Главное меню

Сила морозного пучения в тоннах


Морозное пучение грунта Глубина промерзания

Даже, если гидроизоляция фундамента была сделана на "Пять баллов" жидкой резиной, но при определенных обстоятельствах этого может оказаться недостаточно.

Идеальный фундамент, – это не только гидроизоляция фундамента, но еще и защита гидроизоляционного покрытия, утепление фундамента, устройство пристенного дренажа или дренажа на участке, устройство утепленной отмостки. Всё вышеперечисленное, во многом следует выполнить потому, что имеет место такое негативное природное явление (хотя, как известно, "У природы нет плохой погоды"), как пучение грунта при промерзании.

Пучение грунта на глубину промерзания

Зимой почва промерзает на определенную глубину, соответственно грунт может пучить. Вода, содержащаяся в почве переходит в твердое состояние, при этом объем грунта увеличивается и оказывается механическое воздействие на стены фундамента. Эта сила может достигать нескольких десятков тонн на 1 квадратный метр поверхности фундамента. Это явление называется – морозное пучение грунтов.

Причем силы действую неравномерно, в какой-то части фундамента больше, в какой-то меньше. Это приводит к перекосу фундаментной плиты или движению фундамента. Как результат, – возрастают нагрузки на стены, перекрытия, кровлю. Появятся трещины, усадка и пр.

Чтобы уменьшить воздействие со стороны вспучивающегося грунта на фундамент, его основание делают более широким, а в верхней части стенки фундамента сужаются.

Также рекомендуется сделать фундаментные стены скользящими. Раньше для этого использовался полиэтилен или отработанное машинное масло. В этом случае грунт при вспучивании скользит вдоль стены, и сила воздействующая на фундамент уменьшается. Современное решение данной проблемы – использование фундаментной пленки (дренажной мембраны) со скользящим слоем.

Причина морозного пучения в аномалии воды

Силы морозного пучения возникают потому, что замерзающая в грунте вода увеличивается по объему, примерно на 10%. И так как в промокшем пространстве нет свободного места для увеличения объема, то грунт начинает подниматься кверху, двигаться в бок. Причем сила при этом может достигать до 40тонн на 1м2. И если с противоположной стороны (нагрузка на фундамент от дома) эта сила не компенсируется, то может произойти то, что показано на фото выше на этой странице сайта b2bb2c.ru.

Но почему же вода, охлаждаясь, увеличивается в объеме? Как известно, во всяком случае, это сложившийся стереотип, что тела расширяются при нагреве, а сжимаются при охлаждении. Причем, жидкие тела подвержены этому правилу даже в большей степени, чем твердые.

Но, дело в том, что вода в этом правиле – исключение. Это называется "аномалия воды". Суть этой аномалии в том, что максимальная плотность у воды при температуре +4град.С.

Это значит, что при охлаждении воды до +4градС она уменьшается в объеме и при +4град.С ее объем – минимальный. А при ее плавлении (когда лёд тает) происходит уменьшение объема, вместо расширения. Чтобы было лучше понятно, ниже приведены данные по плотности воды при различных температурах.

Поэтому, если температура воды опускается ниже +4градС, то она меняет свое состояние на твёрдое (становится льдом) при этом уменьшается плотность, но увеличивается объем.

Это несложно понять, если вспомнить, что масса тела m [кг] исчисляется, как плотность ρ [кг/м3] умноженная на объем V [м3]. Масса тела – неизменна при любой температуре, т.е. m = ρ x V = const.

Если при уменьшении температуры ниже +4град.С уменьшается плотность тела, то каким образом может быть обеспечена постоянная масса тела? Очевидно, что только при увеличении объема, т.е. значения V.

Теперь представим, что имеется стеклянная бутылка, объемом 1 литр, в которую залили при +4град.С. Вспоминаем, что написано выше, поэтому знаем, что именно при +4град.С масса 1 литра воды составляет 1кг. Т.е. бутылка заполнена "по самое не балуйся", сиречь – полностью.

Ставим такую бутылку в 12-00 в морозильную камеру домашнего холодильника. Если холодильник хороший, то  градусов 12…18 ниже нуля он обеспечит. В 22-00 открываем "fridge" и обнаруживаем разорванную бутылку. Аналогичным образом рвутся зимой металлические трубы, если в них осталась и замерзла вода.

Этим и объясняется, что при промерзании грунта, если в нем находится вода, особенно, если это связанные грунты, которые состоят из суглинка и глины, где нет свободного пространства для увеличения воды в объеме, имеет место пучение грунта.

У воды имеются и другие аномалии, касающиеся летучести, теплоты плавления и удельной теплоемкости. Но к задаче, в рассматриваемом контексте, гидроизоляция фундамента, это отношения не имеет.

Глубина промерзания при морозном пучении грунтов

Но самое лучшее, что можно сделать, чтобы силы морозного пучения грунтов не могли сдвинуть фундамент, это расположить основание фундамента ниже глубины промерзания. При этом глубина промерзания должна быть выше, чем уровень грунтовых вод. Т.е., если уровень грунтовых вод  – 1,8м, а глубина промерзания – 1,2м, то основание фундамента следует расположить на глубине от 1,3м до 1,7м.

Глубина промерзания грунта зависит от географического расположения, очевидно, что в Ставрополе и Новосибирске она отличается. Также глубина промерзания зависит от типа почвы. Глинистые грунты промерзают на меньшую глубину, чем песчаные. Учитывая просторы России, средний уровень промерзания грунта в различных городах сильно отличается, например:

Чтобы уменьшить силу морозного пучения грунтов, следует предусмотреть меры по отводу воды от фундамента. Для этого в комплексе с гидроизоляцией фундамента организуется система дренажа вокруг здания. Под домом грунт может вообще не промерзать, если дом отапливается круглый год. Глубину промерзания грунта можно существенно уменьшить, если по всему периметру здания выложить утеплитель, шириной 1,5-2 метра.

Результаты пучения неутепленного грунта можно наблюдать на фото ниже. Поэтому, чтобы не было разрушений дорог и дорожек вокруг здания, гидроизоляция фундамента которого выполнена, необходимо утеплять грунт, прежде, чем укладывать асфальт или тротуарную плитку или иное дорожное покрытие.

Кстати, снег также является хорошим теплоизолятором. Поэтому, если вокруг Вашего коттеджа проложены дорожки, вымощенные плиткой, а грунт под ними не утеплен, лучше не особо усердствовать, убирая зимой снег.

Как защитить гидроизоляцию фундамента от морозного пучения

Если выполнить и дренаж фундамента и утепление грунта вокруг здания, то можно будет заложить мелкозаглубленный фундамент, что важно, если строится небольшой дом на 2-3 этажа. Тем не менее, на гидроизоляцию фундамента воздействуют внешние силы и гидроизоляция должна быть готова выдержать нагрузки в случае деформации или движения фундамента.

Морозное пучение грунта следует учитывать при устройстве гидроизоляции фундамента, даже, если используется такой современный и надежный материал, как жидкая резина

В последние годы появилась тенденция (которую подпитывают продавцы оборудования и сырья), что применение битумно-полимерной эмульсии для гидроизоляции фундамента, снимает все вопросы. Но это не так. Задача бесшовной мембраны из жидкой резины – это "отбивать атаки" воды. Но, если возможны механические повреждения или повышенные физические нагрузки на покрытие, то его следует дополнительно защитить.

Поэтому гидроизоляцию фундамента следует решать в комплексе с другими мероприятиями, такими, как дренаж фундамента или дренаж всего участка, где построен дом, защита гидроизоляции фундаментыми пленками, создание скользящего слоя между гидроизоляцией и защитной пленкой, устройство отмостки, утепление отмостки, утепление грунта по периметру дома, утепление фундамента, заглубление фундамента ниже уровня глубины промерзания грунта.

Но, конечно же, все эти дополнительные мероприятия по гидроизоляции фундамента работают и имеют смысл, если сама гидроизоляция фундамента выполнена правильно, с использованием качественных, современных водонепроницаемых материалов, таких, как жидкая резина.

Но жидкую резину нужно уметь правильно применить, нужно знать и понимать технологию бесшовной холодной гидроизоляции битумно-полимерной эмульсией. Что касается фундамента, работа начинается иногда задолго до того, как на объект завозится оборудование и сырьё жидкая резина. Сначала требуется подготовка фундамента. Об этом подробно в статье про устройство битумной гидроизоляции фундамента.

Расчет силы морозного пучения

Вымораживание фундаментов.

Рассчитать силу морозного пучения можно с помощью этого файла:

Скачать

СКАЧАТЬ ФАЙЛ НА GOOGLE.ДИСК

СКАЧАТЬ ФАЙЛ НА ЯНДЕКС.ДИСК

Согласно СП 22.13330.2011:

6.8.6 Расчет устойчивости фундаментов на воздействие касательных сил морозного пучения, действующих вдоль боковой поверхности фундаментов, должен выполняться при заложении подошвы фундаментов ниже расчетной глубины промерзания пучинистых грунтов.

Устойчивость фундаментов проверяют по формуле

(6.32)

где tfh — значение расчетной удельной касательной силы пучения, кПа, принимаемое по 6.8.7;

Аfh — площадь боковой поверхности фундамента, находящейся в пределах расчетной глубины сезонного промерзания, м2;

F — расчетная постоянная нагрузка, кН, при коэффициенте надежности по нагрузке gf = 0,9;

Frf— расчетное значение силы, кН, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, лежащий ниже расчетной глубины промерзания;

gc — коэффициент условий работы, принимаемый равным 1,0;

gn — коэффициент надежности, принимаемый равным 1,1.

 Общие сведения к проектированию оснований, сложенных пучинистыми грунтами.

Согласно СП 22.13330.2011:

6.8 Пучинистые грунты

6.8.1 Основания, сложенные пучинистыми грунтами, должны проектироваться с учетом способности таких грунтов при сезонном или многолетнем промерзании увеличиваться в объеме, что сопровождается подъемом поверхности грунта и развитием сил морозного пучения, действующих на фундаменты и другие конструкции сооружений. При последующем оттаивании пучинистого грунта происходит его осадка.

6.8.2 К пучинистым грунтам относятся глинистые грунты, пески пылеватые и мелкие, а также крупнообломочные грунты с глинистым заполнителем, имеющие к началу промерзания влажность выше определенного уровня (ГОСТ 25100). При проектировании фундаментов на основаниях, сложенных пучинистыми грунтами, следует учитывать возможность повышения влажности грунта за счет подъема уровня подземных вод, инфильтрации поверхностных вод и экранирования поверхности.

6.8.3 Пучинистые грунты характеризуются:

абсолютной деформацией морозного пучения hf, представляющей подъем ненагруженной поверхности промерзающего грунта;

относительной деформацией (интенсивностью) морозного пучения efh — отношением hf к толщине промерзающего слоя df;

вертикальным давлением морозного пучения рfh,v, действующим нормально к подошве фундамента;

горизонтальным давлением морозного пучения рfh,h, действующим нормально к боковой поверхности фундамента;

удельным значением касательной силы морозного пучения tfh, действующей вдоль боковой поверхности фундамента.

Способы снижения морозного пучения фундаментов.

В настоящее время известны следующие способы снижения морозного пучения фундаментов.

  1. Замена пучинистого грунта в основании фундамента на непучинистый. Этот способ достаточно эффективен, но нецелесообразен по экономическим соображениям, поскольку связан с большим объемом земляных работ. Кроме того, он осуществим только при строительстве сооружения, но не после его возведения.
  2. Снижение обводненности промерзающего массива грунта в основании фундамента. Этот способ достаточно эффективен, но требует проведения дорогостоящих работ по устройству дренажной системы для отвода поверхностных и грунтовых вод.
  3. Увеличение глубины заложения свайных фундаментов с целью усиления защемления свай в грунте ниже глубины сезонного промерзания. Этот способ недостаточно эффективен, так как не обеспечивает достаточную величину удерживающих сил, а также нетехнологичен и неэкономичен.
  4. Применение обмазок и покрытий фундаментов, предотвращающих их смерзание с грунтом. Практика показывает, что полезное действие их является временным и ненадежным, так как многократное замерзание и оттаивание пучинистого грунта, контактирующего с обмазками, вызывает быструю потерю свойств смазочного материала.
  5. Замедление процесса промерзания грунтов в контактной зоне путем их засоления. Этот способ достаточно эффективен, но обладает кратковременностью положительного действия из-за быстрого опреснения под действием грунтовых и поверхностных вод [1].

 

Пучение грунта что это, виды пучения, 🔨 как уменьшить влияние пучения грунта на фундамент

Из данного материала вы узнаете, что такое морозное пучение грунта и какую опасность оно представляет для фундамента. Мы рассмотрим классификацию пучинистости грунтов согласно строительным нормативам и разберемся, какие меры необходимо принимать, чтобы уменьшить негативное воздействие пучения почвы на основание дома.

Виктор, 29 лет, г.Москва
"Здравствуйте! Нуждаюсь в совете квалифицированных специалистов - недавно мне удалось приобрести небольшой земельный участок в Подмосковье, на котором я планирую возвести одноэтажную дачу из сруба. Опыт в практических строительных работах у меня имеется, однако осуществляя проектирование фундамента я зашел в тупик. Новые соседи говорят, что в нашей местности очень сильно проявляется морозное пучение грунта - большинство из них потратило на укрепление фундаментов баснословные деньги, а некоторые дома стоят перекошенные с трещинами. Подскажите пожалуйста, чем грозит морозное пучение легкому дому из сруба и существуют ли какие-либо способы уменьшения воздействия сил пучения на фундамент здания?"

Мы решили ответить Виктору полноценной статьей, посвященной проблеме морозного пучения и способами борьбы с ней.

Что такое пучение грунта

Перекошенные дверные коробы, трещины на стенах и щели в оконных коробах - следствие деформационных влияний, оказываемых грунтом на основание дома.

Деформационные нагрузки почвы на основание происходят в результате сезонного промерзания грунта - так называемого морозного пучения.


Рис 1.1: Трещины в цоколе - характерный признак воздействия сил пучения на фундамент дома


Пучение - это изменение объема почвы, происходящее в следствии замерзания грунтовых вод, которыми она пропитана.

Совет эксперта! Расширение объема почвы обуславливается тем, что номинальная плотность воды в жидком состоянии составляет 1000 килограмм на кубометр, тогда как плотность льда - 917 кг/м3.

При наступлении сезонных морозов происходит следующее: согласно законам физики масса жидкости после замерзания остается неизменной, однако ее объем расширяется почти на 9%, в результате это расширения влага оказывает давление на почву - поскольку движение почвы вниз невозможно, из-за высокой плотности нижерасположенных слоев грунта, грунт движется вверх и поднимает фундамент здания.


Рис. 1.2: Почва, увеличившаяся в объеме в результате морозного пучения

Выделяют два характера воздействий морозного пучения на основание дома:

Какие виды почвы подвергаются пучению

Пучение характерно для большинства видов почвы, особенно данной проблеме подвергаются следующие типы грунта:

Вышеуказанные виды почвы обладают одной общей чертой - в их составе содержатся мельчайшие пыльные частицы. Та же песчаная почва, не содержащая пылеватых частиц (гравелистая либо песок крупных фракций) практически не подвергается воздействиям сезонного пучения.

Совет эксперта! Наличие пылеватых частиц в грунте способствует тому, что почва приобретает свойство связывать и удерживать контактирующую с ней воду (это могут быть как впитавшиеся в землю атмосферные осадки, так и грунтовая влага).

Пропитанный водой пласт почвы, в процессе замерзания расширяется в объемах (до 9-12% от первоначального объема) и давит на основания зданий и построек, оказывая на них выталкивающую нагрузку.

Рис 1.3: Воздействие пучения грунта на плитный фундамент

Силы пучения почвы могут быть увеличены разнообразными сопутствующими факторами, основной из них - постоянные атмосферные осадки. Если осенью регулярно будут идти дожди, то пропитавшаяся осадками почва будет оказывать более сильную деформационную нагрузку на фундамент. Также к усиливающим пучение факторам можно отнести повышение уровня залегания грунтовых вод и их капиллярное поднятие.

Совет эксперта! Свыше 82% всех видов грунтов В Москве и области классифицируются как пучинистые.

При возведении построек на пучинистых грунтах нужно предпринимать дополнительные меры защиты фундамента от выталкивающих воздействий почвы, о которых более детально мы поговорим в соответствующем разделе статьи.

С классификацией пучинистости разных видов грунтов согласно ГОСТ № 25100 вы можете ознакомится в таблице 1.1.

Класс пучинистости, % Виды грунта
Грунты, не подвергающиеся морозному пучению;
Расширения объема менее 1%
  • Твердая глинистая почва;
  • Гравелистые грунты не насыщенные водой;
  • Пески крупных и средние;
  • Грунты с большим содержанием горных пород.
Грунты, слабо подвергающиеся морозному пучению;
Расширение объема от 1 до 3.5%
  • Глинистая почва средней плотности;
  • Мелко-песчаные грунты;
  • Пылеватая глинистая почва с вкраплением горных пород в пределах 10-30% от массы глины.
Грунты со средней склонностью к пучению; Расширение объема от 3.5 до 7%
  • Пластичная глинистая почва;
  • Глинистая почва, суглинок и супесь с вкраплением горных пород свыше 30% от массы.

Грунты с высокой склонностью к пучению;

Расширение объема от 7%

  • Мягкопластичная глининистая почва;
  • Мелкие и пылеватые песчаные грунты с высоким уровнем грунтовых вод.

Таблица 1.1: Классификация пучинистости грунтов

Узнай почему свайный фундамент помогает избежать проблем с морозным пучением: узнать

Чем пучение почвы опасно для фундамента

Для оснований любого вида - ленточных, плитных и свайных, опасным является не только сам процесс вспучивания почвы, но и последствия ее оттаивания.

При наступлении зимы, когда температура понижается ниже нуля и грунт промерзает на глубину одного-двух метров, почва расширяет и начинает выталкивать фундамент здания. Происходит вертикальная деформация основания. При наступлении оттепели, замершие грунтовые воды оттаивают, почва теряет свою плотность и под давлением массы здания уменьшается до объемов, на несколько процентов меньших ее первоначальных размеров - в результате этого происходит дополнительная усадка фундамента.

Совет эксперта! Наиболее опасным для фундаментов является неравномерное пучение грунта, которое может наблюдаться при разной толщине снежного покрова - чем он толще, тем выше поднимается граница промерзания почвы и тем больший ее пласт подвергается пучению.


Рис. 1.4: Результат морозного пучения грунта


Строительная практика показывает, что конкретный земельный участок может иметь крайне сложную схему промерзания и пучинистого поднятия почвы.

К примеру: грунт вокруг здания, расположенного на среднепучинистой почве, по внешнему периметру постройки может иметь глубину промерзания до полутора метров и при сезонном пучении подниматься до 10 см. вверх, тогда как грунт, расположенный под домом всегда будет более теплым и сухим, и пучению может не подвергаться вообще.

Только так можно решить проблему и не допустить разрушения здания в результате пучения: посмотреть

Неравномерное пучение также может стать следствием оттаиванием снежного покрова на южной стороне здания - почва, пропитанная влагой из оттаявшего снега, при наступлении следующих заморозков будет подвергаться увеличенным силам пучения, в сравнении с силами на северной стороне здания.

Совет эксперта! В результате неравномерного пучения почвы фундамент здания перекашивается, это же происходит и со стенами постройки - в результате перекоса по ним идут трещины, конструкция деформируется, теряет прочность и приходит в аварийное состояние.

Рис. 1.5: Недостроенное здание, пришедшее в аварийное состояние из-за пучения грунта


Самую высокую опасность сезонное пучение представляет для легких домов, возведенных из пенобетона, дерева либо каркасных панелей. Обуславливается это неспособностью компенсации давлением массы здания оказываемых на фундамент выталкивающих нагрузок.

Строение обладающее достаточно большой массой (к примеру, дом из кирпича), будет давить на фундамент, и если давление от тяжести конструкции превысит выталкивающее давление грунта, почва из-за невозможности расширения будет уплотняться и воздействия пучения ослабятся к минимуму.

Способы уменьшения влияния пучения грунта на фундамент

Строительство ленточных и плитных фундаментов на пучинистых грунтах должно обязательно сопровождаться обустройством уплотняющей подсыпки.

Такая подсыпка состоит двух слоев - крупного песка и гравия либо щебня. Толщина слоев подсыпки должна быть одинаковой, при этом общая толщина уплотнения начинается с 20 сантиметров для слабопучинистых грунтов, и увеличивается до 35-40 сантиметров для сильнопучинистой почвы.

Рис. 1.6: Схема уплотняющей подсыпки под ленточный фундамент

Совет эксперта! Подсыпка для уменьшения вертикальных выталкивающих воздействий выполняется под основанием фундаментной ленты, на дне выкопанной под фундамент траншеи. Для уменьшения касательных сил пучения подсыпка делается по внешнему периметру стенок уже возведенного фундамента.

Однако данная мера является недолговечной ввиду того, что подсыпка, в период повышения уровня грунтовых вод, которое происходит осенью и во время оттаивания снежного покрова, полностью окружается водой. При пропитывании влагой в песок и гравий из грунта проникают пылеватые частицы. В результате этого со временем непучинистые материалы подсыпки приобретают склонность к пучению и теряют свою защитную функцию.

Уменьшить данный негативный фактор позволяет использование специальных противозаиливающих рулонных материалов, которыми покрываются стенки подсыпки. Такие материалы (оптимальный вариант - Стеклохолст) пропускают воду, однако фильтруют все находящиеся в ней мельчайшие частицы ила и пыли.

Рис. 1.7: Комплексная защита фундамента от пучения грунта

Также высокую эффективность демонстрирует практика обустройства дренажа. Такая система представлена дренажными трубами, расположенными по периметру фундамента в подсыпанном слое гравия, выполняющего функцию фильтра. Трубы располагаются под уклоном, что позволяет скопившимся в них грунтовым водам самотеком стекать в специально отведенный накопительный резервуар.

Наши услуги

Мы предоставляем следующие услуги: забивка свай и лидерное бурение. У нас есть собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Воздействие сил морозного пучения на различные типы винтовых свай

Свая диаметром ствола 0,108 м, длиной 2,5 м. Установим несущую способность винтовой сваи на выдергивание по СП 50-102-2003 в соответствии с принятыми грунтовыми условиями: Fd = γc[(a1c1 + a2γ1h2)A ] = 0,7х [(12,1×32 кПа + 5,5×19,5 кН/м3×1,70 ) х 0,07 = 108,31 кН = 10,83 тс Fd/γk = 10,83/1,4 = 7,7 тс. В данной формуле учтем только одно слагаемое, а именно, сопротивление выдергиванию лопасти, погруженной в непромерзший грунт.

Определим τfh — расчетное значение удельной касательной силы пучения. Т.к. грунт относится к сильнопучинистым, нормативное значение удельной касательной силы пучения τfhn при глубине до 1,5 м. составит 100 кПа. τfh = χ k0 τfhn = 0,8 * 0,8 * 130 = 83,2 кПа, где:

Воздействие вертикальных касательных сил морозного пучения в соответствии с формулой (1): 83 кПа * 0,57 м2 = 47,84 кН = 4,8 тс — вертикальная выдергивающая сила Fd/γk = 7,7> 4,8 тс. Условие по устойчивости выполняется.

СИЛЫ МОРОЗНОГО ПУЧЕНИЯ | КРУТО СДЕЛАЛ


Содержание статьи:

 

 С проявлением силы морозного пучения мы сталкиваемся зимой. После окончания зимы последствиями  действия сил морозного пучения становятся механические  повреждения и деформации строений, особенно  это проявляется среди строений частных домов.  Кто из нас  не замечал, что с наступлением холодов  вдруг перестаёт закрываться  входная  дверь, между ступенями крыльца и цоколем дома образовалась щель в несколько сантиметров,  разбежались в сторону двери ворот, на асфальтированной площадке  появились волны, вздутия, трещины, в не отапливаемом доме вдруг поднялся пол и т.д.  Все эти явления — действие сил морозного пучения.

Механизм действия  силы морозного пучения.

Хорошо, когда  при строительстве вы  это предусмотрели   и приняли  необходимые меры по предотвращению промерзания. А если нет?  Ничего страшного, зная механизм этих явлений и следуя некоторым правилам можно значительно уменьшить или даже избежать влияния  сил морозного пучения.

 Из личного опыта знаю, наиболее подвержен пучению  грунт, находящийся во влажном состоянии или с высоким (близким к поверхности земли) расположением грунтовых вод такие грунты называют пучинистыми. Снег-это природная защита грунта от промерзания, убирая его с поверхности, мы пускаем  холод в землю.  В грунте содержаться капли влаги, которые замерзая, образуют линзы льда, лед расширяется и увеличивает в объеме грунт — это вызывает вспучивание грунта, образование волн, трещин, причем силы эти настолько сильны, что, вполне могут выдавливать из земли или ломать тяжелые  монолитные конструкции.

 

На (рис.  1) видно, как на промёрзшем участке   поднимается  грунт  и образуется  линза вспученного грунта. Весной, после оттаивания, эта выпуклость останется  в таком виде, практически  не изменившись.  Особенно это будет заметно на асфальтобетонном или выложенном брусчаткой покрытии,  а если площадка цементобетонная, то помимо образования трещин возможно поднятие плит по границам разломов с образованием ступеней.

Как сделать морозное пучение менее пагубным.

Для асфальтобетонного и   выложенного брусчаткой покрытия, что бы как-то компенсировать зимние деформации,  нужно   чередовать каждую зиму местоположение  очищенных участков, например, тропинка, её можно делать в разных местах. Что бы избежать такого проявления пучения, достаточно просто не убирать весь снег с площадки, небольшой его слой предотвратит глубокое промерзание. Если все-таки снег вам мешает, то тогда очищайте весь участок, земля равномерно промёрзнет и пучение грунта практически не будет заметно.

 Очень часто на стенах  зданий, особенно в местах оконных и дверных проёмов, появляются трещины. Не все они результат действия сил морозного пучения, возможно, они появились вследствие не равномерной нагрузки действующей на фундамент,  слабый грунт не выдержал  и дал осадку, причины могут быть разные, но в любом случае не желательно допускать промерзание грунта в этих местах. Ежегодная подвижка промерзшего грунта будет увеличивать размер трещин.

Как защитить постройки частного дома от влияния сил морозного пучения.

Аналогичен механизм действия сил морозного пучения и на стойки ворот, см. фото. Очищенный  участок промерзает, и выдавливающие силы валят стойки в противоположные стороны. Причем в пучинистых грунтах, не зависимо от глубины установки стоек, последние будут «плясать». Если  промерзание происходит на всю глубину заложения, то стойки, поменяв своё положение зимой, остаются в наклоненном состоянии. Здесь поможет жесткий стальной пояс по нижнему и верхнему уровню стоек (пояс  приваривается к стойкам, так как, в нём давление на разрыв  может достигать 10 т), (рис. 2), а оптимальным вариантом будет, если установить стойки на монолитный ленточный фундамент с армированным каркасом, (рис. 3).

Щепетильные хозяева, очищая двор частного дома от снега  близко к ограждению границ участка, делают ошибку. Промерзая, грунт  давит на опоры ограждений, а так как с другой стороны под снегом  грунт мягкий, не мёрзлый, то он спокойно поддаётся  давлению и пожалуйста, по весне у вас не забор, а «Пьезанская Башня». Если вам уж так мешает снег, то не поленитесь, уберите его и по другую сторону ограждения, тогда  в промерзшем   грунте силы  уравновесятся и не окажут ощутимого воздействия на конструкцию.

Если очищаете от снега весь двор, в этом случае грунт может промерзнуть довольно глубоко, здесь нужно быть уверенным, что глубина заложения фундамента  дома  или  иной постройки, ниже  расчётного уровня промерзания грунта для вашей климатической зоны и фундамент выполнен без нарушений норм и правил. Если технология нарушена, то стена здания, где нет снега, и смежная с ней, получат трещины и деформации. Так же возможен перекос дверного проёма, следствием чего является невозможность закрыть дверь, она просто заклинит в проёме. В общем, последствия не приятные. Как быть? Здесь поможет, как я уже говорил, снег, если присыпать им  отмостку по периметру цоколя здания шириной около 1,5 м и слоем не менее 20 см.  Есть и другой вариант.  Перед устройством отмостки вдоль цоколя  уложить листы пенопласта на глубину около 20 см или использовать другой материал со схожими теплоизоляционными свойствами.   Пенопласт брать толщиной не менее 8 см (для грунтов с расчётной глубиной промерзания  1-1.5 м) и  шириной  1,5 м. Листы следует обернуть в полиэтилен или рубероид.  Ещё можно этот участок засыпать керамзитом, слегка разбавленным песком, но здесь уже  слоем не менее 25 см.

Что ещё могут силы морозного пучения.

  Промёрзший грунт имеет свойство вытеснять из себя предметы не однородного с собой состава. Это могу быть куски деревянных конструкций, см. фото,  арматура, блоки, валуны и т.д. Перед тем, как производить обустройство своего участка убедитесь, что в грунте отсутствуют посторонние предметы. В моей практике были случаи, как в течение 2-3 зим  на ровном покрытии появилось вздутие, трещина затем гребень и, в конце – концов, вырастали пень, арматура.

 

Приведённые примеры действия зимних деформаций  характерны для влажных, насыщенных водой грунтов,  но  не стоит забывать, что грунты  на сухих участках также, в силу погодных или гидрологических явлений, могут приобретать свойства  пучинистых грунтов и подвергаться  действию  силы морозного пучения.

  Применяя эти способы защиты, вы самостоятельно сможете уберечь свой дом от повреждений и необходимости выполнять дорогостоящий ремонт.

Приходилось ли Вам сталкиваться с эффектом морозного пучения?  

 Как и что вы предпринимали в борьбе с этим явлением?

Жду ваши комментарии и фото Email.

Вам понравилась статья? Будет здорово, если поделитесь  в социальных сетях.

Всем удачи в борьбе с  морозным пучением.

 

что это такое и как его "обмануть"

Морозное пучение грунтов характерно для глинистых оснований. Такое явление доставляет немало неприятностей строителям. При возникновении выпучивания возможны неравномерные деформации фундаментов здания и появление трещин.

Содержание статьи

Природа явления

Морозное пучение обусловлено особенностями воды. Эта жидкость отличается от всех остальных веществ на нашей планете. В отличие от других при замерзании она не уменьшается в объеме, а увеличивается примерно на 9%.

Если этот процесс происходит вблизи фундамента, то давление на конструкцию существенно возрастает. Это может привести к поднятию определенного участка фундамента по сравнению с остальными.

Для возникновения рассматриваемой неприятности необходимо одновременное воздействие двух факторов: воды и отрицательной температуры. Такое часто встречается при залегании глинистых грунтов, которые отлично удерживают влагу. Также повышена вероятность морозного пучения при высоком уровне грунтовых вод. Если грунт обладает невысокой влажностью, то опасность деформаций невелика. В этом случае почва сильнее всего насыщена водой весной за счет верховодки, но повышение температуры предотвращает вспучивание.

Морозное пучение грунта обычно действует на наружные стены здания. В центре строения почва прогревается за счет тепловых потерь, но по периметру она не защищена от зимнего холода. Именно здесь происходит поднятие фундаментов. Неравномерные деформации — самый опасный вид смещений. Последствием такого явления становится появление трещин по фундаментам и стенам дома.

Последствия морозного пучения.

Согласно СП 22.13330.2011 к пучинистым почвам относятся такие виды грунта как:

Практически не подвержены морозному пучению пористые грунты (крупнообломочные породы без мелкого заполнителя, средний и крупный песок). Во-первых, они хорошо пропускают воду, не задерживают ее в верхних слоях. Замерзание начинается сверху, влага постепенно вытесняется в более глубокие слои, не встречая препятствий на своем пути. Во-вторых, чем больше пор в почве, тем меньше давление при пучении. Расширяясь, вода просто заполняет свободное пространство, не действуя при этом на фундамент. Именно пористые основания станут предпочтительным вариантом оснований при строительстве в средней полосе.

Главными характеристиками, которые влияют на вероятность возникновения морозного пучения при строительстве и эксплуатации здания являются:

Методы борьбы с пучением

Чтобы предотвратить касательные силы морозного пучения, требуется исключить хотя бы один из факторов их возникновения: воду или холод. Важно гарантировать отсутствие явления в уровне подошвы фундамента. Но также пучение может негативно действовать и на конструкцию по высоте (горизонтальное воздействие). Об этом важно не забывать.

Назначение глубины заложения

Самый простой способ избежать пучения грунта в уровне подошвы — опереть фундамент ниже глубины промерзания. Глубина промерзания зависит от климатического района. Для ее определения пользуются СП 131.13330.2012 и СП 22.13330.2011, в которых представлены формулы для расчета в зависимости от климатических особенностей. При самостоятельном строительстве можно пользоваться приближенными значениями. Для этого существуют специальные карты (из старого СНиП «строительная климатология и геофизика», который сейчас не действует) или готовые таблицы, которые рассчитаны для крупных городов по формулам из приведенных выше документов.

Карта глубины промерзания, может использоваться для справки, в настоящее время глубина заложения рассчитывается с помощью специальной методики.

Такой способ обеспечивает высокую надежность, но часто приводит к перерасходу средств. Особенно при отсутствии в доме подвала, такая глубина заложения не нужна. Кроме того, метод часто комбинируется с другими.

Важно! Предотвращение морозного пучения должно быть комплексным. Желательно одновременно позаботится и о холоде, и о влаге. Именно поэтому методы борьбы чаще всего одновременно включают в себя грамотное назначение глубины заложения, утепление, качественную гидроизоляцию и устройство дренажа.

Также при назначении глубины заложения фундаментов учитывают уровень грунтовых вод (УГВ). По сведениям из СП 22.13330.2011 можно составить следующую таблицу с требованиями, учитывающую одновременно и тип почвы, и УГВ.

Тип почвы Залегание УГВ на глубине более 2 м от поверхности Залегание УГВ на глубине менее 2 м от поверхности
Условно непучинистый:
  • скальный;
  • крупнообломочный;
  • песок средний и крупный.
Нет зависимости залегания подошвы фундамента от глубины промерзания
Пески:
  • мелкий;
  • пылеватый.
Нет зависимости залегания подошвы фундамента от глубины промерзания Глубина опирания подошвы должна быть на 20-30 см ниже отметки промерзания почвы, рассчитанной по формулам или взятой по картам и таблицам
Супесь
Глинистые:
  • суглинок;
  • глина.
Глубина опирания подошвы назначается не менее половины нормативной глубины промерзания, рассчитанной по формулам или взятой по картам и таблицам
Крупнообломочные породы с содержанием мелких частиц

Чтобы выяснить тип почвы на участке и УГВ до начала строительного процесса потребуется провести испытания. Проще всего для этого использовать шурфы или ручное бурение. При этом рассматривают найденную землю, визуально определяют ее тип. При этом стоит пользоваться ГОСТ «Грунты. Классификация», где приведены описания оснований. Бурение для определения УГВ рекомендуется проводить в весенний период в нескольких точках участка, как минимум одна из которых должна располагаться в самом низком месте.

Дренаж

Дренажная система нужна, чтобы убрать лишнюю влагу от пятна застройки. Так удается устранить один из факторов морозного пучения. Дренажные трубы прокладывают на 20—30 см ниже подошвы фундамента. При этом расстояние от конструкции по горизонтали не должно превышать 1м. Для дренажа применяют трубы диаметром от 10 до 20 см. Трубы прокладывают в слое щебня или гравия, обернутого геотекстилем для предотвращения засорения.

Дренаж вокруг фундамента.

Замена грунта

При залегании на участке пучинистого грунта с низкой прочностью разумным решением может стать замена грунта на всю высоту фундамента. При этом слабую почву вывозят, а на ее место засыпают песок средней или крупной фракции.

Менее масштабным мероприятием станет обратная засыпка пазух фундамента непучинистым материалом (все тем же песком). Это устраняет вероятность воздействия морозного пучения на боковую поверхность конструкций здания.

Обратную засыпку обязательно выполняют послойно с уплотнением. Толщина одного слоя принимается равной 20 см. Простейший способ уплотнения песка — проливка водой.

Утепление

Еще один метод борьбы с морозным пучением — утепление фундаментов. Его редко используют как самостоятельное решение, обычно теплоизоляция дополняет гидроизоляцию и дренаж. Утепление фундаментов включает в себя два этапа:

Теплоизоляция конструкций здания позволяет избежать их разрушения под действием холода. Теплая отмостка увеличивает защищенный контур. Она выносит зону промерзания за пределы стен дома. За счет этого удается устранить опасность для наружных ограждений и фундаментов.

Теплая отмостка включает в себя следующие слои:

Теплая отмостка.

В качестве теплоизоляционного материала отмостки используют тот же, что и для всего фундамента. Идеальным вариантом станет экструдированный пенополистирол (его чаще называют пеноплексом). Этот утеплитель отличается хорошими прочностными и теплоизоляционными показателями, влагостоек. Недорогой альтернативой может стать пенопласт, но стоит учитывать, что он нуждается в хорошей гидроизоляции и обладает сравнительно низкой прочностью.

Гидроизоляция

Вертикальная и горизонтальная гидроизоляция фундамента не является явным помощником при борьбе с морозным пучением, но она входит в общий комплекс мероприятий по защите фундаментов от влаги и холода.

В качестве вертикальной изоляции чаще всего используют битумную мастику, рулонные материалы и специальные мембраны. Горизонтальная укладывается по обрезу фундамента (рулонный материал).

Грамотная защита фундамента от морозного пучения — это целый комплекс мероприятий. Перед тем как бороться с явлением, стоит продумать каждый этап работ.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Frost Heave - Как работает Frost Heave

На большей части севера Соединенных Штатов в зимние месяцы земля промерзает на глубину до нескольких футов. Такое промерзание грунта может привести к выпучиванию расположенных над ним или прилегающих к нему построек. Вовлеченные силы могут быть очень разрушительными для легконагруженных конструкций и вызывать серьезные проблемы в крупных.

Как работает морозное волнение

Увеличение объема, которое происходит, когда вода превращается в лед, сначала считалось причиной морозного пучения, но теперь признано, что основным механизмом является явление, известное как сегрегация льда.

Найдите подрядчиков по изготовлению плит и фундаментов рядом со мной

Вода забирается из незамерзшей почвы в зону промерзания, где она прикрепляется, образуя слои льда, раздвигая частицы почвы и вызывая вспучивание поверхности почвы. Без физического сдерживания нет очевидного предела возможному взлому. (Были зарегистрированы движения более 4 дюймов под цокольными этажами всего за три недели.)

Там, где присутствует ограничение в виде нагрузки здания, давление пучения может преодолевать или не преодолевать ограничение, но оно может быть очень высоким: было измерено 19 тонн / кв. Футов, а семиэтажное здание с железобетонным каркасом на Плотный фундамент поднялся более чем на 2 дюйма.

Другая форма воздействия мороза, называемая «замерзание», возникает, когда грунт промерзает до поверхности фундамента. Давление пучения, развивающееся в основании зоны промерзания, передается через промерзающую связь на фундамент, создавая подъемные силы, способные вызывать заметные вертикальные смещения. При строительстве из бетонных блоков стена подвала может разрушиться при растяжении и разойтись в горизонтальном шве раствора на глубине промерзания.

Управляющие факторы

Для возникновения заморозков должны быть выполнены три основных условия: почва должна быть морозоустойчивой; вода должна быть доступна в достаточном количестве; а условия охлаждения должны вызывать замерзание почвы и воды.Если одно из этих условий можно устранить, морозного пучения не будет.

Морозостойкость связана с гранулометрическим составом почвенных частиц. В общем, крупнозернистые почвы, такие как песок и гравий, не вздымаются, тогда как глины, илы и очень мелкие пески будут поддерживать рост линз льда, даже если они присутствуют в небольших количествах в крупных почвах. Если морозоустойчивые почвы, расположенные там, где они повлияют на фундамент, можно удалить и заменить более грубым материалом, морозного пучения не произойдет.

В незамерзшей почве должна быть вода для движения к плоскости замерзания, где происходит рост ледяных линз. Следовательно, высокий уровень грунтовых вод по отношению к расположению линз льда будет способствовать действию мороза. Там, где требуется надлежащий дренаж, можно предотвратить попадание воды в зону промерзания в чувствительных к морозам почвах.

Глубина промерзания во многом определяется скоростью потери тепла с поверхности почвы. Помимо тепловых свойств почвы, эта потеря тепла зависит от таких климатических переменных, как солнечная радиация, снежный покров, ветер и температура воздуха, которая является наиболее значительной.Если можно предотвратить или уменьшить потерю тепла, чувствительные к морозам почвы могут не испытывать отрицательных температур.

Индекс промерзания и глубина промерзания

Записи температуры воздуха могут использоваться для измерения степени промерзания грунта с использованием концепции градус-день. (Если среднесуточная температура воздуха составляет 31 ° F, это будет один градус-день.) «Индекс замерзания» - это просто накопленная сумма градусо-дней замерзания для данной зимы.

Frost Action и основы

Традиционный подход к проектированию фундаментов для предотвращения повреждений от мороза заключается в размещении фундамента за пределами глубины ожидаемого максимального промерзания, чтобы почва под несущей поверхностью не замерзла.Однако сама по себе эта мера не обязательно предотвращает повреждение от мороза; если котлован засыпать морозоустойчивым грунтом, это может привести к его повреждению от обмерзания. Глубина, на которую следует закладывать фундаменты, обычно определяется местным опытом, как это указано в правилах строительства, но при отсутствии такой информации может использоваться корреляция, показанная в предыдущей таблице.

По самой своей природе чувствительные к заморозкам почвы плохо дренируют, и хотя приток грунтовых вод может быть предотвращен, количество воды, имеющейся в незамерзшей почве, часто бывает достаточным для образования значительного пучения.По возможности рекомендуется удалять почву, подверженную морозам, и заменять ее крупнозернистым материалом, который легко дренировать. Также следует соблюдать надлежащую практику дренажа, включая установку дренажной плитки по периметру фундамента.

Важность дренажа

Хороший дренаж важен для любого фундамента, и FPSF не исключение. Изоляция лучше работает в более сухих почвенных условиях.

Убедитесь, что изоляция заземления соответствует требованиям

.

% PDF-1.5 % 75 0 obj> endobj xref 75 31 0000000016 00000 н. 0000001363 00000 н. 0000000916 00000 н. 0000001441 00000 н. 0000001565 00000 н. 0000001971 00000 н. 0000002183 00000 п. 0000002411 00000 н. 0000002627 00000 н. 0000002849 00000 н. 0000003055 00000 н. 0000003082 00000 н. 0000003108 00000 п. 0000004287 00000 н. 0000005480 00000 н. 0000006671 00000 н. 0000007851 00000 п. 0000009032 00000 н. 0000010193 00000 п. 0000011227 00000 п. 0000012324 00000 п. 0000013506 00000 п. 0000013714 00000 п. 0000014710 00000 п. 0000015750 00000 п. 0000016926 00000 п. 0000017133 00000 п. 0000018255 00000 п. 0000019378 00000 п. 0000020224 00000 п. 0000020390 00000 н. трейлер ] >> startxref 0 %% EOF 77 0 obj> поток xb''G ? D @ (q`.? ˞c [} $ B; .bPr3 \ .WON8F $ -l, r Mmcy; Lh = q "ơ 54, @ 844 $ (SRR2n` \ "" d

.

Экспериментальные и теоретические исследования морозного пучения в пористых средах

При строительстве в холодных регионах морозное пучение и оседание оттепели являются двумя факторами, о которых необходимо заботиться. Учтено, что насыщенный столб почвы подвергался давлению покрывающей породы для моделирования процесса роста ледяной линзы. Типичный процесс, который сочетал воду, тепло и напряжение, происходивший в насыщенном промерзшем слое грунта, был смоделирован с помощью программного обеспечения конечных элементов. Мы провели численное моделирование в тех же условиях, что и экспериментальные испытания, а затем сравнили результаты по температуре, морозному пучению, замерзшей конструкции, содержанию воды и водозабору.Результат показывает, что результаты моделирования хорошо согласуются с экспериментальными результатами, и правильность математической модели подтверждена. На этой основе определяется величина морозного пучения при различных условиях за счет изменения температурной границы и границы нагрузки. Морозное пучение имеет оптимальный температурный градиент. При оптимальном значении величина морозного пучения увеличивается с увеличением температурного градиента. Выше оптимального значения морозное пучение уменьшается с увеличением температурного градиента.С увеличением давления покрывающего слоя величина морозного пучения всегда уменьшается. Эти результаты могут служить ориентирами для сужений в холодных регионах.

1. Введение

Изучение морозного пучения всегда является актуальной темой в области исследований мерзлых грунтов. Характеристики морозного пучения для разных почв сильно различаются. Основными деструктивными аспектами действия мороза в промерзающих почвах являются морозное пучение и ослабление оттаивания. Морозное пучение относится к увеличению объема при замерзании почвы.Значительное морозное пучение обычно происходит из-за переноса и накопления воды. Между тем, за ослабление оттепели отвечает морозное пучение. Повреждение пористых сред морозным пучением в холодных регионах хорошо известно [1]. Таким образом, крайне важно изучить и спрогнозировать морозное пучение промерзающей почвы.

Явление морозного пучение отмечается с конца 17 века. В последнее столетие люди много работали над морозным пучением. Исследования воздействия мороза на почвы процветали в 1960-1980-х годах. Первое объяснение морозного пучения было основано на капиллярной теории, предложенной Силлом и Скапски [2].В капиллярной теории капиллярное всасывание на границе раздела лед-вода в замерзшей кайме считалось движущей силой миграции влаги. По динамике незамерзшей воды была построена модель, учитывающая фазовый переход и миграцию воды [3]. Гаймон и Лютин [4] с помощью вычислений обнаружили, что модель Харлана может хорошо предсказать миграцию воды, но не может предсказать морозное пучение. Тейлор и Лютин [5] проигнорировали термины конвекции и теплопередачи и упростили модель Харлана. Они считали, что грунт производит морозное пучение, когда объем льда превышает 85% пористости.Морозное пучение - это процесс сочетания воды, тепла и стресса, которые по сути взаимодействуют друг с другом. Шен и Ладаньи [6] представили модель, которая связала деформационное поведение мерзлого грунта с тепломассопереносом, и морозное пучение было оценено суммированием объемного расширения из-за сегрегации льда, и, наконец, численный анализ был выполнен на компьютер. Ли и др. [7] разработали модель морозного пучения, в которой сочетаются механика тепла и влаги. Кроме того, Chen et al. [8] рассмотрели взаимодействие ледяной воды, газа и зерна почвы и установили теоретические основы многофазной пористой среды для промерзающей почвы.Эти модели, упомянутые выше, могут предсказывать морозное пучение и миграцию воды, но ни одна из них не учитывала линзу льда.

С более глубоким пониманием морозного пучения, в ряде работ была исследована разработка моделей для прогнозирования морозного пучения, которые включают образование ледяной линзы. Гилпин [9] установил модель для прогнозирования ледяных линз и морозного пучения в почвах, предполагая квазистационарную температуру. О’Нил и Миллер [10] установили модель жесткого льда, которая может объяснить образование и развитие ледяных линз.Никсон [11] использовал теорию дискретных ледяных линз для морозного пучения в почвах. Cao et al. [12], основанный на равновесии фазы и силы, установил модель сегрегации льда для насыщенного гранулированного грунта и представил результаты численного моделирования процесса промерзания насыщенного гранулированного грунта в 1D. Все эти модели не учитывали влияние нагрузки на вскрышу. Thomas et al. [13] исследовали термогидромеханическое поведение почв и представили модель, которая могла бы моделировать процессы промерзания почвы и сегрегации льда, но критерий оценки образования линзы льда не ясен.Чжоу и Ли [14] создали математическую модель для связанных полей воды, тепла и напряжений. Модель может предсказывать температуру, содержание воды, морозное пучение и ледяные линзы, но не имеет экспериментальной проверки. Полная модель морозного пучения состоит из пяти частей, связанных теплопередачей и воды, формирования ледяных линз, определения параметров модели, методики решения и экспериментальной проверки. Таким образом, в прошлом было предложено множество моделей морозного пучения для описания этого процесса, но ни одна из них не была общепринятой.

В этой статье была представлена ​​полностью модель морозного пучения, а коэффициент разделительной пористости был взят в качестве критерия оценки образования ледяной линзы. Типичный процесс, который сочетал в себе передачу воды и тепла, происходящий в насыщенном слое промерзшего грунта, был смоделирован с помощью программного обеспечения конечных элементов (COMSOL). Используя эксперименты с одномерным морозным пучением в помещении, мы демонстрируем надежность математической модели. С помощью численного моделирования мы проанализировали динамический баланс между величиной морозного пучения и давлением покрывающих пород и градиентом температуры.Основная цель данного исследования - разработать эффективный метод оценки величины морозного пучения для инженерных целей.

2. Система теоретической модели

Математическое описание морозного пучения требует моделирования теплопередачи, миграции воды и роста ледяных линз в промерзающей почве. В следующем разделе представлены эти компоненты.

2.1. Основные допущения

Рассмотрим столбец насыщенного бессолевого грунта, подверженный давлению покрывающих пород, как показано на Рисунке 1.Растущая ледяная линза входит в замороженную зону. Следующие допущения призваны упростить сложную взаимосвязь между водой, температурой и напряжением. (1) Столб почвы эластичный, однородный и изотропный. (2) Миграция влаги происходит в жидкой форме, без учета миграции кристаллов льда. ( 3) Зерна почвы и лед не могут быть сжаты и игнорировать таяние льда под давлением. (4) Миграция влаги подчиняется закону Дарси, и проницаемость постоянна в незамерзшей области.


Испытания нисходящего промерзания для колонн грунта были проведены в открытой системе с избыточным давлением, как показано на Рисунке 1.Верхняя температура была ниже температуры замерзания, а нижняя температура была выше температуры замерзания. На опорной плите, была труба, которая была использована для подачи воды с внешней стороны. Из рисунка 1 видно, что столб почвы можно разделить сверху вниз на четыре части, которые представляют собой промерзшую зону, ледяные линзы, промерзшую кайму и незамерзшую зону соответственно.

В промерзающей почве - это объем ледяного покрова, который можно записать как [15] где - температура, - температура замерзания чистой воды в градусах Цельсия и является экспериментальным параметром.

2.2. Миграция влаги

Водный потенциал почвы является основной силой миграции влаги в почве; он состоит из множества потенциальных энергий. В системе насыщения водный потенциал почвы можно записать как где - давление воды; - гравитационный потенциал.

Поровое давление равно весовой сумме порового давления льда и порового давления воды [10]; его можно описать как где - коэффициент, который можно выразить как.

Поскольку это сложно решить, уравнение Клапейрона используется для описания взаимосвязи между температурой, давлением воды и давлением льда, когда лед и вода сосуществуют в фазовом равновесии [16, 17]:

Переставив (4), мы получить, где скрытая теплота плавления; и - абсолютное давление поровой воды и порового льда соответственно; - температура Кельвина; это температура замерзания в градусах Кельвина.

Здесь, где и - манометрические давления поровой воды и льда соответственно; атмосферное давление; это температура по Цельсию.

Подставив (6) в (5),

Объединение (3) и (7) можно исключить, поэтому поровое давление выражается как

.

Экспериментальное исследование нормальной силы морозного пучения, создаваемой лессом при замерзании, с учетом множества факторов

Экспериментальное исследование нормальной силы морозного пучения, создаваемой лессом, было проведено путем воздействия на лесс с различным содержанием воды и плотностью при различных температурных условиях. Результаты экспериментов показывают, что взаимодействие трех факторов оказывает значительное влияние на нормальную силу морозного пучения. Нормальная сила морозного пучения увеличивается экспоненциально с увеличением плотности в сухом состоянии и линейно с понижением температуры замерзания или увеличением содержания воды; Из этих факторов наибольшее влияние на силу морозного пучения оказывает плотность в сухом состоянии, за ней следует содержание воды, а затем температура.Разработана модель силы морозного пучения, которая включает в себя общее рассмотрение взаимодействия содержания воды, плотности и температуры на основе подгонки результатов испытаний. Значение, рассчитанное с помощью модели, хорошо согласуется со значениями, измеренными в ходе проверочных испытаний, что указывает на то, что модель имеет высокую точность и может служить научным руководством для инженерного проектирования в лёссовых областях.

1. Введение

Строительство в лессовых районах страдает от серьезных проблем из-за повреждений от замерзания [1–4].Отсутствие научного руководства по силе морозного пучения при проектировании таких конструкций, как фундаменты, земляное полотно, туннели, водопропускные трубы, опоры искусственного промерзания и другие проекты, означает, что они испытали различные степени деформации и растрескивания и даже структурные разрушения из-за чрезмерного мороза. -сила толчка в массиве почвы, ведущая к серьезным проблемам безопасности и вызывающая большие экономические потери [5–11].

Исследования силы морозного пучения еще не проводились. В ранних исследованиях силы морозного пучения главным фактором влияния часто считалась температура.Что касается теоретических исследований, Penner et al. [12] предположили, что из-за влияния температурного градиента максимальная сила морозного пучения возникает в верхней части почвы. Согласно другому исследованию Пеннера и Уолтона [13], температура тесно связана с силой морозного пучения, и с понижением температуры сила морозного пучения увеличивается линейно. Takashi et al. [14] получили взаимосвязь между силой морозного пучения и температурой путем измерения давления в поровой воде незамерзшей воды при различных температурах.Jiang et al. [15] изучали взаимосвязь между температурой и нормальной силой морозного пучения с помощью эксперимента с нормальной силой морозного пучения в глине с низким содержанием жидкости. Tang et al. [16] изучали взаимосвязь между температурой и силой морозного пучения с помощью внутреннего эксперимента по изучению силы морозного пучения, создаваемой грязной глиной. Гуткин [17] исследовал влияние горизонтальной силы морозостойкости на ограждающую конструкцию с конечной жесткостью. Помимо этих теоретических исследований, ученые также провели многочисленные исследования силы морозного пучения в реальных условиях труда.В туннельной инженерии Гао и др. [18] и Feng et al. В [19] получено упругопластическое аналитическое решение пластической области напряжений горных пород, окружающей туннель, в холодных областях. Учитывая изотропию температуры туннеля и анизотропию окружающей породы, Xia et al. [20] получили аналитическое решение для силы морозного пучения. При изучении морозного пучения фундамента и несущих конструкций температура также рассматривается как важный фактор, влияющий на морозное пучение. На основе мониторинга температуры и деформации фундамента опоры линии электропередачи Wen et al.[21] утверждали, что сферическое напряжение в основании башни тесно связано с температурой. Wang et al. [22] и Ji et al. [23] предположили, что сила морозного пучения связана со свойствами материала, сдерживающего морозостойкое тело, и температурой. В приведенных выше исследованиях сила морозного пучения, рассчитанная только с учетом влияния температуры, сильно отличается от фактического значения силы морозного пучения, которое не может точно отразить величину и изменение действительной силы морозного пучения.

При дальнейшем изучении силы морозного пучения было обнаружено, что свойства почвы (влажность, плотность в сухом состоянии и т. Д.) Также влияют на силу морозного пучения. Xu et al. [24] исследовали изменение когезии и угла внутреннего трения образцов лесса с различным содержанием воды и плотностью в сухом состоянии после циклов замораживания-оттаивания. Было обнаружено, что когезия лёсса после циклов замораживания-оттаивания уменьшалась с увеличением плотности в сухом состоянии и содержания воды, в то время как угол внутреннего трения лёсса мало изменялся после циклов замораживания-оттаивания.Wang et al. [25] создали модель прогнозирования морозного пучения связного грунта с учетом влияния температуры и соответствующим образом оптимизировали гидравлический участок оросительного канала. Zhang et al. [26] изучали влияние влажности и плотности в сухом состоянии на морозное пучение. Он полагал, что при содержании воды 15 ~ 25% и температуре -15 ~ 35 ° C оседание верхней и нижней границы вышележащего слоя вечной мерзлоты уменьшалось с понижением температуры и увеличением содержания воды.

Как видно из приведенного выше резюме, факторами, часто принимаемыми во внимание при изучении силы морозного пучения, являются температура, влажность и плотность в сухом состоянии. Но процесс создания действительной силы морозного пучения является многофакторным сопряженным процессом. Изменение любого из факторов (плотности, содержания воды или температуры замерзания) приведет к изменению содержания льда, содержания незамерзшей воды, пор между частицами почвы и так далее [27]. Нельзя пренебрегать влиянием сухой плотности, влажности и температуры на нормальное морозное пучение.

Однако существует немного исследований, посвященных влиянию плотности в сухом состоянии, содержания воды и температуры на силу морозного пучения, и взаимодействие этих трех факторов не рассматривается. Таким образом, в данной статье мы намерены систематически и количественно изучить комплексное влияние трех факторов на силу морозного пучения. Кроме того, учитывая, что лесс - это особый вид почвы, его физико-химические и физико-механические свойства особенно чувствительны к изменениям плотности и влажности [28–30].В этом исследовании в качестве испытательного образца почвы используется лёсс, и было проведено экспериментальное исследование силы морозного пучения, создаваемой лёссом, с учетом плотности, содержания воды и температуры. Чтобы количественно проанализировать влияние этих различных факторов на силу морозного пучения, эксперимент был проведен как закрытый однонаправленный тест на замерзание, чтобы избежать вмешательства других факторов. Результаты раскрывают законы, управляющие воздействием трех факторов на нормальную силу морозного пучения, и модель нормальной силы морозного пучения устанавливается на основе экспериментальных данных, которые принимают во внимание интерактивное воздействие трех факторов.Результаты могут обеспечить основу для анализа силы морозного пучения и разумную справочную информацию для расчета силы морозного пучения в лессовом грунте.

2. Экспериментальная установка и методика испытаний

Лесс, использованный в эксперименте, взят из котлована в районе Фупинг, провинция Шэньси, Китай. Свойства лёсса представлены в таблице 1. Образцы лёсса с различным содержанием воды и сухой плотностью были приготовлены в помещении.


(%) (%) Содержание частиц (%)
> 0.05 0,05∼0,005 <0,005

34,4 18,1 16,3 17 61 22

Режущее кольцо Были приготовлены образцы лесса идентичных размеров 79,8 мм × 20 мм. Загрузочное устройство представляет собой однорычажный эдометр типа WG производства Nanjing Soil Instruments, а устройство контроля деформации представляет собой индикатор часового типа с точностью до 0.01 мм, чтобы обеспечить точность считывания, соответствующую требованиям испытаний. Испытательные устройства показаны на рисунке 1.


Камера с регулируемой температурой сначала охлаждалась до температуры испытания, а затем образцы грунта помещались в камеру для испытаний. Образцы грунта были заморожены при температуре испытания, и загрузочное устройство использовалось для приложения вертикальной нагрузки для сдерживания деформации морозного пучения, чтобы гарантировать отсутствие деформации морозного пучения в образцах грунта.Смещение сдерживается во время замерзания, а осевая нагрузка измеряется как сила морозного пучения. Эксперименты по силе морозного пучения проводились на образцах грунта с различным содержанием воды и плотностью в сухом состоянии при разных температурах.

Под действием температуры образцы почвы будут замерзать с течением времени. Сила морозного пучения постепенно увеличивается со временем; но через определенный период прирост постепенно уменьшается со временем, пока сила морозного пучения не достигнет устойчивого состояния.Увеличение менее 0,5% измеренной силы морозного пучения за два последовательных часа можно рассматривать как стандарт для стабильного состояния.

В практической инженерии сухая плотность лёсса варьируется в широких пределах. Принимая во внимание диапазон плотности сухого вещества, встречающийся в инженерном контексте, плотности сухого вещества образцов почвы в этом эксперименте были установлены в диапазоне 1,30–1,70 г · см –3 . Кроме того, морозная пучина оказывает на почву эффект таяния под давлением. Для изучения влияния изменения температуры на эффект таяния под давлением было решено, что необходимо гарантировать завершение замораживания образца почвы на более ранних стадиях.Следовательно, в настоящем эксперименте самое высокое значение температуры - это самая низкая температура в зоне сильного фазового превращения: -3 ° C. Поскольку средняя дневная минимальная температура на Лессовом плато зимой составляет -12 ° C, диапазон температур в этом эксперименте по силе морозного пучения, создаваемой лессом, принят равным -3, -7 и -12 ° C. В таблице 2 перечислены значения параметров для каждой группы образцов почвы в настоящем испытании, где - начальная сухая плотность образца почвы, - содержание воды в образце почвы, T - температура почвы, а - морозостойкость. -сила тяги.Всего было протестировано 60 групп образцов. В этой статье в каждой группе было проведено три группы параллельных экспериментов. Среднее значение измеренных данных было принято в качестве окончательных данных, и параллельные эксперименты были проведены в отдельных точках с аномальными данными испытаний.


Номера испытаний (г · см −3 ) (%) Номера испытаний (г · см −3 ) ( %)

1 1.3 −7 20 31 1,5 −12 20
2 1,3 −7 22 32 1,5 −12 22
3 1,3 −7 24 33 1,5 −12 24
4 1,3 −7 26 34 1,5 −12 26
5 1.3 −7 28 35 1,5 −12 28
6 1,4 −3 20 36 1,6 −3 20
7 1,4 −3 22 37 1,6 −3 22
8 1,4 −3 24 38 1,6 −3 24
9 1.4 −3 26 39 1,6 −3 26
10 1,4 −3 28 40 1,6 −3 28
11 1,4 −7 20 41 1,6 −7 20
12 1,4 −7 22 42 1,6 −7 22
13 1.4 −7 24 43 1,6 −7 24
14 1,4 −7 26 44 1,6 −7 26
15 1,4 −7 28 45 1,6 −7 28
16 1,4 −12 20 46 1,6 −12 20
17 1.4 −12 22 47 1,6 −12 22
18 1,4 −12 24 48 1,6 −12 24
19 1,4 −12 26 49 1,6 −12 26
20 1,4 −12 28 50 1.6 −12 28
21 1,5 −3 20 51 1,7 −3 20
22 1,5 −3 22 52 1,7 −3 24
23 1,5 −3 24 53 1,7 −7 20
24 1 .5 −3 26 54 1,7 −7 22
25 1,5 −3 28 55 1,7 −7 24
26 1,5 −7 20 56 1,7 −7 26
27 1,5 −7 22 57 1,7 −7 28
28 1.5 −7 24 58 1,7 −12 20
29 1,5 −7 26 59 1,7 −12 24
30 1,5 −7 28 60 1,7 −12 26

3. Результаты и анализ

Эксперименты на морозе -сила тяги, создаваемая образцами лесса с разным содержанием воды и плотностью в сухом состоянии, проводилась при разных температурах в соответствии с экспериментальной схемой, изложенной в разделе 2.Результаты тестов анализируются ниже.

3.1. Анализ влияния сухой плотности на силу морозного пучения

Согласно рисункам 2 (a) и 2 (b), нормальная сила морозного пучения обычно увеличивается с увеличением сухой плотности, но не показывает значительного увеличения с увеличением в сухой плотности при малых значениях сухой плотности. Когда плотность в сухом состоянии меньше 1,40 г · см –3 , образцы грунта имеют большие поры, а нормальная сила морозного пучения, создаваемая образцами грунта, составляет 0 кПа.Это связано с тем, что исходное содержание воды в образцах почвы очень низкое, в результате чего содержание льда в почве при замерзании становится слишком низким для заполнения пор. Более того, лед оказывает ограниченное улучшающее воздействие на прочность цементации между частицами почвы. Сама масса грунта не подвергается деформации морозного пучения, поэтому нормальная сила морозного пучения не создается. Когда плотность в сухом состоянии увеличивается до 1,50 г · см –3 , скорость увеличения силы морозного пучения значительно увеличивается.

3.2.Анализ влияния содержания воды на силу морозного пучения

На рисунках 3 (a) и 3 (b) показана взаимосвязь между содержанием воды и нормальной силой морозного пучения, когда плотность в сухом состоянии составляет 1,60 г · см −3 и температура почвы −7 ° C. Судя по рисункам, при заданной температуре почвы изменение исходной влажности образцов почвы оказывает существенное влияние на силу морозного пучения. При заданных значениях плотности в сухом состоянии и температуры замерзания нормальная сила морозного пучения, возникающая при промерзании образца грунта, увеличивается примерно линейно с увеличением исходного содержания воды в образце грунта.Существует минимальный порог содержания воды: когда содержание воды ниже этого минимального значения, сила морозного пучения не возникает при сдерживании замерзшей деформации образцов грунта. Например, на Рисунке 3 (b) среди образцов почвы с сухой плотностью 1,30 г · см -3 и разным содержанием воды, чем меньше содержание воды в образце почвы, тем меньше сила морозного пучения. Когда содержание воды составляло 20%, сила подъема, создаваемая образцом грунта, составляла 0 кПа.

3.3. Анализ влияния температуры на силу морозного пучения

Согласно рисункам 4 (a) и 4 (b), изменение температуры оказывает значительное влияние на нормальную силу морозного пучения. Когда сухая плотность и влажность поддерживаются постоянными, температура замерзания образцов почвы снижается; при сдерживании морозного пучения образцов грунта возникающая нормальная сила морозного пучения увеличивается. При высокой температуре нормальная сила морозного пучения увеличивается более значительно с понижением температуры; с понижением температуры амплитуда нарастания нормальной силы морозного пучения уменьшалась.Согласно рисунку 4 (а), когда плотность в сухом состоянии составляет 1,50 г · см -3 , температура замерзания снижается с -3 ° C до -12 ° C, а сила морозного пучения увеличивается примерно в три раза, после аналогичного тенденции на разных уровнях водности. Согласно 4 (b), когда содержание воды составляет 24% и рассматриваются образцы грунта с разной плотностью в сухом состоянии, сила морозного пучения увеличивается примерно в 2,5 раза при понижении температуры замерзания с -3 ° C до -12 ° C. Мех

.

онлайн-курсов PDH. PDH для профессиональных инженеров. PDH Engineering.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов.

Russell Bailey, P.E.

Нью-Йорк

"Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации."

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. "

Blair Hayward, P.E.

Альберта, Канада

"Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе. "

Roy Pfleiderer, P.E.

Нью-Йорк

"Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком

с деталями Канзас

Городская авария Хаятт."

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

- лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

"Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал.

Jesus Sierra, P.E.

Калифорния

"Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент, оставивший отзыв на курсе

материалов до оплаты и

получает викторину "

Арвин Свангер, П.Е.

Вирджиния

"Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия ".

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса."

Уильям Валериоти, P.E.

Техас

"Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь."

Джеральд Нотт, П.Е.

Нью-Джерси

"Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам.

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

- «нормальная» практика."

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор

.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

"Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

и онлайн-формат был очень

доступный и простой

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

"Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата."

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь печатный тест в течение

обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

"Очень полезен документ" Общие ошибки ADA при проектировании объектов ".

испытание потребовало исследований в

документ но ответы были

в наличии »

Гарольд Катлер, П.Э.

Массачусетс

«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ."

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой."

Кристина Николас, П.Е.

Нью-Йорк

"Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

вынуждены путешествовать ".

Деннис Мейер, P.E.

Айдахо

"Услуги, предоставляемые CEDengineering, очень полезны для Professional

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории.

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу."

Клиффорд Гринблатт, П.Е.

Мэриленд

"Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. "

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники."

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

пониженная цена

на 40%.

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

"Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правила. "

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

"Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

сертификация. "

Томас Каппеллин, П.E.

Иллинойс

"У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил - много

оценено! "

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

.

Морозное пучение - Простая английская Википедия, бесплатная энциклопедия

Образование ледяной линзы, приводящее к морозному пучению в холодном климате.

Морозное пучение - это подъем замерзшей почвы, вызванный подъемом воды снизу до уровня почвы, где она замерзает, накапливается в виде льда и толкает почву над собой вверх. [1]

  1. Табер, Стивен (1930). «Механика морозного пучения» (PDF). Геологический журнал . 38 (4): 303–317.Bibcode: 1930JG ..... 38..303T. DOI: 10,1086 / 623720.
.

Смотрите также