Главное меню

Столбчатый фундамент на пучинистых грунтах с высоким уровнем грунтовых вод


Фундамент на пучинистых грунтах с высоким уровнем грунтовых вод: возможные варианты

Основной проблемой при возведении фундаментов становятся неудовлетворительные характеристики грунта. Фундамент на пучинистых грунтах — распространенное явление на всей территории России. Пучение крайне опасное явление, которое может привести к значительным повреждениям несущих конструкций здания. Пред постройкой необходимо разобраться, что такое морозное пучение, и что нужно сделать, чтобы предотвратить его появление в почве.

Содержание статьи

Что такое пучение грунта и как оно возникает

Морозное пучение грунта — это изменение его структуры. Возникает явление при одновременном воздействии на почву воды и минусовых температур. Если описывать проблему в физическом смысле, то нужно обязательно упомянуть об уникальном свойстве самой распространенной на земле жидкости, которое в этом случае играет против фундамента дома.

Схематичное изображение действия сил морозного пучения.

Вода — единственное вещество на планете, которое при замерзании не уменьшается в объеме, напротив, лед имеет больший объем, чем жидкость при той же массе. При высоком расположении грунтовых вод в зимний период в почве происходит процесс замерзания, при этом грунт увеличивается в объеме, приподнимая подошву фундамента и оказывая дополнительное давление на стенки.

Какие грунты представляют опасность

Классификация оснований приведена в ГОСТ 28622-2012. По таблице 1 этого нормативного документа выделяют пять групп почв в зависимости от степени склонности к появлению пучения:

Главным критерием при разделении является относительная деформация образца для испытаний при морозном пучении. Чтобы понять, какие типы грунтов могут вызвать проблемы, рекомендуется ознакомиться с таблицей.

Категория грунта Типы грунта
непучинистые (условно) пески (гравелистые, крупные средние)

крупнообломочные и скальные с содержанием заполнителя менее 10 %

глины при показателе текучести меньшем или равном 0

слабо пучинистые крупнообломочные с количеством мелкого или пылеватого заполнителя от 10% до 30% по массе

глины при показателе текучести от 0 до 0,25

средне пучинистые глины, суглинки, супеси при показателе текучести от 0,25 до 0,5

крупнообломочные с содержанием заполнителя более 30%

сильно пучинистые пески (пылеватые и мелкие)

глины при показателе текучести более 0,5

чрезмерно пучинистые

Важно! Деление грунтов на пучинистые и непучинистые носит условный характер, т.к. при насыщении водой любой грунт будет пучинистым, потому что при замерзании расширяется именно вода, а не сам грунт.  Но разные грунты по разному склонны к накоплению и капиллярному подсосу влаги. Например глина способна подтягивать воду вверх до 2-х метров, поэтому при уровне грунтовых вод (УГВ) ниже подошвы фундамента менее чем 2 м, грунт около фундамента может быть очень влажным.

Песок же подтягивает влагу значительно хуже глины (20-30 см) поэтому его часто используют для подушки и обратной засыпки, но тут таится другая опасность. Если делать подушку и обратную подсыпку в глинистом грунте, то при попадании воды в песок она будет скапливаться в нем как в ванной, т.к. глина медленно пропускает влагу. Вода может попасть в песок либо при плохой отмостке и отсутствии ливневки, либо при внезапном поднятии УГВ весной или осенью. Чтобы этого избежать необходимо делать качественную систему водоотведения – ливневку и дренаж.

Перед строительством потребуется провести геологические исследования и определить тип почвы на участке. Для этого работу выполняют способом отрывки шурфов или ручного бурения в условиях возведения фундамента. Признаки грунтов различных типов приведены в ГОСТ «Грунты. Классификация». При этом также определят водонасыщенность грунта.

Пучинистость грунтов совместно с высоким уровнем грунтовых вод диктуют условия по глубине заложения фундамента. Глубина заложения определяется по нормативным документам для каждого отдельного региона. В последней редакции СП «Основания зданий и сооружений» вычисляется по формуле в зависимости от многих показателей.

Совет! Если нет желания разбираться в расчетах, можно воспользоваться СНиП «Строительная климатология и геофизика», в приложении которого есть карты для определения глубина промерзания. Этот документ на данный момент не действует, но для частного строительства можно пользоваться им в качестве рекомендаций.

Проектирование и устройство фундаментов на пучинистом основании выполняется с учетом пункта 6.8 СП «Проектирование и устройство оснований и фундаментов зданий и сооружений». При глинистых или пылеватых грунтах необходимо закладывать подошву ниже глубины промерзания или предусматривать дополнительные мероприятия.

Какие типы фундаментов можно использовать

Для пучинистых грунтов самое важное — глубина заложения и уровень воды. Именно в зависимости от них подбирается фундамент. Можно привести несколько наиболее распространенных вариантов для различных случаев.

Заглубленные и мелкозаглубленные

Если УГВ расположен достаточно глубоко (более 1,5 м) применяют ленточные и столбчатые фундаменты. При этом контролируют, чтобы отметка подошвы находилась на расстоянии не менее 50 см от воды в глинистой почве. Если говорить о водонасыщенных грунтах, то глубина закладки для глин, суглинков, супесей и мелких песков не менее промерзания, а для крупнообломочных — любая (для заглубленных зависит от высоты подвала, для мелкозаглубленных от 0,5 м). Можно также выбрать плитный фундамент мелкого или глубокого заложения.

При этом для предотвращения появления сил морозного пучения и подтопления конструкций необходимо предусмотреть следующие мероприятия для фундамента:

При закладке ниже глубины промерзания опорам не потребуется утепление, для мелкозаглубленных оно необходимо. В качестве наиболее оптимального материала для выполнения работ можно назвать экструдированный пенополистирол.

Незаглубленные (плита и лента)

Если УГВ приближен к поверхности, но глубина расположения более 50 см, используют плитные основания и незаглубленные ленточные фундаменты. Важно помнить, что не зарытая в землю лента может устраиваться только для небольших строений и применять ее требуется с крайней осторожностью. Незаглубленные столбчатые опоры использовать нельзя, ввиду их низкой несущей способности.

При этом важно позаботится об утеплении фундамента, поскольку он не защищен от морозов слоем почвы. Для заливки ленточного фундамента можно применять опалубку из пенополистирола. Этот элемент не снимается после заливки и служит теплоизоляцией. Для утепления фундаментных плит используют экструдированный пенополистирол, который от обычного отличается более высокой прочностью.

Для обеспечения надежности можно заменить часть грунта на участке на грунт с достаточными прочностными характеристиками. Если имеющийся на участке грунт неустойчивый, можно сделать подсыпку. При этом сложно рассчитать, какое количество материала потребуется, его добавляют до тех пор, пока основание не станет устойчивым, не вытиснится лишняя влага, а сыпучий материал не перестанет уходить в почву.

Свайные

Если УГВ расположен ближе, чем на 50 см от поверхности земли, стоит отказаться от незаглубленных фундаментов в пользу свайных элементов. Возможно два варианта, первый из которых наиболее трудоемкий. Заключается метод в том, что на площадке выполняют временное водопонижение и заглубляют ниже глубины промерзания буронабивные сваи. Второй вариант — винтовые сваи. Это более простой способ. Винтовые сваи также применяют для болотистых участков местности, на которых невозможно применение других типов оснований.

Одним из вариантов буронабивных свай могут стать элементы по технологии ТИСЭ. Это сваи с уширенной нижней частью (напоминают гвоздь со шляпкой вниз). Уширение предотвратит выдергивание под действием сил морозного пучения и увеличит несущую способность.

Какой бы тип фундаментов не был выбран все необходимые действия при глинистых грунтах и высоком уровне подземных вод нужно сделать одновременно и в полном объеме. Только комплекс этих мероприятий позволит предотвратить повреждение фундамента, заложенного выше глубины промерзания при пучинистой почве.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Какой фундамент на пучинистых грунтах лучше строить? |

Фундамент на пучинистых грунтах

Благодаря современным технологиям, которые применяются в возведении свайного фундамента, постройка зданий, учитывая при этом всем прочностные характеристики, выполняется в разы быстрее. Впрочем, вопрос о том, какой выбрать фундамент на пучинистых грунтах, все еще остается актуальным. Каждый отдельный вариант отличается, как преимуществами, так и своими недостатками. Впрочем, именно винтовые и железобетонные конструкции демонстрируют невероятную прочность и легко выдерживают оказываемые на них нагрузки.

Какой грунт относят к категории пучинистых? Пористые и содержащие много влаги. Весь процесс пучения начинается с того, что вода в почве замерзает. Вспоминаем школьную физику. Лед менее плотный, чем вода. Оттого занимает больший объем. Поэтому, чем больше влаги в почве, тем сильнее ее пучит. Представителями таких грунтов являются глина, суглинок, супесь. В них много пор. Вода через эти поры не просачивается, а задерживается. Один из объектов, где мы возводили фундамент на глине:

Компания Эндбери предполагает собственное производство металлических и железобетонных свай, поэтому о качестве составных материалов можно не волноваться. Пристальный контроль каждого отдельного этапа производства, а также использования лучших материалов, гарантирует исключительно лучший результат.

Особенности строительства на пучинистых грунтах

Пучинистые грунты – это почвенные массы, которые подвержены разрушением под воздействием низких температур. Разумеется, что это не может не оказывать разрушающее воздействие на будущие строения. Как правило, процессу разрушения в связи с низкими температурами подвержены рыхлые почвенные массы, в которых очень хорошо задерживается влага.

Перед началом строительства, необходимо исследователь почву и определить ее тип. Выделяют 5 типов почвы:

Расчет интенсивности пучения

Проектирование фундаментов на пучинистых грунтах начинается с подсчета интенсивности пучения почвенных масс на участке. Необходимые меры требуются для того, чтобы определить необходимую устойчивость основания, а также нейтрализовать разрушающее воздействие процесса пучения на основание и будущее строение.

Расчет осуществляется по следующей формуле – E = (H – h)/ h:

Необходимые расчеты следует провести два раза – летом и зимой.

Выбор фундамента с учетом пучения грунта

Для строительства на пучинистых территориях рассматривают следующие виды оснований:

Винтовые и забивные сваи: какие лучше?

Основное преимущество свайных фундаментов заключается в том, что они позволяют возводить здания даже на той местности, где, казалось бы, сделать это просто невозможно. Конечно, незаглубенный ленточный фундамент на пучинистых грунтах или монолитный тип фундамента все еще востребован в строительстве, но ошибочно полагать, что здания на сваях менее устойчивы. К тому же, обустройство дома и даже огромного промышленного объекта, с использованием таких конструкций обойдется в разы дешевле. Плюс ко всему, выполнить все необходимые работы можно всего за один день.

Преимущества винтовых свай

Винтовые стержни выполнены в виде труб, которые производятся из стали. Имеют очень острый конус с лопастями, благодаря чему они могут легко ввинчиваться практически в любую почву. Исключением является только горная порода. Лопасти позволяют ускорить процесс сверления, а также способствуют уплотнению почвенных масс. Отличительная черта такого варианта – надежная фиксация элемента без дополнительных вмешательств. Возможно это благодаря тому, что в момент ввинчивания, никаких пустот вокруг установленных элементов не образовывается. Если доверить такую работу профессионалам, винтовые элементы продемонстрируют невероятную прочность.

К основным достоинствам винтовых свай можно отнести следующее:

Преимущество забивных железобетонных свай

Железобетонные элементы способны создать очень прочную и надежную опору, которая защитит будущее строение от любых неприятностей. Устанавливаются железобетонные конструкции с помощью специальной техники, за счет чего они входят в почву без каких-либо трудностей. Отличительная особенность данного варианта заключается в том, что во время установки таких свай, поверхностный слой почвы не разрушается. Это значит, что тратить время и средства на вывоз строительного мусора не понадобится. Интересно, что одна такая свая способна выдержать колоссальные нагрузки – до 10 тонн веса. Благодаря этому, сомневаться в их прочности и выносливости не приходится.

К основным достоинствам таких свай можно отнести следующее:

Как снизить пучение грунта?

Когда строительство осуществляется на пучинистых грунтах, стоит рассматривать такой фундамент, для которого такой разрушающий процесс не будет представлять опасности. Впрочем, можно воспользоваться и альтернативным вариантом, а именно провести ряд особых мероприятий, которые будут направлены на снижение вспучивание грунта. К таким действиям можно отнести следующее:

Как видим, мероприятия по предотвращению пучинистости грунта требуют дополнительных затрат, что в свою очередь и растянет период строительства. Именно поэтому, лучше всего воспользоваться таким фундаментом, для которого процессы промерзания грунта не будут играть никакой роли.

Компания «Эндбери» занимается производством и установкой надежных свай, которые идеально подойдут для каждого отдельного объекта. Клиентам предлагается лучшее качество изделий, а также их установка с учетом всех требований в самые сжатые сроки.

Заключение

Сегодня винтовые и железобетонные сваи считаются более надежным вариантом для создания прочного основания под будущее здание. Впрочем, выбирая из этих двух вариантов, большинство специалистов отдают свое предпочтение именно второму. Несмотря на то, что железобетонные сваи сопровождаются дополнительными расходами, в итоге они способы обеспечить большую несущую способность. С их помощью можно возводить не только небольшие строения, но и многоэтажные здания, которые оказывают на почву очень большую нагрузку. Именно по этой причине ж/б сваи применяются и для возведения больших промышленных объектов.

Столбчатый фундамент при высоких грунтовых водах

Фундамент при высоком уровне грунтовых вод является головной болью для владельцев будущих дач и домов. Из общего количества застройщиков лишь малой части достаются под строительство участки с идеальными условиями.

Большинству из них приходится решать проблемы со слабыми или пучинистыми грунтами и прочими неудобствами. Одной из таких неприятностей является необходимость строительства фундамента при высоком уровне грунтовых вод.

Блок: 1/5 | Кол-во символов: 550
Источник: https://ks5.ru/fundament/dlya-doma-i-dachi/pri-vysokom-urovne-gruntovyh-vod.html

Воздействие высокого УГВ на основание

Если основание дома находится близко от грунтовых вод, то для него разрушительным является не само воздействие влаги, а солевые растворы и другие химические вещества, содержащиеся в них

Если основание дома находится близко от грунтовых вод, то для него разрушительным является не само воздействие влаги, а солевые растворы и другие химические вещества, содержащиеся в них. Поэтому так важно знать агрессивность подземных вод. Когда комплекс агрессивных веществ в составе

Фундаменты на пучинистых грунтах - какой лучше?

Пучинистый грунт – это почвенный массив, который в зимний период года расширяется и оказывает сильное давление на стенки фундамента. Оно приводит к разрушению конструкции, ее «выталкиванию» из котлована.

Воздействие давления при пучении на фундамент

Существуют виды конструкций для возведения в таких условиях и перечень правил для работы: от правильной глубины заложения фундамента до армирования.

Расчет интенсивности пучения на участке

Чтобы произвести расчет степени пучения грунта на стройплощадке своими руками, необходимо воспользоваться формулой: E = (H— h) / h, в которой:

Чтобы сделать расчет степени, необходимо сделать соответствующие замеры в летнее и зимнее время. Пучинистой можно считать почву, высота которой изменилась на 1 см при промерзании на 1 м. С этом случае «Е» будет равняться коэффициенту 0.01.

Процессам пучения больше подвержены грунты, в которых есть большое содержание влаги. Она при замерзании расширяется до состояния льда и тем самым поднимает уровень грунта. Пучинистыми считаются: глинистые почвы, суглинки и супеси. Глина, из-за наличия большого количества пор, хорошо удерживает воду.

к оглавлению ↑

Что такое пучинистый грунт и чем он опасен? (видео)

к оглавлению ↑

Как снять воздействие пучения на грунт?

Существуют простые способы снять пучение вокруг фундамента своими руками:

  1. Замена слоя грунта под и вокруг основания на непучинистый слой.
  2. Закладка фундамента на грунтовый массив ниже слоя промерзания.
  3. Утепление конструкции для предотвращения замерзания грунта.
  4. Водоотвод.

Первый способ – самый трудоемкий. Для этого необходимо вырыть котлован под фундамент, глубиною ниже уровня замерзания земли, пучинистый грунт вывезти, а на его место засыпать сильно утрамбованный песок.

Читайте также: обустройство песчаной подушки для строительства фундаментов на пучинистых грунтах.

Он показывает высокую несущею способность и не удерживает влагу. Большой объем земельных работ делает его наименее популярным, хотя он и является эффективным способом побороть пучение. Эта техника эффективна для заложения малоэтажных зданий, мелкого заглубления, например, сарая.

Особенностью второго способа является снятие влияния пучения на подошву фундамента, но его сохранение при воздействии на стенки основания. В среднем боковое давление на стенки составляет 5 т/1 м2. С его помощью можно возводить дома из кирпича.

Третий способ позволяет сделать незаглубленный фундамент под частный дом своими руками в условиях пучения. Суть метода заключается в заложении утеплителя по периметру фундамента на всю его глубину. Расчет материала делается так: если его высота равна 1 м, то и ширина утеплителя должна составлять 1 м.

Чтобы сделать отвод воды вокруг дома или сарая, нужно построить дренаж. Он представляет собой канаву на расстоянии 50 см от постройки, глубина которой такая же, как уровень заложения конструкции. В дренажную траншею укладывают перфорированную трубу под техническим уклоном и оборачивают ее в геотекстиль, а затем заполняют гравием и песком крупной фракции.

Ниже — рассмотрим типы оснований, которые могут применяться на почве, склонной к пучению.

Читайте также: особенности и нюансы прокладки канализации под фундаментом.

к оглавлению ↑

Мелкозаглубленный ленточный фундамент на пучинистых грунтах

Эффективным способом сделать крепкое основание для дома или сарая является мелкозаглубленный (малого заложения) ленточный фундамент на пучинистых грунтах. Это бетонная лента с элементами армирования, обустроенная по всему периметру здания и в местах пролегания несущих стен. Чтобы выстроить незаглубленный фундамент своими руками, необходимо следовать таким этапам:

  1. Вырыть котлован/траншею, глубиною 50-70 см. Расчет ширины делается, исходя из ширины самого основания в сумме с опалубкой, утеплителем или гидроизоляцией, а также декором.
  2. Заложить откосы открытой траншеи гидроизоляций. С этой целью применяется толь, пленка.
  3. Засыпать выемку слоями утрамбованного песка по 20-30 см каждый. Для утрамбовки материал периодически смачивается водой.
  4. Поставить опалубку из любого доступного материала (доска, ламинированная фанера).
  5. Выстелить на песок гидро защитный барьер.
  6. Сделать армирующий пояс с диаметром прутьев 12 мм.
  7. Залить незаглубленный фундамент бетонным раствором.
  8. Заложить второй слой армирующего пояса в незаглубленный фундамент по жидкому раствору (особенность, которую требует только мелкозаглубленный тип основания)

Для соединения арматуры сварка не применяется. Чтобы незаглубленный фундамент был жестче, используется проволока длиной 20 см.

к оглавлению ↑

Столбчатый фундамент на пучинистых грунтах

Конструкция может применяться для заложения дома или сарая на пучинистых грунтах, уровень промерзания которых не превышает полтора метра. За свою основу столбчатый фундамент взял готовые сваи. Их высота достигает 3-4 м.

Ленточный фундамент с дренажом на пучинистом грунте

Если в планах возвести небольшое здание, то эффективны такие виды сваи, как забивные из дерева или железобетона, а также винтовые. Дерево – это менее долговечный материал для фундаментных целей.

Столбчатый фундамент закладывается ниже уровня промерзания почвы, поэтому сохраняется лишь боковое давление пучения. По сравнению с заглубленными ленточными конструкциями, оно незначительно, так как площадь сваи меньше.

Среди всех типов столбов для основания – винтовые сваи для фундаментов самые удобные. Чтобы сделать столбчатый фундамент с их помощью, не нужно бурить скважины. Всю работы сделают винтовые лопасти.

Читайте также: как построить столбчатый фундамент из труб?

Свайной конструкции доступны все водянистые типы грунтов: заболоченные, сырые участки. Для придания постройке жесткости, столбы связываются опорно-анкерными площадками. Для этого столбы ввинчиваются в грунт.

На их поверхности нужно сделать опалубку, выложить арматурный каркас, сшитый металлической проволокой и залить бетонной смесью. Расчет уровня расположения бетонной ленты равен поверхности почвы или чуть ниже.

к оглавлению ↑

Технология ТИСЭ – новый способ противодействия пучению

Для заложения фундамента своими руками наиболее доступной конструкцией является ТИСЭ. Она представляет собой опорно-столбчатый фундамент, сваи которого соединены ростверком. Тисэ может использоваться для кирпичного, каркасного или каменного строительства.

Среди преимуществ заложения свай ТИСЭ своими руками: экономичность (сравнивая мелкозаглубленный ленточный фундамент и ТИСЭ, разница составляет в 4 раза в пользу второго), возможность обойтись без спецтехники и электричества, возможность удобной прокладки коммуникаций.

Устойчивость к пучению конструкции ТИСЭ обеспечивает наличие пространства между ростверком и почвой. С его помощью можно минимизировать уклон участка, например, использовать его ступенчатую конструкцию, если уклон стройплощадки больше 10˚.

Фундамент ТИСЭ на пучинистом грунте

Фундамент ТИСЭ обязательно армируется по периметру ленты. Расчет количества прутьев делается так, чтобы их общий диаметр составлял 8 см. С помощью арматуры нужно сделать два пояса: сверху и снизу.

Опалубка для ТИСЭ конструкции делается так:

  1. Покрыть столбы гидроизоляцией.
  2. Заложить в грунт деревянные колья, таким образом, чтобы их верхняя точка совпала с нулевым уровнем.
  3. Просыпать всю ширину ростверка и заподлицо песком.
  4. Прибить к кольям доски с выравниваем по нулевому уровню.
  5. Обезопасить опалубку ТИСЭ гидроизоляцией.

к оглавлению ↑

Плитный фундамент в условиях пучения

Существуют и другие способы сделать устройство фундамента на пучинистых грунтах. Кроме ТИСЭ, мелкозаглубленного и столбчатого основания, применяют плитный фундамент. Это монолитная железобетонная плита, которая противостоит пучению за счет большой площади подошвы.

Она эффективна при простой конструкции здания, когда фундамент представляет собой квадрат или прямоугольник. Расчет материалов показывает, что это самый дорогой, но не менее надежный вид сооружения. Изготавливается из бетона или железобетона.

Монолитный фундамент требует обустройства низкого цоколя. Расчет ширины монолитной плиты делается в зависимости от того, какой материал применяется для возведения стен.

Средний показатель отвечает параметрам от 15 до 35 см. 15 см подойдет, например, для деревянных конструкций, а 20 см – для кирпичных. Чтобы проложить инженерные коммуникации в плите, в ней заранее делаются отверстия соответствующего диаметра.

Какой тип фундамента выбрать — незаглубленный, столбчатый, плитный или ТИСЭ — зависит от возможности применить технику, размера дома, его конфигурации и материальных возможностей застройщика.

Рекомендации по проектированию оснований и фундаментов на пучинистых грунтах, от 01 января 1972 года



"Рекомендации по проектированию оснований и фундаментов на пучинистых грунтах" составлены по результатам научных исследований и обобщения передового опыта фундаментостроения на пучинистых грунтах.

В Рекомендациях изложены инженерно-мелиоративные, строительно-конструктивные и термохимические мероприятия по борьбе с вредным влиянием морозного пучения грунтов на фундаменты зданий и сооружений, а также даны основные требования к производству строительных работ по нулевому циклу.

Рекомендации предназначены для инженерно-технических работников проектных и строительных организаций, которые осуществляют проектирование и строительство фундаментов зданий и сооружений на пучинистых грунтах.

ПРЕДИСЛОВИЕ


Действие сил морозного пучения грунтов ежегодно наносит народному хозяйству большой материальный ущерб, заключающийся в снижении сроков службы зданий и сооружений, в ухудшении условий эксплуатации и в больших денежных затратах на ежегодный ремонт поврежденных зданий и сооружений, на исправление деформированных конструкций.

В целях снижения деформаций фундаментов и сил морозного выпучивания Научно-исследовательским институтом оснований и подземных сооружений Госстроя СССР на основании проведенных теоретических и экспериментальных исследований с учетом передового опыта строительства разработаны новые и усовершенствованы уже существующие в настоящее время мероприятия против деформации грунтов при их промерзании и оттаивании.

Обеспечение проектных условий прочности, устойчивости и эксплуатационной пригодности зданий и сооружений на пучинистых грунтах достигается применением в практике строительства инженерно-мелиоративных, строительно-конструктивных и термохимических мероприятий.

Инженерно-мелиоративные мероприятия являются коренными, поскольку они направлены на осушение грунтов в зоне нормативной глубины промерзания и на снижение степени увлажнения слоя грунта на глубине 2-3 м ниже глубины сезонного промерзания.

Строительно-конструктивные мероприятия против сил морозного выпучивания фундаментов направлены на приспособление конструкций фундаментов и частично надфундаментного строения к действующим силам морозного пучения грунтов и к их деформациям при промерзании и оттаивании (например, выбор типа фундаментов, глубины их заложения в грунт, жесткости конструкций, нагрузок на фундаменты, анкеровки их в грунтах ниже глубины промерзания и многие другие конструктивные приспособления).

Часть предлагаемых конструктивных мероприятий приведена в самых общих формулировках без надлежащей конкретизации, как, например, толщина слоя песчано-гравийной или щебеночной подушки под фундаментами при замене пучинистого грунта непучинистым, толщина слоя теплоизолирующих покрытий во время строительства и на период эксплуатации и др.; более детально даются рекомендации по размерам засыпки пазух непучинистым грунтом и по размерам теплоизоляционных подушек в зависимости от глубины промерзания грунтов по опыту строительства.

В помощь проектировщикам и строителям приводятся примеры расчетов конструктивных мероприятий и, кроме того, даны предложения по заанкериванию сборных фундаментов (монолитное соединение стойки с анкерной плитой, соединение на сварке и на болтах, а также замоноличивание сборных железобетонных ленточных фундаментов).

Рекомендуемые для строительства примеры расчетов по конструктивным мероприятиям составлены впервые, а поэтому они не могут претендовать на исчерпывающее и эффективное решение всех затронутых вопросов по борьбе с вредным влиянием морозного пучения грунтов.

Термохимические мероприятия предусматривают, главным образом, снижение сил морозного выпучивания и величин деформации фундаментов при промерзании грунтов. Это достигается применением рекомендуемых теплоизоляционных покрытий поверхности грунта вокруг фундаментов, теплоносителей для обогрева грунтов и химических реагентов, понижающих температуру смерзания грунта и сил сцепления мерзлого грунта с плоскостями фундаментов.

При назначении противопучинных мероприятий рекомендуется руководствоваться в первую очередь значимостью зданий и сооружений, особенностями технологических процессов, гидрогеологическими условиями стройплощадки и климатическими характеристиками данного района. При проектировании предпочтение должно отдаваться таким мероприятиям, которые исключают возможность деформации зданий и сооружений силами морозного выпучивания как в период строительства, так и за весь срок эксплуатации. Рекомендации составлены доктором технических наук М.Ф.Киселевым.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие Рекомендации содержат данные по проектированию и строительству фундаментов зданий, промышленных сооружений и различного специального и технологического оборудования на пучинистых грунтах.

1.2. Рекомендации разработаны в соответствии с основными положениями глав СНиП II-Б.1-62 "Основания зданий и сооружений. Нормы проектирования", СНиП II-Б.6-66 "Основания и фундаменты зданий и сооружений на вечномерзлых грунтах. Нормы проектирования", СНиП II-А.10-62 "Строительные конструкции и основания. Основные положения проектирования" и СН 353-66 "Указания по проектированию населенных мест, предприятий, зданий и сооружений в северной строительно-климатической зоне" и могут быть использованы для инженерно-геологических и гидрогеологических изысканий, выполняемых в соответствии с общими требованиями по исследованию грунтов для строительных целей. Материалы инженерно-геологических изысканий должны удовлетворять требованиям п.1.6 настоящих Рекомендаций.

Примечание. Рекомендации не распространяются на площадки, где сезонное промерзание грунта сливается с вечномерзлым грунтом.

1.3. Пучинистыми (морозоопасными) грунтами называются такие грунты, которые при промерзании обладают свойством увеличиваться в объеме. Изменение объема грунта обнаруживается в поднятии при промерзании и опускании при оттаивании дневной поверхности грунта, в результате чего наносятся повреждения основаниям и фундаментам зданий и сооружений.

К пучинистым грунтам относятся пески мелкие и пылеватые, супеси, суглинки и глины, а также крупнообломочные грунты с содержанием в виде заполнителя частиц размером менее 0,1 мм в количестве более 30% по весу, промерзающие в условиях увлажнения. К непучинистым (неморозоопасным) грунтам относятся скальные, крупнообломочные с содержанием частиц грунта диаметром менее 0,1 мм, менее 30% по весу, пески гравелистые, крупные и средней крупности.

1.4. В зависимости от гранулометрического состава, природной влажности, глубины промерзания грунтов и уровня стояния грунтовых вод грунты, склонные к деформациям при промерзании, по степени морозного пучения по табл.1 подразделяются на: сильнопучинистые, среднепучинистые, слабопучинистые и условнонепучинистые.

Таблица 1


Подразделение грунтов по степени морозной пучинистости

Степень пучинистости грунтов при консистенции

Положение уровня грунтовых вод в м для грунтов

песков мелких

песков пылеватых

супесей

суглинков

глин

I. Сильнопучинистые при 0,5

-

-

0,5

1

1,5

II. Среднепучинистые при 0,250,5

-

0,6

0,51

11,5

1,52

III. Слабопучинистые при 00,25

0,5

0,61

11,5

1,52

23

IV. Условнонепучинистые при 0

1

1

1,5

2

3


Примечания: 1. Наименование грунта по степени пучинистости принимается при удовлетворении одного из двух показателей или .

2. Консистенция глинистых грунтов определяется по влажности грунта в слое сезонного промерзания как средневзвешенное значение. Влажность грунта первого слоя на глубину от 0 до 0,5 м в расчет не принимается.

3. Величина , превышающая расчетную глубину промерзания грунта в м, т.е. разность между глубиной залегания уровня грунтовых вод и расчетной глубиной промерзания грунта, определяется по формуле:

,


где - расстояние от планировочной отметки до залегания уровня грунтовых вод в м;

- расчетная глубина промерзания грунта в м по главе СНиП II-Б.1-62.

1.5. Приведенные в табл.1 подразделения грунтов по степени пучинистости на основании показателя консистенции следует учитывать также возможные изменения влажности грунта в слое сезонного промерзания как в период строительства, так и за весь период эксплуатации зданий и сооружений.

1.6. Основанием для определения степени пучинистости грунтов должны служить материалы гидрогеологических и грунтовых исследований (состав грунта, его влажность и уровень грунтовых вод, которые могут охарактеризовать участок застройки на глубину не менее удвоенной нормативной глубины промерзания грунта, считая от планировочной отметки).

1.7. Основания и фундаменты зданий и сооружений на пучинистых грунтах, подверженных деформациям при промерзании и оттаивании, должны проектироваться с учетом:

а) степени пучинистости грунтов;

б) рельефа местности, времени и количества выпадающих атмосферных осадков, гидрогеологического режима, условий увлажнения грунтов и глубины сезонного промерзания;

в) экспозиции строительной площадки по отношению освещаемости солнцем;

г) назначения, срока службы, значимости сооружений и условий их эксплуатации;

д) технической и экономической целесообразности конструкций фундаментов, трудоемкости и сроков возведения и экономии строительных материалов;

е) возможности изменения гидрогеологического режима грунтов, условий их увлажнения в период строительства и за весь срок эксплуатации здания или сооружения.

1.8. Объем и виды гидрогеологических и грунтовых исследований предусматриваются в зависимости от инженерно-геологических условий и стадии проектирования общей программой изысканий, составляемой проектно-изыскательской организацией и согласовываемой с заказчиком.

2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ

2.1. При выборе грунтов в качестве оснований на строительной площадке следует отдавать предпочтение непучинистым грунтам (скальным, щебенистым, галечниковым, дресвяным, гравийным, пескам гравелистым, пескам крупным и средней крупности, а также глинистым грунтам, залегающим на возвышенных участках местности с обеспечением поверхностного стока и с уровнем стояния грунтовых вод ниже планировочной отметки на 4-5 м).

2.2. При проектировании фундаментов под каменные здания и сооружения на сильно- и среднепучинистых грунтах надлежит принимать столбчатые или свайные фундаменты, заанкеренные по расчету на силу выпучивания и на разрыв в наиболее опасном сечении, или же предусматривать замену пучинистых грунтов непучинистыми на глубину сезонного промерзания. Возможно также устройство подсыпки (подушки) из гравия, песка, горелых пород и других дренирующих материалов под всем зданием или сооружением слоем на расчетную глубину промерзания без удаления пучинистых грунтов или только под фундаментами при надлежащем технико-экономическом обосновании расчетом.

2.3. Основные мероприятия, направленные против деформаций конструктивных элементов зданий и сооружений при промерзании и пучении грунтов, должны быть предусмотрены при проектировании оснований и фундаментов.

В тех случаях, когда проектом мероприятия против пучения не предусмотрены, а гидрогеологические условия грунтов строительной площадки в период выполнения работ по нулевому циклу изменились с ухудшением свойств грунтов оснований, то авторский надзор должен возбудить вопрос перед проектной организацией о назначении мероприятий против пучения (осушение грунтов, уплотнение с втрамбовыванием щебня и др.).

2.4. Прочность, устойчивость и эксплуатационная пригодность зданий и сооружений на пучинистых грунтах должны обеспечиваться инженерно-мелиоративными, строительно-конструктивными и термохимическими мероприятиями.

3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ

3.1. Инженерно-мелиоративные мероприятия направлены на осушение грунтов в слое сезонного промерзания и снижение влажности грунтов в основании фундаментов в осенне-зимний период до их промерзания.

Примечание. При проектировании и осуществлении мелиоративных работ необходимо учитывать характер растительного покрова и требования к его сохранению.

3.2. При проектировании фундаментов на пучинистых грунтах надлежит предусмотреть надежный отвод подземных, атмосферных и производственных вод с площадки путем своевременной вертикальной планировки застраиваемой территории, устройства ливневой канализационной сети, водоотводных каналов и лотков, дренажа и других гидромелиоративных сооружений сразу же после окончания работ по нулевому циклу, не дожидаясь полного окончания строительных работ.

При составлении проектов и выполнении в натуре работ по вертикальной планировке площадок, сложенных пучинистыми грунтами, следует по возможности не изменять естественных водостоков.

3.3. При планировочных работах следует стремиться к минимальному нарушению природного дерново-почвенного покрова, а на срезках, где позволяют условия, поверхность грунта покрывать почвенным слоем толщиной 10-12 см с последующим посевом многолетних дернообразующих трав.

3.4. Насыпной глинистый грунт при планировке местности в пределах застройки должен быть послойно уплотнен механизмами до объемного веса скелета не менее 1,6 т/м и пористости не более 40% (для глинистого грунта без дренирующих прослоек). Поверхность насыпного грунта так же, как и поверхность на срезке, должна покрываться почвенным слоем и задерняться.

3.5. Уклон при твердых покрытиях (отмостки, площадки, подъезды) должен быть не менее 3%, а для задерненной поверхности - не менее 5%.

3.6. Для снижения неравномерного увлажнения пучинистых грунтов вокруг фундаментов при проектировании и строительстве рекомендуется: земляные работы производить с минимальным объемом нарушения грунтов природного сложения при рытье котлованов под фундаменты и траншей подземных инженерных коммуникаций; тщательно послойно уплотнять грунты при обратной засыпке пазух фундаментов и траншей ручными и пневмо- или электротрамбовками; обязательно устраивать водонепроницаемые отмостки шириной не менее 1 м вокруг здания с глиняными гидроизолирующими слоями в основании или покрывать почвенным слоем толщиной 10-12 см и задернять многолетними травами.

3.7. На строительных площадках, сложенных глинистыми грунтами и имеющих уклон местности более 2‰, при проектировании следует избегать устройства резервуаров для воды, прудов и других источников увлажнения, а также расположения вводов в здание трубопроводов канализации и водоснабжения с нагорной стороны здания или сооружения.

3.8. Строительные площадки, расположенные на склонах, должны быть ограждены от стекающих со склонов поверхностных вод постоянной нагорной канавкой с уклоном не менее 5‰ до начала земляных работ по рытью котлованов.

3.9. Нельзя допускать при строительстве скопления воды от повреждения временного водопровода. При обнаружении на поверхности грунта стоячей воды или при увлажнении грунта от повреждения трубопровода необходимо принять срочные меры по ликвидации причин скопления воды или увлажнения грунта вблизи расположения фундаментов.

3.10. При засыпке коммуникационных траншей с нагорной стороны от здания или сооружения необходимо устраивать перемычки из мятой глины или суглинка с тщательным уплотнением для предотвращения попадания (по траншеям) воды к зданиям и сооружениям и увлажнения грунтов вблизи фундаментов.

3.11. Устройство прудов и водоемов, которые могут изменить гидрогеологические условия стройплощадки и повысить водонасыщение пучинистых грунтов застраиваемой территории, не допускается. Необходимо учитывать проектируемое изменение уровня воды в реках, озерах и прудах в соответствии с перспективным генеральным планом.

3.12. Следует избегать расположения зданий и сооружений ближе 20 м к действующим колонкам для заправки тепловозов, обмывки автомашин, снабжения населения и для других целей, а также не проектировать колонок на пучинистых грунтах ближе 20 м к существующим зданиям и сооружениям. Площадки вокруг колонок должны быть спланированы с обеспечением отвода воды.

4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ

4.1. Фундаменты зданий и сооружений, возводимые на пучинистых грунтах, могут быть запроектированы из любых строительных материалов, которые обеспечивают эксплуатационную пригодность зданий и сооружений и удовлетворяют требованиям прочности и долголетней сохранности. При этом необходимо считаться с возможными вертикальными знакопеременными напряжениями от морозного пучения грунтов (поднятие грунтов при промерзании и осадка их при оттаивании).

4.2. При размещении зданий и сооружений на строительной площадке необходимо по возможности учитывать степень пучинистости грунтов с тем расчетом, чтобы не могли оказаться под фундаментами одного здания грунты с различной степенью пучинистости. При неизбежности строительства здания на грунтах с различной степенью пучинистости следует предусматривать конструктивные мероприятия против действия сил морозного пучения, например, при ленточных сборных железобетонных фундаментах устраивать по фундаментным подушкам монолитный железобетонный пояс и др.

4.3. При проектировании зданий и сооружений с ленточными фундаментами на сильнопучинистых грунтах в уровне верха фундаментов надлежит предусматривать для 1-2-этажных каменных зданий по периметру наружных и внутренних капитальных стен конструктивные железобетонные пояса шириной не менее 0,8 толщины стены, высотой 0,15 м и над проемами последнего этажа - армированные пояса.

Примечание. Железобетонные пояса должны иметь марку бетона не менее 150, арматуру с минимальным сечением, 3* диаметром 10 мм; с усиленным стыкованием стержней по длине.
_______________
* Текст соответствует оригиналу. - Примечание изготовителя базы данных.

4.4. При проектировании свайных фундаментов с ростверком на сильно- и среднепучинистых грунтах необходимо учитывать действие нормальных сил морозного пучения грунтов на подошву ростверка. Сборные железобетонные подстеновые рандбалки должны быть монолитно связаны между собой и уложены с зазором не менее 15 см между рандбалкой и грунтом.

4.5. Глубина заложения фундаментов каменных гражданских зданий и промышленных сооружений на пучинистых грунтах принимается не менее расчетной глубины промерзания грунтов согласно табл.6 главы СНиП II-Б.1-62. В тех случаях, когда влажность грунтов не повышается в период строительства и эксплуатации зданий на слабопучинистых грунтах (полутвердой и тугопластичной консистенции), глубина заложения фундаментов должна приниматься при нормативной глубине промерзания:

до 1 м - не менее 0,5 м от планировочной отметки

до

1,5

"

"

"

0,75

"

"

"

"

от

1,5

до

2,5 м

"

1

"

"

"

"

"

2,5

"

3,5

"

1,5

"

"

"

Фундамент на пучинистых грунтах: плитный или ленточный


Строительство дома на частном участке с пучнистой почвой в первую очередь тесно связано с правильным проектированием. И особого внимания здесь заслуживает именно фундамент на пучинистых грунтах, поскольку от основания и его крепости зависит надежность и долговечность всего дома.

Известно, что сезонное пучение грунта оказывает негативное влияние на основание дома, а именно — выталкивает его, что приводит к разрушению сначала стенок каркаса, а затем и стен самого дома. Поэтому стоит очень внимательно подойти к решению вопроса об устройстве основания.

Важно: если вы хоть на каплю сомневаетесь в правильности принятого ранее решения, то следует пригласить специалиста, который проведет анализ грунта, определит степень его пучнистости и спроектирует оптимальный базис для дома.

Особенности пучинистого грунта

Пучнистые земли представляют собой наличие в почве участка таких составляющих, которые склонны к скоплению большого количества воды

Пучнистые земли представляют собой наличие в почве участка таких составляющих, которые склонны к скоплению большого количества воды. В результате в сезон морозов эта самая вода кристаллизуется (то есть замерзает), увеличиваясь от этого в объеме, а именно — в почве присутствует лёд, которому требуется место.

Особенно пучнистыми являются такие почвы:

Грунт, насыщенный в зимнее время года льдом, начинает пучиться, отыскивая себе место. Таким образом происходит смещение фундамента под воздействием пучнистой земли. Причем в зависимости от степени заглубленности основания негативное воздействие грунта может оказываться как снизу, так и на стенки фундамента. То есть, если основание дома не углубляют ниже уровня промерзания почвы, то такой базис находится как бы на поверхности играющей лавы. Его постоянно деформирует, меняя соответственно и первоначальное положение дома. Если же фундамент углубляют ниже уровня промерзания грунта, то здесь пучинистая земля снизу не оказывает влияния на каркас дома, а вот на боковые его стенки изрядно давит. Стоит ли говорить о негативных последствиях для дома в результате такого влияния на фундамент.

Важно: уровень промерзания грунта в средней полосе России достигает отметки 1,5 метра. И углублять фундамент ниже этого уровня очень затратно. Поэтому стоит подобрать один из приведенных ниже типов фундамента, который отлично справится с нагрузкой, оказываемой на него и домом, и почвой.

Стоит отметить, что в момент промерзания и пучения почва может увеличиваться в объеме в диапазоне 4-12%. И объем увеличения полностью зависит от количества воды в грунте.

Профессионалы делят пучнистые земли по степени пучения на такие виды:

При этом процент вспучивания почвы обусловлен дополнительными факторами, такими как:

Рекомендуем к прочтению:

Фундамент для пучнистого грунта

Чтобы постройка на пучнистой почве была надежной и долговечной, можно использовать три типа фундаментов:

Какой из них выбрать, разберем ниже.

Ленточный мелкозаглубленный фундамент

На подвижном грунте можно монтировать мелкозаглубоенный или совсем не заглубленный фундамент

На подвижном грунте можно монтировать мелкозаглубоенный или совсем не заглубленный фундамент. Такой базис подойдет для деревянного или каркасного дома в один этаж.

Важно: основание подобного типа нельзя использовать для каменной постройки. Иначе противодействие сил давления снизу (со стороны почвы) и сверху (со стороны стен) будет плачевным для всей постройки.

Основание ленточного типа для пучнистого грунта имеет толщину 30-50 см, что позволяет сделать силу давления пучнистой земли исключительно касательной. Кроме того эта сила будет сведена практически к нулю.

Для того чтобы мелкозаглубленный или незаглубленный базис еще меньше подвергался силам пучения почвы, под него необходимо уложить слой песка или щебня крупной фракции. Толщина слоя не менее 20 см. Такая прослойка создаст своеобразный природный дренаж грунта под фундаментом и снизит уровень негативного воздействия на основание.

Ленточный фундамент под легкие постройки на пучнистых почвах нужно делать только монолитными железобетонными. Здесь раствор заливают в подготовленную траншею с обязательным его армированием.

Процесс строительства фундамента выглядит таким образом:

Важно: от полностью готового фундамента необходимо отвести отмостки для оттока дождевой и талой воды.

Совет: смонтированный в тёплое время года мелкозаглубленный фундамент на пучнистом грунте нужно обязательно застроить. То есть, запрещается оставлять его в таком виде на зимний период. В результате пучения почвы он просто сломается. Если де возможности возвести дом сразу нет, то следует хорошенько утеплить базис. Для этого можно использовать большой объем шлака, стекловаты, опилок, соломы или других материалов, которые предотвратят промерзание фундамента со всех сторон.

Свайный (столбчатый) фундамент

Еще один вариант для устройства фундамента на пучнистом грунте — монолитный столбчатый (свайный) базис

Еще один вариант для устройства фундамента на пучнистом грунте — монолитный столбчатый (свайный) базис. В силу того что площадь каждой опоры сравнительно мала, почва в сезоны пучения не может оказать на него полноценного негативного воздействия. К тому же сваи (столбы) можно без ощутимых финансовых затрат углубить ниже уровня промерзания грунта.

Рекомендуем к прочтению:

Важно: свайный (столбчатый) фундамент можно возводить на пучнистых землях под небольшие и нетяжелые дома.

Опоры для фундамента можно использовать как заводские (монолитные железобетонные забивные сваи), так и лить самостоятельно непосредственно на участке из бетона с его обязательным армированием. При этом железобетонные сваи готового типа требуют применения специальной установки.

Технология монтажа свайного фундамента выглядит так:

Важно: стальные трубы необходимо гидроизолировать снаружи битумной мастикой.

Фундамент-плита

Такой базис является самым дорогостоящим, однако именно он считается самым оптимальным вариантом фундамента для пучнистых грунтов

Такой базис является самым дорогостоящим, однако именно он считается самым оптимальным вариантом фундамента для пучнистых грунтов. Дело в том, что плитный каркас представляет собой железобетонную монолитную подушку толщиной 30-50 см, на которую равномерно распределяется вся нагрузка готового здания. В результате дом на таком фундаменте просто лавирует в грунте, не подвергаясь давлению со стороны пучнистой почвы.

Плитный фундамент используют под любые типы строений и каменные в том числе.

Технология монтажа фундамента-плиты выглядит так:

Важно: сетки должны быть полностью скрыты в бетоне после заливки. Максимальный отступ по бокам фундамента может составлять 1-2 см, сверху и снизу — по 5 см.

Мероприятия против пучнистости грунта

Можно качественно и надёжно утеплить фундамент со всех сторон, это снизит процент негативного влияния мёрзлой земли на базис

Если дом уже построен и при этом фундамент нужно дополнительно защитить, то можно применить такие методы и техники:

Все эти способы и технологии строительства вполне позволяют строить долговечные и крепкие дома на прихотливых почвах.

Исследование грунтов и типы оснований по свойствам грунтов

Имя пользователя *

Эл. адрес*

Пароль*

Подтвердите Пароль*

Имя*

Фамилия*

Страна Выберите страну ... Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территорий нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д'ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*

.

Глава 7 (продолжение) - NHI-05-037 - Geotech - Мосты и конструкции

Справочное руководство по геотехническим аспектам дорожных одежд

Глава 7.0 Детали конструкции и условия строительства, требующие особого внимания при проектировании (продолжение)

7.5 Условия земляного полотна, требующие особого внимания при проектировании

Принимая во внимание такие переменные, как тип почвы или минералогия вдоль проезжей части, геология (генезис почвы и метод отложения), свойства грунтовых вод и потока делают каждый проект уникальным в отношении условий земляного полотна.Неудивительно, что будут существовать определенные условия, не способствующие поддержанию или даже строительству систем дорожного покрытия. В этом разделе представлен обзор условий земляного полотна, требующих особого внимания при проектировании. Эти подземные условия часто носят региональный характер и обычно рассматриваются агентством как проблемные. Несколько проблем с фундаментом, таких как просадочные или сильно сжимаемые грунты, расширяющиеся или набухающие грунты, подземные воды и насыщенные грунты, а также чувствительные к морозам почвы, широко распространены по всей территории U.С. и не относятся к одному региону. Например, морозное пучение происходит более чем в половине штатов США, а наиболее серьезные повреждения могут быть нанесены в центральных штатах, где происходит намного больше морозных циклов, чем в самых северных штатах. В этом разделе также рассматривается идентификация этих широко изменяющихся проблемных условий земляного полотна, а также альтернативы проектирования и строительства для достижения адекватного фундамента для строительства конструкции дорожного покрытия.

Большинство условий земляного полотна, представленных в этом разделе, можно предвидеть с помощью полной программы разведки, как описано в Главе 4, и смягчить или, по крайней мере, минимизировать с помощью хорошо продуманных проектов.Выявив такие проблемы земляного полотна на стадии проектирования или даже возможность возникновения таких проблем во время трассы, можно разработать альтернативные конструкции. Альтернативные конструкции могут быть затем помещены в тендерные документы с четко обозначенными индикаторами, показывающими, где эти альтернативы должны быть рассмотрены, а затем реализованы, если и где такие условия встречаются. Когда эти особые условия земляного полотна не учитываются при проектировании, они часто выявляются во время строительства, что обычно приводит к рекламациям и перерасходам.Тем не менее, выявление проблем в строительстве все же в некоторой степени удачно, учитывая то влияние, которое такие проблемы могут иметь на характеристики дорожного покрытия. Если условия почвы, описанные в этом разделе, остаются незамеченными, обычно снижается эксплуатационная пригодность, что обычно приводит к преждевременной локальной реабилитации или, что не редкость, к реконструкции покрытия в течение первых нескольких лет периода эксплуатации покрытия.

7.5.1 Проблемные типы почв

Очевидно, тротуар должен быть построен из любого материала и любого естественного состояния.Прочность и стабильность некоторых грунтов могут создавать проблемы во время строительства и, безусловно, могут повлиять на долговременные характеристики дорожного покрытия в течение его срока службы. Чтобы правильно обсудить эти потенциальные проблемы, необходимо определить некоторые термины, относящиеся к проблемной минералогии (Sowers, 1979). Некоторые из терминов являются истинной геологической терминологией, а некоторые - местной или региональной терминологией. Эти термины могут описывать конкретный материал или состояние, но все они проблематичны, и следует соблюдать осторожность при строительстве дорожных покрытий в регионах, содержащих эти материалы.

Adobe. Песчаные глины средней пластичности, обнаруженные в полузасушливых регионах на юго-западе США. Эти почвы веками использовались для изготовления высушенного на солнце кирпича. Это название также применяется к некоторым западным глинам с высокой пластичностью, которые значительно разбухают во влажном состоянии.

Бентонит. Высокопластичная глина, обычно монтмориллонит, образующаяся в результате разложения вулканического пепла. В сухом состоянии он может быть твердым, но во влажном состоянии сильно набухает.

Карта глина. Применяется к глинам юга и юго-запада США. При высыхании превращается в небольшие твердые комочки относительно однородного размера. Сухие комки разлагаются при смачивании (, например, , после того, как они были использованы в качестве наполнителя). Эти почвы также имеют свойство набухать во влажном состоянии.

Caliche. Ил или песок полузасушливых районов на юго-западе США, зацементированный карбонатом кальция. Карбонат кальция откладывается в результате испарения воды, попадающей на поверхность земли под действием капилляров.Консистенция калиши варьируется от мягкой породы до твердой почвы.

Ракушечник. Мягкий пористый известняк, состоящий в основном из склеенных вместе ракушек, кораллов и окаменелостей. Очень рыхлый, при строительстве ломается.

Гамбо. Мелкозернистая высокопластичная глина долины Миссисипи. Он имеет липкое, жирное ощущение, сильно расширяется и при высыхании образует большие усадочные трещины.

Каолин. Белая или розовая глина низкой пластичности.Он состоит в основном из минералов семейства каолинита.

Суглинок. Поверхностная почва, которую можно описать как песчаный ил с низкой пластичностью или илистый песок, хорошо подходящий для обработки почвы. Он применяется к почвам в самых верхних горизонтах и ​​не должен использоваться для описания глубоких отложений материнского материала. Суглинистые почвы обычно чувствительны к влаге, легко разрушаются при строительстве и подвержены морозам.

Лесс. Отложение относительно однородного ила, переносимого ветром.Он имеет рыхлую структуру с многочисленными корневыми отверстиями, которые создают вертикальный скол и высокую вертикальную проницаемость. Он состоит из угловатых частиц кварца и полевого шпата, цементированных карбонатом кальция или оксидом железа. После насыщения он становится мягким и сжимаемым из-за потери цементирования. Лесс, измененный выветриванием во влажном климате, часто становится более плотным и несколько пластичным ( лессовый суглинок ). Лесс также очень морозоустойчив.

Морская глина. Глины, отложенные в морской среде, которые, если позже их поднять, становятся очень чувствительными из-за выщелачивания солей, резко теряя прочность при нарушении.

Марл. Песок, ил или глина, осажденные водой, содержащие карбонат кальция. Мергели часто имеют цвет от светлого до темно-серого или зеленоватого, а иногда содержат коллоидные органические вещества. Часто они затвердевают в мягких породах.

Грязь или грязь. Чрезвычайно мягкий, слизистый ил или органический ил, встречающийся на дне рек и озер.Эти термины указывают на исключительно мягкую консистенцию, а не на какой-либо конкретный тип почвы. Мук подразумевает органическое вещество.

Торф. Встречающееся в природе высокоорганическое вещество, полученное в основном из растительных материалов (ASTM D 5715). Торф бывает темно-коричневого или черного цвета, рыхлый (отношение пустот может быть от 5 до 10) и чрезвычайно сжимаемый. После высыхания они будут плавать. Торфяные болота часто выделяют горючий газ метан. Эти почвы будут подвергаться значительному краткосрочному и долгосрочному осаждению даже при легких нагрузках и часто чувствительны к влаге, теряя значительную прочность во влажном состоянии.Они легко выходят из строя при строительных работах. Торф, содержащий большое количество легко идентифицируемых волокон, в геотехнических целях часто называют волокнистым торфом . Торф, содержащий сильно разложившиеся волокна и значительный высокоорганический компонент почвы, часто называют аморфным торфом .

Зыбучие пески. Относится к состоянию, а не к типу почвы. Гравий, песок и ил становятся «быстрыми», когда восходящий поток грунтовых вод и / или газа имеет место до такой степени, что частицы поднимаются.

Сапролиты. Почвы, образовавшиеся в результате естественного выветривания горных пород. Реликтовые соединения материнской породы часто определяют прочность, проницаемость и стабильность выветриваемых грунтов. Фрагменты могут казаться звуковыми, но окажутся слабыми. Определить переход почвы от выветренной породы к здоровой породе сложно, что часто приводит к претензиям.

Сланец. Индуцированные мелкозернистые осадочные породы, такие как аргиллиты, алевролиты и аргиллиты, очень изменчивые и опасные.Некоторые из них твердые и стабильные, другие - мягкие и разлагаются до глины вскоре после воздействия атмосферы или в течение расчетного срока службы конструкции. Глины, полученные из сланца, часто очень пластичны.

Сульфат. Минеральное соединение, содержащее сульфатный радикал SO4, которое может содержаться в почве. Это создает значительные проблемы расширения в стабилизированном известью грунте и, в некоторых случаях, вызывает повреждение бетона.

Сульфид. Минеральное соединение, характеризующееся связью серы с металлом, например свинцом или железом, с образованием галенита и пирита соответственно.

До. Смесь песка, гравия, ила и глины, полученная в результате вспашки ледников. Такие почвы часто называют валунной глиной, особенно в Канаде и Англии. Характеристики ледникового тилла меняются в зависимости от эродированных отложений и коренных пород. Каши в Новой Англии обычно более грубые и менее пластичные, чем со Среднего Запада. На северо-востоке тилли обычно имеют широкий уклон и часто нестабильны под действием воды. Сложный характер их отложения создает очень непредсказуемый материал.

Верхний слой почвы. Поверхностные почвы, поддерживающие жизнь растений. Обычно они содержат значительное количество органических веществ. Эти почвы имеют тенденцию оседать со временем, поскольку органическое вещество продолжает разлагаться. Они часто чувствительны к влаге, теряют значительную прочность при намокании и легко повреждаются во время строительных работ.

Туф. Название, относящееся к месторождениям вулканического пепла. Во влажном климате или в районах, где пепел попадает в водоемы, туф цементируется в мягкую пористую породу.

Глины полированные. Осадочные отложения, состоящие из чередующихся тонких слоев ила и глины. Обычно каждая пара слоев ила и глины имеет толщину от 3 до 13 мм (1/8 - 1/2 дюйма). Они являются результатом отложения в озерах в периоды чередования паводков и маловодья в впадающих ручьях и часто образуются в ледниковых озерах. Эти отложения имеют гораздо более высокую проницаемость по горизонтали, чем по вертикали, поскольку горизонтальные пласты удерживают воду. Они часто бывают чувствительными и теряют прочность при повторной формовке.

7.5.2 Сжимаемые грунты
Влияние сжимаемых грунтов на характеристики дорожной одежды

Сильно сжимаемые (очень слабые) грунты со временем подвержены большим оседаниям и деформациям, которые могут отрицательно сказаться на характеристиках дорожного покрытия. Сильно сжимаемые почвы - это насыщенные почвы с очень низкой плотностью, обычно илы, глины, а также органические аллювиальные или переносимые ветром отложения и торф. Если эти сжимаемые грунты не обработать должным образом, на поверхности могут образоваться большие углубления со случайным растрескиванием.Углубления на поверхности могут позволить воде стекать на поверхность дорожного покрытия и легче проникать в конструкцию дорожного покрытия, что усугубляет серьезную проблему. Что еще более важно, скопление воды создаст угрозу безопасности путешествующих людей в сырую погоду.

Средства для обработки сжимаемых грунтов

Выбор конкретной техники зависит от глубины слабого грунта и разницы между условиями на месте и минимальными требованиями к уплотнению или прочности, чтобы ограничить ожидаемую осадку до допустимого значения, которое не повлияет отрицательно на характеристики покрытия. .При строительстве проезжей части в районах с глубокими отложениями сильно сжимаемых слоев необходимо изучить конкретные свойства почвы для расчета расчетной осадки. В этих условиях перед проектированием дорожного покрытия необходимо выполнить геотехническое исследование и подробный анализ осадка. Если существующие почвы земляного полотна не соответствуют минимальным требованиям к уплотнению и со временем подвержены большим оседаниям, рассмотрите следующие альтернативы:

  • Удалите и обработайте почву для достижения приблизительного оптимального содержания влаги, замените и уплотните.
  • Удалите и замените грунт земляного полотна подходящими материалами для насыпи или выберите их. Все гранулированные наполнители должны быть уплотнены как минимум до 95% максимальной плотности с контролем влажности, как определено AASHTO T180. Связующие материалы наполнителя должны быть уплотнены до не менее 90%, близкого или немного превышающего оптимальное содержание влаги (, например, , от -1% до + 2% от оптимума), как определено AASHTO T99.
  • Рассмотрите возможность механической стабилизации с использованием геосинтетических материалов, как описано в разделе 7.5, чтобы уменьшить необходимую поднутрение.
  • Если почвы гранулированные ( например, , пески и некоторые илы), рассмотрите возможность уплотнения грунта с поверхности для увеличения плотности в сухом состоянии за счет методов динамического уплотнения. Определение характеристик почвы и подробные процедуры для успешного внедрения этой техники описаны в курсе 132034 FHWA / NHI по методам улучшения грунта (FHWA NHI-04-001).
  • Если почва очень влажная или насыщенная, рассмотрите возможность обезвоживания с помощью колодцев или глубоких горизонтальных дренажных систем.Если горизонтальные стоки не могут быть освещены дневным светом, может потребоваться подключение к трубам ливневой канализации или отстойным насосам.
  • Консолидируйте глубокие отложения очень слабонасыщенных грунтов большими насыпями до строительства дорожного покрытия (за дополнительную плату). После строительства насыпи можно либо оставить на месте, либо удалить, в зависимости от окончательной отметки. Для ускорения консолидации используйте дренажные фитили (см. FHWA NHI-04-001).
  • Другие методы для глубоких отложений сжимаемого грунта включают насыпные насыпи и использование легкого заполнителя, такого как геопена, как описано в руководстве FHWA «Методы улучшения грунта» (FHWA NHI-04-001).Хотя эти методы являются более дорогостоящими, чем большинство предыдущих методов, с точки зрения затрат на строительство, они предлагают немедленное улучшение, тем самым ускоряя строительство. В некоторых проектах экономия времени может быть более ценной, чем разница в стоимости строительства.
7.5.3 Складывающиеся грунты

Как и в случае сильно сжимаемых грунтов, просадочные грунты могут привести к значительному локальному проседанию дорожного покрытия. Складывающиеся почвы представляют собой иловые почвы с очень низкой плотностью, обычно это аллювиевые или переносимые ветром (лессовые) отложения, которые подвержены внезапному уменьшению объема при увлажнении.Часто их нестабильная структура зацементирована глиняными связующими или другими отложениями, которые растворяются при насыщении, что приводит к резкому уменьшению объема (Rollings and Rollings, 1996). Собственные грунтовые основания из просадочных грунтов перед строительством следует пропитать водой и прокатить с помощью тяжелого уплотнительного оборудования. В некоторых случаях остаточные почвы могут также разрушаться из-за вымывания коллоидных и растворимых материалов. На рис. 7-17 показан метод определения потенциала просадочных грунтов.Могут быть доступны другие местные методы идентификации. Складывающиеся грунты также могут образовываться в насыпях, когда грунты песчаного типа уплотняются на сухой стороне оптимальной влажности. Силы мениска между частицами могут создать почвенную ткань, подверженную разрушению.

Если система дорожного покрытия должна быть построена на разрушающемся грунте, могут потребоваться специальные восстановительные меры для предотвращения крупномасштабного растрескивания и неравномерного оседания. Чтобы избежать проблем, перед началом строительства необходимо вызвать обрушение.Методы включают:

  1. водозабор в области просадочных грунтов.
  2. инфильтрационных скважин.
  3. уплотнение - обычное с тяжелым виброкатком для небольших глубин (в пределах 0,3 или 0,6 м (1 или 2 фута))
  4. уплотнение - динамическое или вибрационное для более глубоких отложений более полуметра (нескольких футов) (может сочетаться с затоплением)
  5. раскопано и заменено.

Рисунок 7-17. Руководство по поведению складывающейся почвы (Rollings and Rollings, 1996).
Нажмите здесь, чтобы увидеть текстовую версию изображения

7.5.4 Набухающие почвы
Влияние набухающих грунтов на характеристики дорожного покрытия

Набухающие или расширяющиеся почвы чувствительны к изменению объема (усыхание и набухание) с сезонными колебаниями содержания влаги. Величина этого изменения объема зависит от типа почвы (способности к усадке-набуханию) и ее изменения содержания влаги. Потеря влаги вызовет усадку почвы, а увеличение влажности приведет к ее расширению или набуханию.Это изменение объема грунтов глинистого типа может привести к появлению продольных трещин у края дорожного покрытия и значительной шероховатости поверхности (различные вздутия и углубления) по длине дорожного покрытия.

Расширяющиеся почвы представляют собой очень серьезную проблему во многих частях Соединенных Штатов (см. Рис. 7-18) и являются причиной проведения преждевременных работ по техническому обслуживанию и восстановлению на многих километрах дороги каждый год. Расширяющиеся почвы представляют собой особую проблему, когда глубокие разрезы делаются в плотной (переуплотненной) глинистой почве.

Рисунок 7-18. Предполагаемое расположение набухающих почв (по Витчак, 1972).

Определение набухающих почв

Существуют различные методы и процедуры для выявления потенциально обширных почв. AASHTO T 258 может использоваться для определения почв и условий, подверженных набуханию. Два наиболее часто используемых документа перечислены ниже:

  • Оценка целесообразной методологии выявления потенциально обширных почв , Отчет №FHWA-RD-77-94, Федеральное управление шоссейных дорог, Вашингтон, округ Колумбия, июнь 1977 г.
  • Проектирование и строительство покрытий в аэропортах на обширных грунтах , Отчет № FAA-RD-76-66, Федеральное управление гражданской авиации, Министерство транспорта США, Вашингтон, округ Колумбия, июнь 1976 г.

Минералогия глины и наличие воды являются ключевыми факторами при определении степени, в которой проблема набухания может существовать на данном участке. Различные глинистые минералы демонстрируют большую или меньшую степень потенциала набухания в зависимости от их химического состава.Монтмориллонитовые глины имеют тенденцию проявлять очень высокие потенциалы набухания из-за химического состава частиц, тогда как иллитовые глины имеют тенденцию проявлять очень низкие потенциалы набухания. Идентификация глинистых минералов с помощью химических или микроскопических средств может использоваться как метод определения наличия высокого потенциала набухания в почвах. Почвенная ткань также будет влиять на потенциал набухания, поскольку агрегированные частицы будут иметь тенденцию к более сильному набуханию, чем диспергированные частицы, и флоккулируются сильнее, чем дефлокулированные.Как правило, чем более мелкозернистая и пластичная почва, тем выше ее потенциал набухания.

Выявление набухающих грунтов в земляном полотне является ключевым компонентом инженерно-геологических изысканий проезжей части. Образцы грунта на небольшой глубине ниже предполагаемой отметки дорожного покрытия обычно отбираются в рамках исследования, и их потенциал набухания может быть определен несколькими способами. Индексное тестирование - это распространенный метод определения потенциала выброса. Обычно проводятся лабораторные испытания для определения пределов пластичности и жидкости и / или предела усадки.Активность почвы (ASTM D 4318), определяемая как отношение индекса пластичности к процентному содержанию почвы по массе менее 0,002 мм (0,08 мил), также используется как свойство индекса для потенциала набухания, поскольку глинистые минералы с более высокой активностью демонстрируют более высокое волнение. Расчет активности требует измерения градации с использованием методов ареометра, что не характерно для инженерно-геологических изысканий при проектировании дорожного покрытия во многих штатах. В дополнение к индексному тестированию практика агентства в регионах, где набухание почвы является распространенной проблемой, может включать в себя тестирование набухания ( e.г. , ASTM D 4546), для образцов природного или уплотненного грунта. Такое испытание обычно включает измерение изменения высоты (или объема) образца, подвергнутого легкой нагрузке, аналогичной той, которая ожидается в полевых условиях, а затем предоставлен свободный доступ к воде.

Обработка набухающих почв

Когда в рамках проекта встречаются обширные грунты в окружающей среде и на территориях, где ожидаются значительные колебания влажности в земляном полотне, следует рассмотреть следующие альтернативы, чтобы минимизировать будущий потенциал изменения объема расширяющегося грунта:

  • Для относительно тонких слоев расширяющейся глины у поверхности удалите и замените расширяющуюся почву избранными материалами.
  • Увеличьте ширину подповерхностных слоев дорожного покрытия, чтобы уменьшить изменение ( т. Е. , смачивание или высыхание) влажности земляного полотна по краю дорожного покрытия, и увеличьте верхнюю часть проезжей части, чтобы уменьшить инфильтрацию влаги.
  • Частичная герметизация по краю дорожного покрытия или полная герметизация также могут использоваться для уменьшения изменения влажности земляного полотна, как более подробно описано в Разделе 7.5.
  • Расширить, стабилизировать и повторно уплотнить верхнюю часть расширяющегося глиняного земляного полотна.Стабилизация извести или цемента является общепринятым методом контроля набухания грунта, как описано в разделе 7.6. ( Стабилизация , используемая для экспансивных грунтов, относится к обработке почвы такими веществами, как битум, портландцемент, гашеная или гашеная известь и зола, чтобы ограничить характеристики изменения объема. Это может значительно повысить прочность обработанного материал.)
  • На участках с глубокими выемками в плотных, переуплотненных экспансивных глинах завершите выемку подземных грунтов до надлежащей отметки и дайте подповерхностным грунтам отскочить перед укладкой слоев дорожного покрытия.

AASHTO 1993 (Приложение C) предоставляет процедуры и графики для прогнозирования прямого воздействия набухающих грунтов на потерю эксплуатационной пригодности и обрабатывает их с учетом дифференциального воздействия на продольный профиль поверхности дороги. Если предполагается, что отек будет относительно равномерным, процедуры не применяются.

7.5.5 Подземные воды

Важно определить все насыщенные слои почвы, глубину залегания грунтовых вод и поток подземных вод между слоями почвы.Подземные воды особенно важно распознавать и идентифицировать в зонах перехода между сегментами выемки и насыпи. Если позволить пропитать несвязанные материалы основания / основания и грунты земляного полотна, подземные воды могут значительно снизить прочность и жесткость этих материалов. Снижение прочности может привести к преждевременным углублениям на поверхности, образованию колей или трещин. Сезонный поток влаги через выбранные пласты почвы также может значительно усилить эффекты дифференциального изменения объема в расширяющихся почвах.Вырезанные участки особенно важны для подземных вод.

Очистные сооружения для подземных вод

При водонасыщенных грунты или подземные воды встречаются, следует рассмотреть на следующие альтернативы для улучшения фундамента или поддержки земляного полотна:

  • Для насыщенных грунтов у поверхности высушите или укрепите влажные грунты с помощью методов механической стабилизации, чтобы обеспечить строительную платформу для конструкции дорожного покрытия, как описано в Разделе 7.6.
  • Удалите и замените насыщенные почвы отборными материалами или почвами. (Может не подходить, если земляные работы требуются ниже уровня грунтовых вод).
  • Разместите и надлежащим образом уплотните толстые насыпи или насыпи, чтобы увеличить высоту земляного полотна, или, другими словами, увеличить толщину между насыщенными грунтами или глубиной уровня грунтовых вод и структурой дорожного покрытия.
  • Следует также рассмотреть возможность использования дренажей земляного полотна, как описано ранее в Разделе 7.2 при наличии следующих условий:
    • Высокий уровень грунтовых вод, который может снизить устойчивость земляного полотна и стать источником воды для защиты от мороза.
    • Грунты земляного полотна, состоящие из ила и очень мелкого песка, которые при насыщении могут стать рыхлыми или рыхлыми.
    • Вода просачивается из нижележащих водоносных пластов или из земляного полотна на участках вырубки (рассмотреть возможность перекрытия дренажей).
7.5.6 Морозоустойчивые почвы
Влияние мороза на характеристики покрытия

Мороз может вызвать неравномерное пучение, шероховатость и растрескивание поверхности, блокировку дренажа и снижение несущей способности в период оттепелей.Эти эффекты варьируются от незначительных до серьезных, в зависимости от типа и однородности грунта, региональных климатических условий (, т.е. , глубина промерзания) и наличия воды.

Одним из последствий воздействия мороза на тротуары является морозное пучение, вызванное кристаллизацией линз льда в пустотах почвы, содержащих мелкие частицы. Как показано на Рисунке 7-19, должны присутствовать три условия, вызывающие образование морозного пучения и связанные с ним проблемы с действием мороза:

  • почвы морозостойкие;
  • минусовых температур в почве; и,
  • источник воды.

Если эти условия возникают равномерно, пучение будет равномерным; в противном случае возникнет неравномерное пучение, вызывающее неровности поверхности, шероховатость и, в конечном итоге, растрескивание поверхности покрытия.

Рисунок 7-19. Элементы морозного пучения.

Второй эффект действия мороза - ослабление оттепели. Несущая способность может существенно снижаться в периоды оттаивания в середине зимы, а последующее морозное пучение обычно бывает более сильным, поскольку вода легче доступна в зоне промерзания.В более южных районах морозной зоны несколько циклов замораживания и оттаивания могут произойти в течение зимнего сезона и причинить больший ущерб, чем один более продолжительный период замерзания в более северных районах. Весенние оттепели обычно вызывают потерю несущей способности значительно ниже летних и осенних значений с последующим постепенным восстановлением в течение недель или месяцев. Вода также часто задерживается над мерзлой почвой во время оттепели, которое происходит сверху вниз, создавая потенциал для долгосрочных условий насыщения в слоях дорожного покрытия.

Выявление морозоустойчивых почв

Морозоустойчивые почвы разделены на четыре основные группы. В Таблице 7-12 представлена ​​сводная информация о типичных почвах в каждой из этих четырех групп на основе количества мелких частиц (материал, проходящий через сито 0,075 мм (№ 200). На рисунке 7-20 графически показана ожидаемая средняя скорость морозного пучения для различные группы почв в зависимости от части почвы менее 0,02 мм (0,8 мил).

Мороз практически отсутствует в чистом, свободно дренирующемся песке, гравии, щебне и подобных сыпучих материалах при нормальных условиях замерзания.Большое пустое пространство позволяет воде замерзать на месте, не расслаиваясь на ледяные линзы. Напротив, илы очень морозоустойчивы. Состояние относительно небольших пустот, высокий капиллярный потенциал / действие и относительно хорошая проницаемость этих почв объясняют эту характеристику.

Глины 90 300 CL, CL-ML
Таблица 7-12. Классификация почв по морозостойкости (НЦПЗ 1-37А).
Группа заморозков Степень морозостойкости Тип почвы Процент мельче 0.075 мм (# 200) по массе. Типичная классификация почв
F1 От незначительной до низкой Гравийные почвы 3-10 GC, GP, GC-GM, GP-GM
F2 От низкого до среднего Гравийные почвы 10-20 GM, GC-GM, GP-GM
Пески 3-15 SW, SP, SM, SW-SM, SP-SM
F3 Высокий Гравийные почвы Более 20 GM-GC
Пески, кроме очень мелких илистых песков Более 15 SM, SC
Глины PI> 12 - CL, CH
F4 Очень высокий Все илы - ML-MH
Очень мелкие илистые пески Больше 15 SM
PI <12 -
Разнообразные глины и другие мелкозернистые, полосчатые отложения - CL, ML, SM, CH

Рисунок 7-20.Средняя скорость вспучивания по сравнению с процентным содержанием мелких частиц для естественных градаций почвы (Kaplar, 1974).

Глины когезионные и, хотя их потенциальное капиллярное действие велико, их капиллярная скорость низкая. Хотя в глинистых почвах может возникать морозное пучение, оно не такое сильное, как для илов, поскольку непроницаемость глин замедляет прохождение воды. Несущая способность глин должна сильно снижаться во время оттепелей, даже при отсутствии значительного вспучивания. Оттаивание обычно происходит сверху вниз, что приводит к очень высокому содержанию влаги в верхних слоях.

Уровень грунтовых вод в пределах 1,5 м (5 футов) от предполагаемой отметки земляного полотна указывает на то, что воды будет достаточно для образования льда. Однородные глинистые грунты земляного полотна также содержат достаточно влаги для образования льда даже при глубине залегания грунтовых вод более 3 м (10 футов). Однако величина влияния будет сильно зависеть от глубины фронта промерзания (, т.е. , глубина проникновения промерзания). При глубоком промерзании грунтовые воды даже на большей глубине могут влиять на волнение.

Определение морозоустойчивых условий

Самым отличительным фактором для определения состояния опасности промерзания дорожного покрытия является водоснабжение. Для чувствительных к заморозкам почв в зоне промерзания опасность замерзания может быть оценена как высокая или низкая в соответствии со следующими условиями. Неизвестный рейтинг может быть подходящим, когда возникают условия как для высокого, так и для низкого рейтинга, которые не могут быть разрешены, или когда имеется мало или совсем нет информации. Включение рейтинга опасности замерзания в документацию по оценке площадки подтверждает, что оценка воздействия замерзания была предпринята и не была упущена из виду.Когда рейтинг неизвестен, решение о включении мер по смягчению воздействия заморозков в проект будет основываться больше на неприемлемом характере повреждения от замерзания, чем на вероятности его возникновения.

Условия, связанные с высокой потенциальной опасностью замерзания, включают:

  1. Уровень грунтовых вод в пределах 3 м (10 футов) от поверхности дорожного покрытия (глубина воздействия зависит от типа почвы и глубины промерзания).
  2. Наблюдал изморозь в районе.
  3. Неорганические почвы, содержащие более 3% (по весу) или более зерен мельче 0.Диаметр 02 мм (0,8 мил) по данным Инженерного корпуса армии США.
  4. Потенциал скопления поверхностных вод и образования грунтов между зоной промерзания под тротуаром и поверхностными водами с проницаемостью, достаточно высокой, чтобы просачивание могло насытить почвы в зоне промерзания в течение периода затопления.

Условия, связанные с низкой потенциальной опасностью замерзания, включают:

  1. Уровень грунтовых вод выше 6 м (20 футов) ниже поверхности тротуара (опять же, может быть намного меньше, в зависимости от типа почвы и глубины промерзания).
  2. Естественная влажность в зоне промерзания низкая по сравнению с уровнем насыщения.
  3. Гидравлические перегородки между водопроводом и зоной промерзания.
  4. Существующие тротуары или тротуары поблизости с аналогичными почвенными и водопроводными условиями и без построенных мер защиты от замерзания, которые не пострадали от мороза.
  5. Тротуары на насыпях с поверхностью более чем на 1–2 м (3–6 футов) над прилегающими уклонами (обеспечивает некоторую изоляцию и утяжеляющее действие для сопротивления вспучиванию).
Средство от Frost Action

Когда морозом восприимчивые почвы встречаются, следует рассмотреть на следующие альтернативы для улучшения основы или поддержки земляного полотна:

  1. Удалите чувствительную к заморозке почву (обычно для групп F3 и F4, Таблица 7-12) и замените ее выбранной нечувствительной к заморозке почвой для предполагаемой глубины проникновения промерзания.
  2. Разместите и уплотните выбранные нечувствительные к морозу грунтовые материалы на толщину или глубину, чтобы предотвратить промерзание земляного полотна для уязвимых к морозам почв групп F2, F3 и F4, Таблица 7-12.
  3. Удалить отдельные очаги морозоустойчивых грунтов, чтобы исключить резкое изменение состояния земляного полотна.
  4. Стабилизируйте чувствительную к морозам почву, устраняя воздействие мелких частиц почвы с помощью трех процессов: а) механического удаления или иммобилизации с помощью физико-химических средств, таких как цементное соединение, б) эффективного уменьшения количества почвенной влаги, доступной для миграции в плоскость промерзания, например, перекрывая все миграционные пути, или c) изменяя точку замерзания почвенной влаги.
    1. Вяжущие вещества, такие как портландцемент, битум, известь и известково-летучая зола, как указано в разделе 7.5. Эти агенты эффективно удаляют отдельные частицы почвы, связывая их вместе, а также частично удаляют капиллярные каналы, тем самым снижая вероятность движения влаги. Необходимо соблюдать осторожность при использовании извести и смесей извести и золы с глинистыми почвами в районах с сезонными морозами (см. Раздел 7.5 и Приложение F).
    2. Влажность почвы, доступная для морозного пучения, может быть уменьшена путем установки глубоких дренажных систем и / или капиллярного барьера, чтобы уровень грунтовых вод поддерживался на достаточной глубине, чтобы предотвратить повышение влажности в зоне замерзания.Капиллярные барьеры могут состоять либо из открытого слоя гравия, зажатого между двумя геотекстилем, либо из горизонтального геокомпозитного дренажа. Установка капиллярного барьера требует удаления чувствительного к морозу материала на глубину либо ниже точки промерзания, либо на достаточно значительную, чтобы уменьшить влияние морозного пучения на дорожное покрытие. Разрыв капилляра необходимо дренировать. Затем чувствительный к морозу грунт можно заменить и уплотнить над капиллярным барьером до необходимой отметки земляного полотна.
  5. Увеличьте толщину структурного слоя дорожной одежды, чтобы учесть снижение прочности земляного полотна в период весенне-оттепель для морозоустойчивых групп F1, F2 и F3.

Конструкция дорожного покрытия для воздействия мороза часто определяет требуемую общую толщину гибкого покрытия и потребность в дополнительном выбранном материале под жестким и гибким покрытием. При проектировании дорожного покрытия в сезонных морозных районах использовались три подхода:

  • Подход «Полная защита» - требует материалов, не подверженных замерзанию, на всю глубину мороза ( e.г. , методы лечения 1, 2 и 3 выше).
  • Ограниченное проникновение промерзания земляного полотна - допускает некоторое проникновение промерзания в земляное полотно, но недостаточно для развития неприемлемой шероховатости поверхности.
  • Подход с пониженной прочностью земляного полотна - позволяет больше промерзать земляному полотну, но обеспечивает адекватную прочность в периоды ослабления от оттепелей.

AASHTO 1993 (Приложение C) предоставляет процедуры и графики для прогнозирования прямого воздействия морозного пучения на потерю работоспособности и обрабатывает их с учетом дифференциального воздействия на продольный профиль дорожного покрытия.Если ожидается, что мороз будет относительно однородным, то процедуры не применяются.

По большей части подходы к проектированию местной морозостойкости были разработаны на основе опыта, а не путем применения каких-либо строгих теоретических расчетных методов. В процедуре проектирования NCHRP 1-37A доступен более строгий метод для снижения воздействия сезонного замерзания и оттаивания до приемлемых пределов, как обсуждается в главе 6. Расширенная интегрированная климатическая модель используется для определения максимальной глубины промерзания для системы дорожного покрытия. в определенном месте.Различные комбинации толщины слоев и типов материалов могут быть оценены с точки зрения их влияния на максимальную глубину промерзания и общее количество основания, а также можно выбрать материалы, необходимые для защиты чувствительных к заморозкам почв от промерзания.

7.5.7 Резюме

Проблемные почвы можно обрабатывать различными методами или их комбинацией. Методы улучшения, которые можно использовать для повышения прочности и уменьшения климатических колебаний фундамента в отношении характеристик дорожного покрытия, включают:

  1. Улучшение подземного дренажа (см. Раздел 7.2, и всегда следует учитывать).
  2. Удаление и замена более качественными материалами ( например, , толстые гранулированные слои).
  3. Механическая стабилизация с использованием толстых гранулированных слоев.
  4. Механическая стабилизация слабых грунтов с помощью геосинтетических материалов (геотекстиля и георешетки) в сочетании с зернистыми слоями.
  5. Легкая заливка.
  6. Стабилизация слабых грунтов примесями (высокопластичные или сжимаемые грунты).
  7. Герметизация почвы.

Подробности большинства этих методов стабилизации будут рассмотрены в следующем разделе.

.

Superfund Руководство по скринингу почвы | Суперфонд

Руководство по скринингу почвы: Руководство пользователя

Руководство по скринингу почвы - это инструмент, разработанный Агентством по охране окружающей среды, чтобы помочь стандартизировать и ускорить оценку и очистку загрязненных почв на участках, внесенных в список национальных приоритетов (NPL), где предполагается будущее использование земель под жилую застройку. В Руководстве пользователя представлена ​​простая пошаговая методика для специалистов по экологическим наукам / инженерам по расчету уровней скрининга почвы (SSL) с учетом рисков для конкретных участков почвы на наличие загрязняющих веществ в почве, которые могут быть использованы для выявления областей, требующих дальнейшего исследования на участках NPL .

Сводные формы и рабочие листы CSM содержат информацию, необходимую для определения применимости SSL к сайту, и помогают сосредоточить усилия по сбору данных для сбора информации, необходимой для расчета SSL.

Это приложение иллюстрирует процесс достижения целевых показателей качества данных (DQO) для отбора проб почвы с поверхности с использованием теста Max, а также для отбора проб подземных грунтов. Выполнение всех требований, изложенных в процессе DQO во время реализации Руководства по скринингу почвы, необходимо для достижения целей программы Superfund.

В этом приложении представлены химические свойства, необходимые для расчета SSL при вдыхании и миграции в грунтовые воды для 110 химических веществ, обычно обнаруживаемых на объектах Суперфонда. Химические свойства для дополнительных примесей можно найти в Матрице химических данных Superfund (SCDM).

В этом приложении представлены нормативные критерии и контрольные показатели здоровья человека, необходимые для расчета SSL в соответствии с версиями IRIS или HEAST от 1995 года.

Руководство по скринингу почвы: технический справочный документ

Этот документ предоставляет техническую основу для разработки методологий, описанных в Руководстве по скринингу почвы: Руководство пользователя (EPA / 540 / R-96/018), а также дополнительную информацию, полезную для скрининга почвы.Вместе эти документы определяют структуру и методологию для разработки уровней скрининга почвы (SSL) на химические вещества, которые обычно встречаются на площадках Суперфонда. Этот документ представляет собой обновленную версию справочного документа, разработанного в поддержку проекта Руководства по скринингу почвы от 30 декабря 1994 г. Методологии, описанные в этом документе и в Руководстве по скринингу почвы: Руководство пользователя, были пересмотрены в ответ на комментарии общественности и обширную экспертную оценку. Изменения, наряду с другим техническим анализом, проведенным с учетом комментариев, описаны здесь.

Этот справочный документ состоит из шести частей. Для просмотра некоторых файлов на этой странице может потребоваться программа для чтения PDF-файлов. Дополнительную информацию см. На странице EPA «О PDF».

  • Часть 1: Введение (PDF) (9 стр., 170 K) Описывает процесс скрининга почвы, а также его применение и реализацию на площадках Суперфонда.
  • Часть 2: Разработка уровней скрининга почвы для конкретных путей (PDF) (56 стр., 445 K) Описывает методологию, использованную для разработки SSL, включая используемые предположения и теории.
  • Часть 3: Модели для детальной оценки (PDF) (17 стр., 200 КБ) Предоставляет информацию о более подробных моделях, которые могут использоваться для разработки SSL для конкретных сайтов.
  • Часть 4: Измерение концентраций загрязняющих веществ в почве (PDF) (52 стр., 575 K) Рассматриваются схемы отбора проб для измерения уровней загрязнения почвы в процессе проверки почвы.
  • Часть 5: Специфические для химикатов параметры (PDF) (28 стр., 622 K) предоставляет техническую информацию по определению специфических для химикатов свойств для расчета SSL.
  • Часть 6: Ссылки (PDF) (8 стр., 113 КБ)
  • Приложения
    • Приложение A: Общие SSL (PDF) (11pp, 523 КБ)
    • Приложение B: Экстраполяция критериев ингаляции от маршрута к маршруту (PDF) (7 стр., 127 K)
    • Приложение C: Ограниченная проверка моделей бесконечного источника и конечного источника жюри (EQ, 1995) (PDF) (67 стр., 1,3 МБ)
    • Приложение D: Изменения в уравнениях VF и PEF (EQ, 1994b) (PDF) (18 стр., 137 K)
    • Приложение E: Определение коэффициентов ослабления разбавления грунтовых вод (PDF) (43 стр., 1.3 МБ)
    • Приложение F: Результаты моделирования коэффициента разбавления (PDF) (14 стр., 90 K)
    • Приложение G: Обсуждение исходных данных по пути воздействия почвы-растений-человека (PDF) (12 стр., 165 K)
    • Приложение H: Оценка влияния модели Джонсона и Эттингера на проект SSL (EQ, 1994a) (PDF) (17 стр, 221 K)
    • Приложение I: Результаты моделирования SSL (PDF) (27 стр., 148 КБ)
    • Приложение J: Результаты моделирования Piazza Road (PDF) (6 стр., 59 K)
    • Приложение K: Коэффициенты распределения органического углерода почвы (Koc) / воды (Kow) (PDF) (28 стр., 381 K)
    • Приложение L: Значения Koc для ионизирующих органических веществ в зависимости от pH (PDF) (10 стр, 159 K)
    • Приложение M: Ответ на комментарии экспертной оценки результатов модели MINTEQA2 (PDF) (6 стр., 105 КБ)

Дополнительное руководство по разработке уровней скрининга почвы для участков Суперфонда

«Дополнительное руководство по разработке уровней скрининга почвы для участков суперфонда» от 2002 г. является дополнением к Руководству по скринингу почвы 1996 г. (SSG).Он основан на схеме отбора почвы для сценариев использования земли в жилых помещениях, установленной в первоначальном руководстве, и добавляет новые сценарии для оценки проверки почвы. Он также обновляет жилищный сценарий в SSG 1996 года, добавляя пути воздействия и новые данные моделирования. Следующие конкретные изменения, включенные в этот документ, заменяют SSG 1996 года:

  • Новые методы разработки SSL на основе нежилого землепользования и строительства;
  • Новые уравнения SSL для комбинированного воздействия при приеме внутрь и абсорбции через кожу;
  • Обновленные данные моделирования рассеивания для модели воздействия на воздух в жилых помещениях; и,
  • Новые методы разработки SSL для миграции летучих веществ из подземных источников в воздух помещений.

За исключением этих новых уравнений и обновленных данных моделирования, процесс скрининга почвы остается таким же, как и представленный в SSG 1996 года. Поэтому в этом документе процесс представлен менее подробно, чем в исходном руководстве, и вместо этого основное внимание уделяется конкретным элементам оценки скрининга почвы, которые различаются для жилых, нежилых и строительных сценариев.

В 1996 году EPA выпустило Руководство по скринингу почвы (SSG) в качестве инструмента, помогающего стандартизировать и ускорить оценку и очистку загрязненных почв на участках, включенных в Национальный список приоритетов (NPL).SSG предоставляет менеджерам участков многоуровневую структуру для разработки уровней скрининга почвы (SSL) с учетом рисков для конкретных участков для защиты здоровья человека.

SSG 1996 г. количественно рассмотрел следующие пути воздействия в жилых помещениях:

  • Прямой контакт с загрязненными почвами;
  • Вдыхание летучих веществ и летучей пыли из ненарушенных почв; и,
  • Попадание внутрь грунтовых вод, загрязненных миграцией химических веществ через почвы участков.

Кроме того, в SSG 1996 года обсуждалась возможность воздействия на кожу определенных загрязнителей в почве участков и миграции летучих загрязнителей из недр в воздух помещений. Однако из-за ограничений данных программа не смогла полностью рассмотреть эти пути.

Настоящее дополнительное руководство по скринингу почвы предназначено в качестве сопутствующего руководства к SSG 1996 года для сценариев использования в жилых помещениях на участках NPL. Он основывается на структуре скрининга почвы, установленной в первоначальном руководстве, и добавляет новые сценарии оценки скрининга почвы.Он также обновляет жилищный сценарий в SSG 1996 года, добавляя пути воздействия и новые данные моделирования. Следующие конкретные изменения, включенные в этот документ, заменяют SSG 1996 года:

  • Новые методы разработки SSL на основе нежилого землепользования и строительства;
  • Новые уравнения SSL для комбинированного воздействия при приеме внутрь и абсорбции через кожу;
  • Обновленные данные моделирования рассеивания для модели воздействия на воздух в жилых помещениях; и
  • Новые методы разработки SSL для миграции летучих веществ из подземных источников в воздух помещений.

За исключением этих новых уравнений и обновленных данных моделирования, процесс скрининга почвы остается таким же, как и представленный в SSG 1996 года. Таким образом, в данном документе процесс представлен менее подробно, чем в исходном руководстве, и вместо этого основное внимание уделяется конкретным элементам оценки отбора почвы, которые различаются для сценариев жилого, нежилого и строительства. Пользователи этого руководства должны обращаться к руководству пользователя SSG и справочному техническому документу (U.S. EPA, 1996c и 1996b) для получения дополнительной информации о подходах к моделированию, источниках данных и других важных деталях проведения оценок скрининга почвы на участках NPL.

.

Экспериментальное исследование характеристик морозного пучения гравийного грунта и прогноз многофакторной регрессии

Гравийный грунт обычно считается нечувствительным к морозному пучению. Тем не менее, многочисленные деформации фундамента в результате морозного пучения в сезонных промерзших регионах указывают на то, что гравийный грунт также может вызывать морозное пучение при определенных условиях. Чтобы получить более полное представление о характеристиках морозного пучения гравийного грунта, была проведена серия лабораторных экспериментов по одномерному морозному пучению в условиях пополнения запасов открытой и закрытой воды с использованием усовершенствованной экспериментальной установки.Проанализировано влияние различных факторов, включая начальную влажность, глинистость, плотность, перекрывающую нагрузку и водовыполнение, на коэффициент морозостойкости гравийного грунта. Были проанализированы основные характеристики морозного пучения, включая величину морозного пучения, скорость морозного пучения, глубину промерзания, скорость промерзания и распределение влажности после промерзания в образце гравийного грунта. Обсуждались также соответствующие механизмы. Результаты показали, что в условиях пополнения открытой воды существует линейная зависимость между исходной влажностью, перекрывающей нагрузкой и коэффициентом морозного пучения, а также квадратичная полиномиальная зависимость между содержанием глины, плотностью и коэффициентом морозного пучения.Можно обнаружить, что коэффициент морозостойкости в условиях пополнения открытой воды увеличивается более чем в три раза, чем в условиях пополнения закрытой воды. Эмпирическая формула многофакторной регрессии была получена путем множественного регрессионного анализа для прогнозирования коэффициента морозостойкости гравийного грунта при определенном совмещении факторов и уровней при закрытых условиях пополнения запасов воды. Значительное влияние на коэффициент морозостойкости было, по порядку, пополнением воды> начальным содержанием влаги> содержанием глины> компактностью> перекрывающей нагрузкой.

1. Введение

Крупнозернистые грунты, которые могут показывать выдающиеся характеристики уплотнения, интенсивности сдвига, водопроницаемости и разжижения при динамической нагрузке, а также обладают такими преимуществами, как богатые запасы, легкий доступ и экономичность, широко используются в качестве натуральные фундаментные материалы при строительстве фундаментов, таких как шоссе, железные дороги, аэропорты, плотины и земляные работы. Традиционно крупнозернистые почвы обычно идентифицируются как материалы, нечувствительные к морозному пучению из-за большого размера зерна, небольшой поверхностной энергии зерна, слабых гидрофильных характеристик, небольшого количества влаги в пленке, большой пористости, незаметной капиллярности и слабой миграции воды, а вода легко очищается. вмерзнуть в лед на месте [1–4].Однако, основываясь на наблюдениях за морозным пучением земляного полотна высокоскоростной железной дороги Харбин-Далянь в Северо-Восточном Китае и фундамента дорожной одежды аэропорта Гуолуо, расположенного в аэропорту Цинхай, Китай, Лю и др. [5, 6], Чжан [7], Лю и др. [8] обнаружили, что крупнозернистые почвы могут также вызывать явное явление морозного пучения при сочетании определенного содержания глины (массовая доля частиц диаметром менее 0,075 мм), начального содержания влаги и температуры в сезонных промерзших регионах. .Таким образом, актуальным является комплексное исследование характеристик морозного пучения крупнозернистого грунта для эффективного предотвращения морозных деформаций крупнозернистого грунтового основания.

Это всегда было центром внимания и горячей точки для проведения исследований характеристик морозного пучения почвы. С тех пор, как Эверетт [9] предложил первую теорию инея, а Миллер [10] выдвинул вторую теорию инея, было проведено множество исследований [11–19] в области механизма морозного пучения, и были достигнуты определенные результаты.По мере углубления представлений о механизме морозного пучения в вечной мерзлоте, также исследуются наполнители морозного пучения, особенно характеристики морозостойкости крупнозернистого грунта. После этого, в 1988 г., экспериментальные исследования Chen et al. [20] показали, что в условиях пополнения открытой воды коэффициент морозостойкости песчаного гравия увеличивается с уменьшением скорости замерзания как степенная функция, поскольку это способствует криосакции [21, 22]. Кроме того, поскольку небольшое количество измельченной глины было смешано с песчаным гравием, чувствительность гравия к морозному пучению в условиях пополнения открытой воды увеличивается с увеличением вязкости частиц.Винсон и др. [23] и Чен и Ван [24] обнаружили, что увеличение содержания мелкозернистой почвы и содержания глинистых минералов увеличивает чувствительность крупнозернистой почвы к морозному пучению. Среди них Винсон и др. [23] далее изучили влияние мелкодисперсных частиц на восприимчивость крупнозернистого грунта к морозному пучению, установили корреляцию между коэффициентом морозного пучения и потенциалом сегрегации, а затем указали, что чем меньше размер частиц, тем больше корреляция коэффициент.В ходе лабораторного эксперимента Сюй [25] указал, что при содержании порошка и глины в зернистом грунте менее 12% даже в условиях полного водонасыщения коэффициент морозостойкости не превышает 2%. По содержанию порошка

.

Истощение подземных вод: причины, последствия и решения

Подземные воды - это вода, которая просачивается в землю из-за дождя и других источников и продолжает накапливаться под ней. Он играет важную роль в обеспечении продовольственной безопасности и устойчивости сельского хозяйства в стране. С наступлением «зеленой революции» в 1970-х годах произошло значительное увеличение использования грунтовых вод, которое до сих пор продолжалось, скорее увеличивалось, что в долгосрочной перспективе привело к снижению и падению уровня воды, колодцев и других источников орошения.Кроме того, грунтовые воды больше не пригодны для питья из-за загрязнения источников воды.

Цифры показывают, что в среднем уровень грунтовых вод снижается на один метр каждый год. Раньше, если вода находилась в пределах 30 метров от уровня земли, сейчас ситуация такова, что во многих районах вода доступна только на 60-70 метров ниже уровня земли.

Несмотря на постоянное снижение уровня грунтовых вод, в стране не развита надлежащая система водосбережения.Ежегодно расходуются миллиарды кубометров дождевой воды. По мнению экспертов по подземным водам, учитывая темпы эксплуатации воды в стране, уровень грунтовых вод в ближайшие годы еще больше снизится.

Наличие воды в Индии

Невозможно представить жизнь без воды, но чистая и адекватная вода по-прежнему недоступна для большинства людей в Индии. Индия получает 90 процентов воды из крупных или средних рек. В нем 14 крупных рек, каждая из которых имеет площадь водосбора 20 000 кв.км и выше; в то время как есть 44 средних реки с береговой линией между 2000-20 000 кв. км. Затем есть 53 малых реки каждая с площадью водосбора 2000 кв. Км.

Согласно переписи 2011 года, годовая доступность воды на душу населения в стране снизилась до 1545 кубических метров с 1816 кубических метров по данным переписи 2001 года. В настоящее время эта ситуация вызывает еще большее беспокойство. Ученые считают, что к 2050 году доступность воды на человека снизится на 30 процентов. Всемирная организация здравоохранения (ВОЗ) рекомендует наличие 200 литров воды на человека в день в городских районах.Напротив, в стране на человека в день подается 140 литров воды.

Водные ресурсы Индии в основном зависят от сезона дождей. В Индии ежегодно выпадает в среднем 4000 млрд кубометров (миллиард кубических метров) осадков, но большая их часть испаряется и уходит в канализацию. Статистика показывает, что нехватка процедур хранения, отсутствие соответствующей инфраструктуры, неправильное управление водными ресурсами создали ситуацию, когда фактически используется только 18-20% воды.Остальное просто тратится, усугубляя проблему истощения грунтовых вод.

Причины истощения подземных вод

Увеличение орошаемых площадей

Основу экономики нашей страны составляет сельское хозяйство. Сельское хозяйство составляет 40 процентов ВВП страны и 60 процентов от общих экспортных доходов. Также 60 процентов населения страны занято в сельском хозяйстве и связанных с ним работах. Одна из основных причин водного кризиса в стране заключается в том, что по мере увеличения площади орошаемых земель уровень грунтовых вод снизился.В настоящее время в Индии общая площадь орошаемых культур составляет 82,6 миллиона гектаров (215,6 миллиона акров), что является крупнейшим показателем в мире. По мере увеличения численности населения емкость прудов для хранения воды уменьшается. Фактически, колодцы и пруды высыхают после того, как уровень воды уменьшается на уровне земли.

Беспорядочный водопровод

Необузданный отбор грунтовых вод сделал ситуацию еще более тревожной. Из-за непрерывной эксплуатации грунтовых вод глубокими колодцами и трубчатыми колодцами для восполнения дефицита воды уровень грунтовых вод постоянно снижается.Фактически, какое бы количество воды ни попало в землю, ее извлекают даже больше.

Добыча ведет только к дальнейшему снижению уровня грунтовых вод. Уровень грунтовых вод падает после того, как без разбора вырывают колодцы и колодцы. В результате уровень грунтовых вод понижается, и небольшие колодцы, не пробуренные глубоко, пересыхают.

Убывающие джунгли

Деревья удерживают дождевую воду и медленно опускают ее на землю, поглощая до 18 дюймов осадков, прежде чем постепенно выпустить ее в естественные каналы и пополнить грунтовые воды.Но по мере уничтожения лесов на Земле проблема истощения грунтовых вод становится еще более серьезной. Считается, что в течение последних 150 лет лес, равный площади Греции, ежегодно исчезает с Земли. И деревьев, посаженных для компенсации этой потери, слишком мало. По оценкам, ежегодно во всем мире теряется 13 миллионов гектаров леса.

Тающие ледники

Цикл дождя в Индии зашкаливал из-за таяния ледников.Фактически, количество осадков уменьшилось с годами. С 1817 года ледник Ганготри отступил от своего первоначального места более чем на 3 километра; Ожидается, что к концу 21 -го -го века он станет еще меньше. Примерно в 7 км за Кедарнатх Дхам ледник Чорвади также отступает. По данным ученых, ледники Гималаев тают в среднем со скоростью 131,4 квадратных километра (50 квадратных миль) в год. Все это может поставить под угрозу существование нескольких рек Непала, Индии и Китая.Когда ледники тают, они сначала поставляют больше воды в реки, которые они питают. После этого происходит уменьшение количества воды, способствующее сезонному циклу таяния, поскольку сокращающиеся ледники вносят меньший вклад в общий речной сток. Это увеличивает нагрузку на водные ресурсы, поскольку уровень воды в реках, которые они питают, падает.

Глобальное потепление

Подземные воды играют ключевую роль в поддержании экосистем. Из-за глобального потепления угроза изменения климата очень близка.Есть опасения, что к 2050 году половина населения мира будет уничтожена из-за голода, воды и болезней. Изменение климата усиливает водный стресс, поскольку снижает доступность подземных вод, пригодных для использования в сельском хозяйстве во всем мире.

Политика субсидирования

Политика субсидий привела к неустойчивой добыче грунтовых вод, что привело к их дефициту. Фермер, как правило, использует воду для орошения без каких-либо ограничений из-за наличия дешевой субсидированной электроэнергии из-за политики популизма.

Неправильные методы ведения сельского хозяйства

В сельских районах Индии нехватка воды также является результатом непроверенных методов ведения сельского хозяйства, таких как выращивание более водопотребляющих культур - риса, хлопка и сахарного тростника - в районах, испытывающих нехватку воды.

Последствия и последствия истощения подземных вод

Загрязнение грунтовых вод

Согласно отчету Центрального совета по подземным водам, более половины подземных вод Индии загрязнены.В отчете говорится, что по крайней мере 276 районов имеют высокий уровень фтора, нитраты выше безопасного уровня в 387 районах, а 86 районов имеют высокий уровень мышьяка. Плохая система управления окружающей средой приводит к сбросу токсичных вод, в результате чего поверхностные и подземные источники воды, используемые для орошения и бытовых нужд, были загрязнены.

Из-за чрезмерной эксплуатации грунтовых вод появляются химические вещества, лежащие в утробе Земли. Ядовитые вещества, такие как мышьяк и фтор, неактивны в нижней части подземных водоемов.Эти химические вещества поднимаются при копании глубоких колодцев и, смешиваясь с питьевой водой, вызывают несколько болезней. Например, в результате рытья глубоких колодцев в прибрежных штатах Гуджарата и перемешивания морской воды вода не только становится непригодной для питья, но также становится непригодной для орошения.

Высыхание рек

Крупные реки постепенно пересыхают из-за чрезмерного забора воды. Раньше вода Ямуны доставлялась в Дели круглый год, а теперь из-за рытья глубокого трубчатого колодца возле рек в Харьяне и Уттар-Прадеше не может быть достаточно воды.После сброса воды из плотины Хатиникунд вода полностью впитывается в почву на расстояние до 20-25 км, препятствуя ее течению.

Воздействие на живой организм

Рыболовы и черепахи гибнут в Ямуне. Паломники не могут найти воду для купания. Деревья на берегу реки умирают. Разрушается окружающая среда целых территорий.

Миграция топлива

Уровень грунтовых вод снижается в основных штатах страны. Горы переживают острый водный кризис.Водоемы пересыхают. Согласно отчету Центрального водного управления, уровень воды падает; Недалек тот день, когда воду придется привозить.

Среди холмов Удхам Сингх Нагар в Уттаракханде зарегистрировал 40% -ное снижение уровня воды. Штат также зарегистрировал снижение уровня воды в Рудрапуре, Харидваре и Дехрадуне. Такая же ситуация преобладает в равнинных и низинных регионах. Все это становится основной причиной миграции. Люди, которые устают преодолевать километры, чтобы утолить жажду, вынуждены покидать свои деревни, что еще больше увеличивает нагрузку на ресурсы грунтовых вод.

Предотвращение и решения проблемы истощения подземных вод

Предел водоотдачи

Для устранения чрезмерного забора грунтовых вод максимальная глубина должна быть определена на каждом участке. Может быть выполнено бурение до 400 футов. Перед этим следует засыпать глубокие колодцы, чтобы воду можно было удалить только на глубину до 400 футов. Таким образом, уровень воды ниже этого не опустится.

Изменение рисунка посевов

Подземные воды могут быть сохранены путем определения цикла урожая.Культуры с низким потреблением воды следует выращивать в не очень богатых водой районах, а там, где имеется большое потребление воды, следует выращивать культуры с высоким потреблением воды. Урожай должен расти в зависимости от наличия воды в каждой области.

Охрана и обогащение водных ресурсов

Кроме того, центры подземных вод должны быть созданы в каждом штате. Незаконная эксплуатация подземных вод должна быть запрещена. Использование внутренних вод земли для личного пользования без какой-либо информации может вызвать проблемы в будущем.Вода необходима для питья, а также для орошения, промышленности, производства электроэнергии и т. Д. Для правильного использования имеющихся водных ресурсов также важны их защита и обогащение.

Отвод ручьев

Во многих странах мира проблема воды была решена путем отвода воды реки на другой берег. В Индии уже есть работа в этом направлении. В восточных районах Тамил Наду вода отводится в Перияр.Вода Ямуны также отводится в западную часть. Река Синдху течет по направлению к Раджастану. Но необходимы конкретные шаги в этом направлении на национальном уровне. Центральное правительство разработало Национальный речной проект, который направлен на соединение всех основных рек вместе, чтобы обеспечить доступность воды во всех областях, но ничего нельзя сказать, когда план будет реализован.

Строительство резервуаров

Возникла необходимость в углублении старых водохранилищ и строительстве новых.Помимо увеличения глубины бурения новых скважин, существует необходимость согласования действий геологов и инженеров при выборе места.

Приводы для плантаций

Необходимо принять ряд мер для защиты земли от угрозы изменения климата, включая проведение обширных плантаций.

Повышение осведомленности

На государственном уровне было разработано множество схем по сохранению водных ресурсов, но из-за отсутствия осведомленности среди людей и из-за апатии официальных лиц эти схемы пока не смогли достичь желаемого уровня.

Как пополняются подземные воды?

В дождливые дни в Индии бывает много воды. Эту воду можно собирать в небольших резервуарах и дамбах. Позже эту воду можно использовать для орошения и электричества. Сохранение и хранение дождевой воды важно не только с точки зрения непрерывного падения уровня грунтовых вод, но также может преодолеть нехватку воды. Процесс сохранения дождевой воды применяется на многих уровнях - от домов и общественных мест до природных источников, таких как пруды и колодцы.Для этого в первую очередь следует составить список участков, где в летний период просыхают бассейны и колодцы, а уровень воды в грунте понижается. В таких областях, создав большие водохранилища, можно остановить истощение грунтовых вод, а также можно использовать воду для орошения.

Заключение

Вода - самая большая потребность будущего. Если не будут предприняты усилия для обеспечения наличия грунтовых вод и чистоты их источников, мы никогда не сможем быть уверены, что будет сохранено достаточно воды для наших будущих поколений.Среди других мер, описанных выше, участие сообщества должно быть обеспечено в борьбе с загрязнением грунтовых вод посредством кампании по повышению осведомленности общественности и наращиванию потенциала. Посредством создания водосберегающих сооружений с соответствующими проектами для компенсации ресурсов грунтовых вод в стране следует приложить усилия для сохранения грунтовых вод путем ограничения водопадов в горных районах и ограничения неизбирательного строительства скважин. Чтобы удовлетворить текущую и предполагаемую нехватку воды в связи с потребностями сельского хозяйства, стратегии изменения климата должны включать управление грунтовыми водами.

.

Смотрите также