000 п. 0000015350 00000 п. 0000016571 00000 п. 0000017765 00000 п. 0000018943 00000 п. 0000019979 00000 п. 0000030864 00000 п. 0000031117 00000 п. 0000031313 00000 п. 0000031558 00000 п. 0000054946 00000 п. 0000068768 00000 п. 0000076672 00000 п. 0000076903 00000 п. 0000077115 00000 п. 0000077323 00000 п. 0000097541 00000 п. 0000097737 00000 п. 0000097988 00000 п. 0000110298 00000 п. 0000122323 00000 н. 0000123418 00000 н. 0000123666 00000 н. 0000159088 00000 н. 0000177114 00000 н. 0000177304 00000 н. 0000177566 00000 н. 0000189804 00000 н. трейлер ] >> startxref 0 %% EOF 187 0 obj> поток x ڬ VkPRi * F & HDfffhfc 測 [нс L44 Լ 4 V5h5) M6nq ڝ & ٙ Μsw

.

Объяснение 10 типов неоднородностей при сварке

Не все дефекты сварного шва являются дефектами сварного шва, но все дефекты сварного шва являются дефектами. Понимание разницы позволит вам понять, нужно ли выбросить деталь, отремонтировать ее или просто добавить сварной шов. Есть много кодов в зависимости от того, на каком типе продукта вы свариваете. Коды используются производителями в качестве руководства для написания собственных спецификаций. Только потому, что определенный Кодекс допускает определенную пористость, производитель может не допускать ее наличия у своих поставщиков.

Рентгеновский снимок испытания алюминиевого шва с разделкой кромок. Поверхность не показала пористости. Темные пятна представляют собой пустоты (пористость) и кажутся темными из-за того, что они являются областями с меньшей плотностью. Пористость не всегда присутствует на поверхности сварного шва. Чтобы избежать пористости, необходимы соответствующая газовая защита, чистый основной металл и надлежащая процедура сварки.

Большинство дефектов в списке ниже можно обнаружить визуально. Визуальный осмотр - самый простой и наименее затратный из всех методов неразрушающего контроля.Инструменты, необходимые для визуального осмотра, немногочисленны и недороги. Такие инструменты, как линейки, сварочные щупы и увеличительное стекло - это почти все, что вам нужно. Очень важно, чтобы контроль сварных швов проводился до, во время и после сварки.

Несплошность сварного шва - это дефект в сварном шве. Как указано выше, несплошности не обязательно являются дефектами сварного шва. Они становятся дефектами сварного шва, когда превышают указанные максимальные значения кодекса или требований заказчика. Это означает, что у вас могут быть несплошности сварного шва, но при этом он останется приемлемым.Однако мы всегда хотим, чтобы сварные швы были без разрывов, когда это возможно.

Ниже приведены 10 наиболее распространенных типов несплошностей сварных швов. Это не полный список всех возможных дефектов.

1. Пористость - Полости в сварном шве, вызванные захваченным газом во время затвердевания металла шва. Распространенными причинами являются отсутствие защитного газа, чрезмерная длина дуги или грязный основной материал. Другой не столь распространенной причиной может быть дуга, когда магнитные поля вызывают неустойчивую дугу.По нормам или спецификациям производителя может присутствовать пористость, но каждое отдельное отверстие не должно превышать определенной длины, а общая длина всех отверстий не может превышать определенное значение на дюйм сварного шва.

Пористость может быть вызвана многими причинами, начиная от отсутствия защитного газа и заканчивая загрязнением цветными металлами.

2. Отсутствие Fusion - также называется непровар или холодный притир. Отсутствие сплавления относится к основному материалу, который не сплавлен должным образом с другой деталью или самим металлом сварного шва.Это вызвано слишком низкими параметрами сварки. Хотя это не может быть обнаружено после сварки, по крайней мере, непросто, сварщик сам может это увидеть во время сварки. Обученный сварщик сможет определить, правильно ли дуга проникает в основной материал.

Отсутствие сплавления визуально не обнаруживается. На изображении выше показан макротекст углового сварного шва, демонстрирующий отсутствие проплавления корня.

3. Поднутрение - Это бороздка, которая появляется на одном из обоих пальцев сварного шва.Это вызвано отсутствием заполнения. Отсутствие наполнения может быть связано с чрезмерным напряжением или слишком низкой скоростью подачи проволоки. Также может быть вызвано неправильной техникой сварки. Как и в случае с пористостью, может быть приемлемо некоторое поднутрение.

Выточка создает механическую выемку, которая действует как концентратор напряжения. Это также уменьшает полезную площадь основного металла. На изображении выше также показано перекрытие (нижняя кромка сварного шва).

4. Неправильное размещение валика - Как следует из названия, эта неоднородность возникает, когда сварной шов не в нужном месте.Это может означать полное отсутствие стыка или отсутствие равных участков углового шва. Неправильная установка валика может быть дефектом сварного шва, если корень отсутствует или если наименьший размер ножки не соответствует минимуму спецификации.

5. Брызги - Это маленькие капли сварочного металла, которые покидают дугу и падают на прилегающий основной материал, сплавляясь с ним. Брызги не являются дефектом сварного шва, но, опять же, максимально допустимые значения указаны в спецификации заказчика. Брызги возникают из-за неправильных процедур сварки, включая силу тока, вольт, скорость сварки, ход и рабочие углы и даже использование защитного газа.

Подробнее о брызгах читайте: 7 причин появления брызг при сварке и способы их устранения

Брызги не влияют на структурную целостность сварного шва в большинстве случаев, но почти всегда их необходимо удалять, увеличивая общую стоимость.

6. Неверный размер сварного шва - Это может быть слишком большой или слишком маленький сварной шов. Хотя большие сварные швы предпочтительнее небольших сварных швов, иногда все же иметь большой сварной шов вредно из-за чрезмерного тепловложения, сварочных напряжений и деформации.На размер сварного шва влияют скорость перемещения и процедуры сварки, особенно скорость подачи проволоки. Его легко измерить с помощью сварочных манометров.

7. Включения шлака - Это шлак, застрявший между проходами. Это невозможно обнаружить с помощью проверки сварного шва после завершения сварки и очень трудно обнаружить во время сварки. Причины - недостаточная очистка поверхности шва между проходами. Это также может происходить в однопроходных сварных швах, когда шлак попадает в корень и концы сварного шва.

Сварочные процессы, такие как SMAW и FCAW, подвержены образованию шлаковых включений. Включения шлака препятствуют правильному плавлению и могут иметь острые концы, что создает трещиноподобное поведение.

8. Чрезмерное усиление - Это сварной шов, который слишком велик или имеет слишком большую выпуклость (слишком много наростов). Обычно вызвано низкой скоростью движения или неправильными процедурами.

Чрезмерное армирование создает высокие уровни концентрации напряжений на носках сварного шва.

9. Насквозь - Это происходит, когда сварочные процедуры и / или техника обеспечивают слишком большой проплавление и металл выходит из задней части соединения.

Растекание прихваточного шва на тонком материале. Это не просто тепловая отметка, это металл, выступающий из поверхности основного металла.

10. Трещины - Трещины представляют собой наиболее разрушительное нарушение целостности сварного соединения. Трещины в любом количестве будут считаться дефектом за очень немногими исключениями.Одно из этих исключений - трещины из-за снятия напряжений в наплавленных швах. Трещины имеют острые концы, что позволяет им разрастаться, в некоторых случаях очень быстро. Для дальнейшего объяснения вы можете прочитать «Понимание причин появления трещин при сварке швов».

Трещины могут привести к катастрофическому отказу за относительно короткий промежуток времени.

Допустимое количество описанных выше дефектов, если таковые имеются, будут определять нормы, стандарты и спецификации сварки. Нормы относятся к структурной целостности сварных швов, а не столько к эстетике.Таким образом, некоторые производители будут иметь внутренние стандарты качества, которые не допускают разбрызгивания или уменьшают допустимое количество других дефектов. Критерии приемки сварочных норм должны использоваться как минимум.

Артикул:

Справочник производителей и монтажников стальных сварных конструкций

Сварка, металлургия и свариваемость, Джон К. Липпольд

.

Пример 1: Контроль формы сварного шва | Измерение / проверка качества сварки | Основы автоматизированной сварки

На этой странице представлены примеры использования высокопроизводительного лазерного датчика смещения для проверки внешнего вида валика после сварки для обнаружения дефектов поверхности, таких как подрез, перекрытие и недостаточное армирование.

Обязательно к прочтению всем, кто занимается сваркой! Это руководство включает в себя базовые знания в области сварки, такие как типы и механизмы сварки, а также подробные сведения об автоматизации сварки и устранении неисправностей.Скачать

100% осмотр выполняется визуально после сварки, что требует много человеко-часов и представляет собой сложную задачу по привлечению высококвалифицированного и опытного проверяющего персонала. Человеческие ошибки, такие как игнорирование мелких дефектов, также являются серьезной проблемой. При контроле сварки с использованием систем технического зрения или обычных красных лазерных датчиков перемещения возникала проблема ошибочного обнаружения, вызванного светом от сварочной горелки или нерегулярными отражениями от мишеней.

Высокоскоростной лазерный сканер 2D / 3D серии LJ-X8000 может быстро и стабильно определять форму поперечного сечения целей, не подвергаясь влиянию оптических шумов на сварочных участках. Система может обнаруживать цели различной формы и решать многие проблемы, возникающие при 100% контроле сварки.

Например, внедрение серии LJ-X8000 в процесс лазерной сварки специальных заготовок (TB) позволяет стабильно контролировать форму валика сразу после сварки, отслеживая горелку робота, не влияя на время обработки.Быстрая выборка с частотой до 64 кГц обеспечивает стабильное определение профиля даже при перемещении головки датчика для отслеживания быстро движущейся горелки автоматической сварки. Это позволяет немедленно обнаруживать дефекты сварки, чтобы свести к минимуму производство бракованной продукции.

Сравнение обнаружения профиля при разных скоростях выборки

Обычный лазерный датчик перемещения: проекция не просматривается из-за большого шага проверки.

Серия LJ-X8000: мелкий шаг, возможный благодаря высокоскоростной выборке, предотвращает просмотр проекции.

Разнообразие режимов измерения для проверки различных целей

Серия LJ-X8000 предлагает в общей сложности 74 режима измерения, позволяя выбирать из 16 типов измерения и 11 целей измерения. Правильное использование этих различных режимов измерения позволяет контролировать форму сварных швов и сварных соединений различных деталей.

Трехмерная (3D) проверка формы позволяет выполнять более широкий спектр проверок формы сварных швов, которые невозможны только с данными формы двумерного сечения, включая объем ямок, поднутрения или перекрытия, растрескивание поверхности шва, меандрирование шва (изгиб / смещение валика), неправильной длины валика (например, оставшаяся бороздка), зажигания дуги и брызг.

Данные о форме двухмерного сечения, обнаруженные с помощью высокоскоростного лазерного сканера 2D / 3D серии LJ-X8000, можно преобразовать в трехмерное изображение формы и затем проанализировать для достижения точного контроля формы.

Используйте LJ-X8000 для получения данных о форме 2D-сечения сварного шва

Обработка до 16284 частей данных формы сечения с помощью системы обработки изображений для создания трехмерного изображения формы.

Анализируйте трехмерное изображение формы сварного шва для выявления различных дефектов.

Примеры определения формы сварного шва, достижимые с помощью трехмерного контроля формы

Объем ямок / поднутрений

Высота и объем нахлеста / бортика

Трещины или выемки на поверхности валика

Возникновение дуги или брызги

Изогнутый или смещенный борт

Длина борта

Кроме того, различные дефекты формы сварных швов можно контролировать на месте.

Трещины или выемки на поверхности валика

Объем ямок / поднутрений

Изогнутый или смещенный борт

Высота и объем нахлеста / бортика

Дом

.

Правильное использование сварочных манометров

В январской публикации AWS Inspection Trends Альберт Дж. Мур-младший заявляет, что «помимо измерительной ленты, измеритель угловых швов является наиболее часто используемым измерительным прибором в наборе инспектора сварки». Мы согласны с этим утверждением, но также убеждены в том, что калибр для угловых швов - это САМЫЙ малоиспользуемый инструмент людьми, ответственными за качество и сварочные работы. По нашему опыту, 98% угловых калибров принадлежит CWI и другим инспекторам, однако сварщики, супервайзеры и руководители производства должны их использовать, поскольку они всегда проводят инспекцию сварки.Мы также знаем, что, кроме CWI, большинство людей, владеющих этими приборами, используют их ненадлежащим образом.

Существует несколько типов датчиков, используемых для измерения сварных швов и дефектов сварных швов, таких как пористость, поднутрение, недостаточное заполнение, вогнутость и т. Д. Двумя наиболее часто используемыми и, безусловно, нашими фаворитами являются стандартный датчик углового сварного шва и AWS Gage (автоматический датчик размера сварного шва) . Ниже приведены инструкции и рисунки о том, как использовать и то, и другое.

Стандартный калибр для угловых сварных швов

Этот прибор для угловой сварки является одним из самых простых в использовании, и он помогает проверить размер и вогнутость углового шва.Мы всегда хотим, чтобы наши сварные швы были плоскими или слегка выпуклыми. Этот датчик сообщит вам, является ли ваш сварной шов вогнутым.

Набор для измерения углового шва обычно включает 7 или более деталей, подобных этому.

Пример углового сварного шва 1/2 ″ подходящего размера

На иллюстрациях выше показано, как проверить скругление 1/2 дюйма. Сдвиньте датчик так, чтобы верхний конец упирался в вертикальную деталь. Этот конец должен находиться точно на верхнем крае сварного шва, чтобы получился скругление 1/2 дюйма.Если между датчиком и носком сварного шва есть зазор, значит, размер сварного шва недостаточен. У нижнего края филе больше места. Это сделано для того, чтобы учесть ноги большего размера. Иногда это полезно для больших угловых швов, когда сила тяжести приводит к увеличению нижней стойки. Вертикальная линия покажет, где должен быть нижний палец.

После того, как мы определили, что наш сварной шов имеет правильный размер - 1/2 дюйма, мы проверяем на вогнутость / выпуклость. Как правило, угловые швы никогда не должны быть вогнутыми.Выступ в середине калибра должен касаться сварного шва - это подтверждает, что сварной шов не является вогнутым. Если между лицевой стороной сварного шва и этим концом датчика есть дневной свет, тогда наш сварной шов будет вогнутым и больше не будет приемлемым угловым швом 1/2 дюйма.

Ниже приведены примеры сварных швов, которые должны были иметь размер 1/2 дюйма, но в итоге оказались заниженными и выпуклыми.

Угловой шов должен был быть 1/2 ″, но калибр углового шва показывает, что он заниженный

Этот сварной шов может иметь размер 1/2 дюйма, но имеет вогнутую поверхность, что делает его неприемлемым угловым швом 1/2 дюйма

AWS Gage

Этот калибр более универсален, чем стандартный калибр углового прохода.Ниже приведены все, что он может измерить:

1. Размер углового шва - поместите измеритель напротив носка сварного шва и сдвиньте указатель вниз к нижней части свариваемой конструкции. Размер углового сварного шва будет обозначен калибром.

Измерение углового шва

2. Допустимый допуск выпуклости - Используя конец калибра со сторонами под углом 45 градусов, поднесите калибр к обеим свариваемым деталям. Еще раз переместите указатель вниз, на этот раз, пока он не коснется поверхности сварного шва.Датчик покажет, слишком много арматуры.

Проверка плоской поверхности и / или измерение степени усиления (выпуклости) углового шва

3. Допустимое отклонение вогнутости и недостаточного заполнения - Выполните то же самое, что и при проверке допустимой выпуклости, прибор покажет наличие вогнутого сварного шва.

Измерение недостаточного заполнения / вогнутости углового шва

4. Допустимый допуск армирования - Для стыкового шва иногда может быть указано максимально допустимое усиление.Разместив датчик, как показано выше, вы сможете измерить арматуру стыкового шва.

Измерение арматуры на стыковом шве с разделкой кромок

Существуют и другие датчики, которые также могут измерять поднутрение, перекос, величину пористости и угол препарирования.

У вас есть предпочтительный датчик? Если нет, рассматриваете ли вы одно из вышеперечисленных или другое?

.

Welding Defets | автор СТРИМ

ПРЕРЫВАНИЯ СВАРКИ:

ПРЕРЫВАНИЯ СВАРКИ Автор ЯДАВ ВИШАЛ ФУЛЬЧАНД ИНСПЕКТОР MANGALORE REFINERY AND PETROCHEMICALS LIMITED

ЧТО ТАКОЕ ПРОДОЛЖИТЕЛЬНОСТЬ? :

ЧТО ТАКОЕ РАЗРЫВ? AWS D 1.1-96 Нарушение типичной структуры материала, например, отсутствие однородности его механических или физических характеристик. Прерывистость - это объективная нехватка материала, нарушение физического состояния детали.Примеры: трещины, швы, нахлесты, пористость или включения. Это может или не может считаться дефектом в зависимости от того, угрожает ли его наличие целостности, полезности и работоспособности конструкции.

ЧТО ТАКОЕ ДЕФЕКТ СВАРКИ? :

ЧТО ТАКОЕ ДЕФЕКТ СВАРКИ? AWS D 1.1-96 Непрерывность или неоднородности, которые по своей природе или накопленному дефекту (например, по общей длине трещины) делают деталь или продукт неспособными соответствовать минимальным стандартам приемки или спецификациям. Это чрезмерные условия, выходящие за допустимые пределы, которые могут поставить под угрозу стабильность или функциональность сварной конструкции.Их еще называют отклоняемыми разрывами. Это означает, что такой же тип прерывности в меньшей степени можно считать безвредным и приемлемым.

Slide 4:

Это означает, что ОТКЛЮЧЕНИЕ не является дефектом, если оно допустимо в рамках ограничений применимых норм и стандартов. В то время как ДЕФЕКТ определенно является нарушением целостности и определяет возможность отбраковки детали или продукта. Дефекты иначе называются Дефектами или Несовершенствами, которые необходимо отремонтировать, чтобы сделать материал более однородным, как предполагается в проекте.

Влияние разрывов::

Влияние разрывов: они действуют как СНИЗАТЕЛИ НАПРЯЖЕНИЯ.Они уменьшают площадь поперечного сечения и тем самым ПОВЫШАЮТ КОНЦЕНТРАЦИЮ НАПРЯЖЕНИЙ вокруг себя. Они обеспечивают путь утечки. Они являются потенциальным местом для инициирования CRACK. Они действуют как потенциальные места для КОРРОЗИИ И ЭРОЗИИ.

Характеристики несплошностей::

Характеристики несплошностей: Форма. Острота, резкость или эффект выемки. Ориентация по основному рабочему напряжению и остаточному напряжению. Расположение относительно сварного шва.

«Производство без дефектов» помогает в::

«Производство без дефектов» помогает в: Экономии рабочего времени Стоимость ремонта материалов Снижение производительности

Значимость дефектов зависит от::

Значимость дефектов зависит от: Микроструктуры, в которой возникает дефект. Механические свойства материала. Тип нагружения (статическое, циклическое или ударное) Окружающая среда (коррозионная или некоррозионная) Толщина сечения Тип и размер дефекта Картина напряжений, локальная для дефекта.

Классификация несплошностей::

Классификация несплошностей: В целом классифицируется на: Дефекты планировщика или Двумерные дефекты например трещина, неплавление, непровар, расслоение и т. д. Объемные дефекты или трехмерные дефекты например Пористость, включения и т. Д.

Классификация на основе процесса и процедуры сварки::

Классификация на основе процесса и процедуры сварки: ГЕМОМЕТРИЧЕСКИЕ РАЗРЫВЫ Несоосность, подрез, выпуклость и вогнутость, чрезмерное армирование, неполное армирование, отсутствие проникновения, отсутствие сплавления, прожог, перекрытие, неровности поверхности и т. Д.ДРУГИЕ Удары дуги, включения шлака, включения вольфрама, брызги, кратеры дуги, оксидные пленки и т. Д.

Классификация на основе металлургии::

Классификация на основе металлургии: трещины или трещины Горячая трещина, холодная трещина, ламеллярный разрыв и т. Д. Пористость Сферические, удлиненные червячные отверстия и т. Д.

ПОРИСТОСТЬ:

ПОРИСТОСТЬ Это неоднородность (пустота) типа полости, образованная захватом газа во время затвердевания. Газы, присутствующие в среде сварки h3, N2, O2, CO, CO2 и т. Д. От покрытых флюсом электродов.Эти газы задерживаются во время затвердевания и вызывают пористость

Пористость:

Пористость

Классификация пористости::

Классификация пористости: В зависимости от формы, размера и расположения: Равномерно разбросаны Причина: дефектный материал или неправильная техника сварки. Кластерная (локализованная) пористость. Причина: неправильное завершение / начало сварки.

Классификация пористости::

Классификация пористости: Линейная (совмещенная) пористость Пористость возникает в виде повторяющегося рисунка вдоль сварного шва, обычно связанного с корнем или межпроходным проходом в связи с LOP / LOF.ПРИЧИНА: Химическая реакция на границе сварного шва, в результате которой выделяется нежелательный газ. Этого можно избежать, правильно подготовив шов.

Слайд 16:

Червоточина (удлиненная пористость) Удлиненные или трубчатые полости, вызванные продолжающимся улавливанием газов на границе затвердевания. например пористость труб, елочка, пористость затвердевания. Он простирается от корня шва к поверхности и также свидетельствует о наличии поверхностных загрязнений.

Факторы, способствующие пористости::

Факторы, способствующие пористости: Неправильное покрытие электрода.Более длинные дуги. Более высокая скорость перемещения дуги. Слишком малый и слишком большой ток дуги. Неправильная техника сварки (бусины со стрингером подходят лучше, чем бусинки средней плотности. Грязная рабочая поверхность. Неправильный состав основного металла (например, высокое содержание S и C приведет к пористости)

СРЕДСТВА ПО УСТРАНЕНИЮ ПОРИСТИ::

СРЕДСТВА СРЕДСТВ ОТ ПОРИСТИКИ: Используйте процесс сварки с низким содержанием водорода, присадочные металлы с высоким содержанием раскислителей для избыточной атмосферы h3, N2. Используйте предварительный нагрев или увеличьте подвод тепла, чтобы избежать высокой скорости затвердевания.Очистите стыковые и прилегающие поверхности. Для уменьшения чрезмерной влажности используйте рекомендованную процедуру для запекания и хранения электродов

ПОРИСТОСТЬ:

ПОРИСТОСТЬ

Рентгенограмма: Пористость:

Рентгенограмма: пористость

Рентгенограмма: Кластерная пористость:

ЗНАЧИТЕЛЬНОСТЬ

000 ПОРИСТОРИТНОСТЬ

000 ЗНАЧЕНИЕ ПОРИСТИКИ Менее 3% по объему оказывает незначительное влияние на статический предел текучести при растяжении. Больше влияет на пластичность - чем выше выход сварного шва, тем больше эффект Водородные поры могут выступать в качестве инициатора трещин в сварном шве.При шлифовании поверхности влияние поверхностных пор становится значительным. В угловых швах влияние концентрации напряжений в выступах, началах и остановках шва было значительным. Внутренняя пористость не влияет на усталостную прочность. Пористость поверхности указывает на потерю контроля над процессом во время сварки.

ТРЕЩИНЫ:

ТРЕЩИНЫ ТРЕЩИНА - это трещина, образовавшаяся в металле в результате разрыва. ВИДЫ ТРЕЩИН Горячая трещина / трещина затвердевания Холодная трещина. Ламеллярный разрыв.

ТРЕЩИНЫ:

ТРЕЩИНЫ

ТРЕЩИНЫ:

ТРЕЩИНЫ

Слайд 26:

ВИДЫ ТРЕЩИН

Трещины классифицируются на::

Трещины классифицируются следующим образом: Направление относительно продольной оси сварки. Продольная трещина: трещина, лежащая в направлении, параллельном продольной оси сварного шва. Поперечная трещина: трещина, лежащая в направлении, перпендикулярном продольной оси сварного шва.

Классификация трещин::

Классификация трещин: По месту их расположения: Трещина в горле: Корневая трещина: Трещина пальца: Кратерная трещина.Трещина HAZ. Трещина основного металла.

Горячие трещины:

Горячие трещины Трещины образуются сразу после сварки. Также называется средней линией или трещиной затвердевания.

Slide 30:

10 мм горячая трещина

Причины горячего растрескивания::

Причины горячего растрескивания: возникновение чрезмерных деформаций в ограниченных сварных швах Состав основного металла с избытком серы, фосфор Загрязнение основного металла Неадекватное заполнение кратера (кратерное растрескивание)

Средства от горячего растрескивания::

Средства от горячего растрескивания: спланировать сварочные процедуры, вызывающие меньшую тепловую деформацию Используйте для сварки основной металл с низким содержанием серы и фосфор. Избегайте загрязнения основного металла

ХОЛОДНАЯ ТРЕЩИНА:

ХОЛОДНАЯ ТРЕЩИНА Холодное растрескивание возникает из-за хрупкости металла в сочетании с растягивающим напряжением, превышающим напряжение разрушения.Хрупкость - результат (а) Затвердевание низкоплавких компонентов. (б) Фазовые изменения (например, образование мартенсита) во время охлаждения.

Холодная трещина::

Холодная трещина: они также называются ПОДЗЕМНОЙ ТРЕЩИНКОЙ или ЗАДЕРЖКОЙ. Обычно встречается в HAZ Они лежат в непосредственной близости от сварного шва в зоне HAZ. Под поверхностью и трудно обнаружить. Однако распространяются на поверхность и видны визуально.

Холодная трещина:

Холодная трещина Трещина под валиком возникает из-за присутствия водорода в сварочной ванне.Водород поступает из: основного металла, сварочных электродов, загрязнения поверхности органическими веществами, окружающей атмосферы. Этот водород может поглощаться ЗТВ в виде ионов H +, когда металл находится в горячем состоянии. После затвердевания металл имеет меньшую способность к водороду и перемещается через структуру металла к границе зерен. В этом случае отдельные ионы H + объединяются и образуют h3. Эти газы, образующие водород, требуют большего объема и достаточно большого размера, чтобы пройти через металлическую структуру.

Факторы, способствующие холодному растрескиванию:

Факторы, способствующие холодному растрескиванию Сдерживание соединения и высокая термическая жесткость.Водород в металле шва. Наличие примесей. Охрупчивание ЗТВ низколегированных сталей. Сварной шов недостаточной площади сечения. Высокая скорость сварки и низкая плотность тока. Холодное растрескивание происходит как в металле шва, так и в ЗТВ.

ХОЛОДНАЯ ТРЕЩИНА:

ХОЛОДНАЯ ТРЕЩИНА

ХОЛОДНАЯ ТРЕЩИНА:

ХОЛОДНАЯ ТРЕЩИНА

СРЕДСТВА ОТ ХОЛОДНОЙ ТРЕЩИНКИ::

МЕРЫ ОТ ХОЛОДНОЙ ТРЕЩИНЫ: Сварочные материалы должны контролироваться водородом Выпекать электроды в соответствии с рекомендациями производителя электродов. Предварительный нагрев согласно спецификации процедуры сварки Подвод тепла должен поддерживаться даже при прихваточной сварке

Пластинчатый разрыв:

Пластинчатый разрыв Отслаивание трещин в толстых сварных деталях, обнаруженных внутри или непосредственно под ЗТВ толстых листов, которые не были должным образом очищены сталелитейным заводом.Из-за сильной стесненности сустава. Плохая пластичность Наличие неметаллических включений, идущих параллельно поверхности основного металла. Пластина открывается, как если бы она была сделана из сложенных листов или ламелей, так называемый ламеллярный разрыв. Т-образные и угловые соединения более подвержены разрыву пластин, чем другие.

Пластинчатый разрыв:

Пластинчатый разрыв

Рентгенограмма показывает Трещину:

Рентгенограмма показывает трещину

ЗНАЧЕНИЕ ТРЕЩИН:

ЗНАЧЕНИЕ ТРЕЩИН Самый опасный дефект при сварке Они действуют как концентраторы напряжения для роста трещин и неприемлемы. Ни один производственный код не допускает появления трещин.

Неполное проплавление стыка::

Неполное проплавление стыка: проплавление - это расстояние от верхней поверхности основного металла до максимальной протяженности сварного шва.

Неполное проникновение:

Неполное проникновение

Чрезмерное проникновение:

Чрезмерное проникновение

Причины неполного проникновения в стык::

Причины неполного проникновения в стык: Неправильные стыки (U-образное соединение дает лучше, чем J-соединение) Слишком большая поверхность корня. Корневая щель слишком мала. Меньший ток дуги. Более высокая скорость перемещения дуги. Слишком большой диаметр электрода. Несоосность.

Рентгенограмма: Неполное проникновение:

Рентгенограмма: Неполное проникновение

Средства от неполного проникновения::

Средства от неполного проникновения: Используйте правильную геометрию сустава.Увеличьте раскрытие корня или используйте небольшой электрод в корне. Соблюдайте правильные WPS (Спецификации процедуры сварки).

Отсутствие плавления:

Отсутствие плавления «Разрыв сварного шва, при котором не происходило плавление металла сварного шва и поверхностей плавления, соединяющихся или прилегающих к валикам сварного шва».

Отсутствие плавления (LOF):

Отсутствие плавления (LOF)

Факторы, способствующие LOF::

Факторы, способствующие LOF: Неправильное обращение со сварочным электродом. Расчет сварного шва.Неправильный подвод тепла. Загрязнение поверхности, которое приводит к образованию шлака, препятствует плавлению.

СРЕДСТВА ЗАЩИТЫ ЛОФ::

СРЕДСТВА ЗАЩИТЫ ЛОФ: Поддержание минимального тепловложения Правильный угол электрода Избегайте попадания расплавленной ванны на дугу Правильная очистка шлака от оксидов

Рентгенограмма: отсутствие плавления:

Рентгенограмма: отсутствие плавления

ВКЛЮЧЕНИЯ:

ВКЛЮЧЕНИЯ: включения - это захваченные посторонние твердые материалы, такие как шлак, флюс, вольфрам или оксид.Связано с отсутствием синтеза (LOF). Возникает только тогда, когда в любой сварочной технике используется защита от флюса. Из-за неправильного обращения со сварочным электродом и неправильной очистки между несколькими запусками.

Рентгенограмма: включения шлака:

Рентгенограмма: включения шлака

ВКЛЮЧЕНИЯ:

ВКЛЮЧЕНИЯ Включения вольфрама практически связаны с процессами сварки GTAW или TIG. Вольфрамовый электрод контактирует с расплавленной сварочной лужей и остается в окончательном сварном шве, если его не удалить шлифованием.Сварочный ток больше рекомендованного.

СРЕДСТВА ЗАЩИТЫ ПРИ ВКЛЮЧЕНИИ:

СРЕДСТВА ЗАЩИТЫ ОТ ВКЛЮЧЕНИЯ Лучшая очистка между проходами Удалите тяжелые выпуклые бусины Не используйте электроды с поврежденным покрытием.

Рентгенограмма: включения вольфрама:

Рентгенограмма: включения вольфрама

UNDERCUT:

UNDERCUT Подрезка - это нарушение сплошности поверхности, возникающее в основном металле, непосредственно прилегающем к сварному шву. Это состояние, при котором основной металл расплавился во время операции сварки, и нанесенного присадочного металла было недостаточно для адекватного заполнения образовавшейся впадины.В результате в основном металле образуется линейная канавка, которая может иметь относительно острую форму. Причина: неправильная техника сварки, слишком высокая температура сварки

Подрезка:

канавка

Рентгенограмма: UNDERCUT:

Рентгенограмма: UNDERCUT

Рентгенограмма: UNDERCUT:

Рентгенограмма: UNDERCUT Недостаточное заполнение

:

000 Недостаточное заполнение

поверхность сварного шва или корневая поверхность проходит ниже прилегающей поверхности основного металла.Недостаточное заполнение корневого сварного шва труб называется ВНУТРЕННЯЯ Вогнутость или ВСАСЫВАНИЕ. Это может быть вызвано чрезмерным нагревом и оплавлением корневого прохода во время наплавки второго прохода. Причина: Чрезмерная скорость перемещения

Недостаточное заполнение:

Недостаточное заполнение

Рентгенограмма: внутренняя вогнутость:

Рентгенограмма: внутренняя вогнутость

Нахлест:

Нахлест Нахлест описывается как выступы металла сварного шва или за пределы основания шва.Также называется ролловером Причина: неправильная техника сварки, например низкая скорость распространения дуги.

Перекрытие:

Перекрытие

Несоосность:

Несоосность Смещение или несовпадение возникает, когда две сваренные вместе детали не выровнены должным образом.

Недостаточное усиление сварного шва:

Недостаточное усиление сварного шва

Чрезмерное усиление сварного шва:

Чрезмерное усиление сварного шва

Брызги:

Брызги AWS A 3.0 описывает разбрызгивание как «частицы металла, выбрасываемые во время сварки плавлением, которые не являются частью сварного шва. Причина: высокий сварочный ток, который может вызвать чрезмерную турбулентность в зоне сварки. Его наличие вызывает затруднения в UT, MT, PT. Преждевременный выход из строя нанесенных покрытий.

Брызги:

Брызги

Дуговые разряды:

Дуговые разряды Дуговые разряды возникают, когда дуга возникает, когда дуга возникает на поверхности основного металла вдали от сварного шва, на поверхности основного металла имеется локализованный участок, который плавится и быстро охлаждается .В высоколегированной стали он может создавать локальную ЗТВ, что приводит к возникновению трещин. Причина: неправильная техника сварки


.

Смотрите также