Главное меню

Расчет нагрузок на фундаментную плиту


Фундаментная плита: расчет толщины и нагрузки


Плитный фундамент широко используется при строительстве малоэтажных зданий. Монолитная конструкция надежно защищает сооружение от проникновения грунтовых вод. Большая площадь опирания предотвращает просадку и деформацию грунта. Жесткая система армирования предохраняет основание от разрушения.

Принцип строения монолитного фундамента

Основой конструкции плитного фундамента служит монолитный бетонно-армированный слой. Подобная конструкция позволяет равномерно распределять усилия от здания на дно котлована.

При просадке и перемещении грунта фундамент компенсирует изменения. Это свойство называют «плавучестью» основания.

Для его изготовления используют высококачественный бетон. Высоту конструкции определяют расчетным способом. Основными критериями для подсчета являются характеристика грунта и проектная нагрузка от сооружения.

Конструкция монолитного фундамента

Плитный фундамент имеет следующую конструкцию:

Устройство монолитной плиты фундамента

Котлован

Для устройства фундаментной плиты выкапывают котлован. Размеры котлована в плане должны превышать размеры будущего дома на 1–2 метра. Увеличенные размеры служат для укладки дренажа и устройства отмостки.

Чертеж котлована

Дренажная система

Дренаж служит для отвода поверхностных вод от внешних стен здания. Состоит из системы перфорированных труб и приемного колодца. Трубы укладывают с небольшим уклоном. Для защиты от проникновения песка трубы оборачивают 1–2 слоями геотекстиля.

Дренаж для монолитного фундамента

Опалубка

Для изготовления опалубки используют деревянные доски или водостойкую фанеру. Все элементы соединяют с помощью саморезов и стальной проволоки.

Пример опалубки плитного фундамента

Песчаная подушка

Для устройства песчаной подушки используют крупнозернистый песок. Песок позволяет воспринимать и равномерно распределять усилия на плавающую плиту.

Песчаная подушка под фундамент

Геотекстиль

Между щебнем и песком укладывают слой геотекстиля. Он защищает состав от перемешивания и нарушения дренирующих свойств щебня.

Щебень

Служит для восприятия и передачи усилий на песчаную подушку. Щебень применяют в качестве дополнительной дренирующей системы. Вода при прохождении ослабляет напор и теряет способность к вымыванию песка.

Щебень для монолитного фундамента

Бетонная подготовка

На песчано-щебневое основание укладывают бетонную подготовку. Высота конструкции составляет 50–150 мм. Подготовку выполняют из бетона низких марок.

Бетонная подготовка:

Состав бетонного раствора для фундамента

Гидроизоляция

На бетонную подготовку укладывают слой гидроизоляции. В качестве материалов используют полимерно-битумные вещества. Гидроизоляционный материал служит для защиты фундаментной плиты от проникновения грунтовой влаги.

Гидроизоляция фундаментов

Теплоизоляция

Теплоизоляция служит для защиты основания от промерзания. В качестве утеплителя используют экструдированный пенополистирол. Высоту слоя принимают 10–15 см.

На теплоизоляцию укладывают полиэтиленовую пленку. Она служит защитой от проникновения жидких компонентов бетонной смеси в утеплитель.

Схема теплоизоляции плиты фундамента пенополистиролом

Арматура

Опорные элементы зданий армируются стальными каркасами. Сетка изготавливается из ребристых стальных стержней диаметром 12–18 мм. Они связаны в единый пространственный каркас с помощью стальной тонкой проволоки.

Размер ячеек каркаса зависит от величины проектируемых усилий на основание. Размер ячеек определяется расчетным путем и составляет от 10 до 25 сантиметров.

Схема армирования монолитной плиты

Расчет высоты фундамента

Целью расчета толщины плитного фундамента являются:

Исходные данные:

Расчет толщины плитного фундамента

При расчете учитывают два типа усилий:

Устройство плитного фундамента — размеры

Статические силы являются постоянной величиной. Они вызваны весом элементов здания.

Динамические усилия изменяются во времени и в значениях. Они оказываются людьми, мебелью, оборудованием и влиянием атмосферных осадков.

При подсчете нагрузок постоянного действия используют повышающие коэффициенты надежности конструкций. Эти коэффициенты зависят от размеров и материала элементов здания. Значения коэффициентов приведены в нормативных документах.

Подсчет динамических усилий ведут с учетом условий местности, типов используемой мебели, оборудования, планируемой заселенности дома.

В качестве результатов расчета получают следующие данные:

Определение объема материалов на плитное основание

Последовательность расчета

В процессе расчета плитного фундамента выполняют следующие действия:

Технология устройства плитного фундамента

Для автоматизации процесса используются специальные компьютерные программы.

Анализ результатов расчета

В процессе подсчета получают следующую высоту фундамента, мм:

Глубина ленточного фундамента

В первом случае монолит не подходит в качестве опоры. Требуются дополнительные обследования и принятие решений для укрепления грунтов.

Во втором случае бетон подходит в качестве основания. Полученный результат округляют до ближайшего значения, кратного 50 мм.

В третьем случае бетон не подходит в качестве опорной части. Требуется принимать другой вариант опор (ленточный или столбчатый).

Глубина залегания фундамента

Глубину залегания плитного фундамента определяют по уровню поверхностных вод и толщине основания.

Глубина залегания зависит от следующих факторов:

Правильный способ закладки фундамента

Рекомендуемая глубина котлована приведена в нормативных строительных документах. Она может составлять, см:

Требования к глубине заложения фундамента

Что можно рассчитать, зная толщину фундамента?

По вычисленной толщине плиты рассчитывают следующие параметры:

Пример расчета расхода материалов для фундамента на монолитной плите

Расчет необходимого количества основной арматуры

Арматуру располагают равномерно по всей плавающей плите. В зависимости от толщины плиты каркас устанавливают в один или несколько рядов. Нормативное количество ярусов арматурной сетки при толщине плиты составляет:

Расчет расхода арматуры для плитного фундамента

Для продольных сеток рекомендовано использовать стержни диаметром 12–18 мм. Диаметр стержней поперечных сеток принимают 8–12 мм.

Шаг стержней зависит от толщины плиты. При ее высоте до 25 см шаг стержней принимают 15 см. При высоте плиты 25 см и более шаг стержней 10 см.

Пример расчета

Цель:

Расчет бетона на фундамент

Исходные данные:

Расчет:

Расчет высоты фундамента

Видео по теме: Фундамент под дом — монолитная плита, расчет и армирование


Калькулятор расчета оптимальной толщины монолитной фундаментной плиты

При ведении строительства на загородном участке иногда обстоятельства складываются таким образом, что оптимальным решением становится возведение фундамента в виде монолитной плиты. Это позволяет равномерно распределить нагрузку по большой площади, что особо важно на слабых, неустойчивых грунтах, где ленточная схема фундамента себя не оправдывает.

Калькулятор расчета оптимальной толщины монолитной фундаментной плитыКалькулятор расчета оптимальной толщины монолитной фундаментной плиты

Даже при невысокой несущей способности грунта нет необходимости углубляться ниже уровня промерзания почвы – при правильном расчете и строительстве основание получается «плавающим», не боящимся сил морозного пучения. Но для этого размеры плиты должны соответствовать реальным условиям строительства – типу преобладающих грунтов на участке застройки и нагрузкам, которые будут выпадать на фундамент. Калькулятор расчета оптимальной толщины монолитной фундаментной плиты поможет определиться с одним их ключевых параметров, а иногда – даже оценить целесообразность применения подобного типа основания.

Работа с калькулятором требует определенных пояснений. Они будут приведены ниже, в соответствующем разделе.

Калькулятор расчета оптимальной толщины монолитной фундаментной плиты

Перейти к расчётам

 

Укажите запрашиваемые значения и нажмите «Рассчитать рекомендуемую толщину монолитной плиты»

Тип грунта на участке затройки прооо

Плотные пески мелкой или пылеватой фракцииПески мелкой или пылеватой фракции, средней плотностиСупеси, твердые и пластичныеСуглинки, твердые и пластичныеГлины твердой структурыГлины пластичные

Общая площадь рассчитываемой плиты фундамента, м² пример-плитного-фундамента11flat11

СТЕНЫ ДОМА
Площадь стен указывается суммарно, за вычетом оконных и дверных проемов.
(Доступно введение двух вариантов, например, для несущих внешних и внутренних стен. Если вариант не используется, оставьте значение площади по умолчанию - 0)

 

Стены, тип №1

Материал стен

- кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- кирпичная кладка в 2 кирпича (500 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм

Площадь стен, м²

 

Стены, тип №2

Материал стен

- кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- кирпичная кладка в 2 кирпича (500 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм

Площадь стен, м²

перееее

ПЕРЕКРЫТИЯ
Если в перекрытии есть проем, например, для межэтажной лестницы, то его следует исключить из общей площади
(Доступно введение двух вариантов, например, для межэтажного и чердачного перекрытия. Если вариант не используется, оставьте значение площади по умолчанию - 0)

 

Перекрытие, тип №1 (межэтажное)

Тип перекрытия

- перекрытие межэтажное или цокольное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

 

Перекрытие, тип №2 (чердачное)

Тип перекрытия

- перекрытие чердачное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

slide3иир

СТРОПИЛЬНАЯ СИСТЕМА И КРОВЛЯ
При выборе типа кровли автоматически будет учитываться и средний вес стропильной системы с обрешеткой.
Одновременно к весу крыши будет добавлено ориентировочное значение снеговой нагрузки, в зависимости от региона строительства и крутизны скатов

Общая площадь кровли, м²

Тип кровли

- листовая сталь, профнастил, металлочерепица- мягкая полимер-битумная кровля в два слоя- абесто-цементный шифер- керамическая черепица

Зона по уровню снеговой нагрузки (по карте-схеме) рас11ччч

IIIIIIIVVVIVII

На чем строится и как проводится расчет

Перед началом строительства обязательно проводится анализ грунтов, на которые будет опираться плита, чтобы оценить их несущую способность. Этот параметр выражается в килограммах на квадратный сантиметр, и значения несложно найти в таблицах СНиП.

Казалось бы, можно рассчитать общую нагрузку и убедиться, что она не превышает указанных значений. Однако, такой расчёт не будет достаточно объективным. В данном случае правильнее будет исходить из оптимальной распределенной нагрузки на тот или иной грунт, просчитанной именно для плитных оснований. Теорией и практикой применения плитных фундаментов доказано, что если реальная нагрузка не будет отличаться от оптимальных значений более, чем на 20÷25 процентов, стабильность здания, возведенного на таком основании будет гарантирована. То есть, будут исключены две крайности:

— При слишком тяжёлой системе «плита + дом» (с учетом внешних и эксплуатационных нагрузок) сохраняется вероятность постепенного проседания здания в грунт.

— Слишком маленькая суммарная нагрузка – также недопустима, так как даже незначительные колебания грунта будут отражаться на стабильности постройки.

Расчет, заложенный в калькулятор, строится на том, что для начала определяется нагрузка, создаваемая зданием, без учета фундаментной плиты. Затем это значение сравнивается с оптимальным, и получившаяся разница будет перекрываться за счет массы монолитного основания. Зная плотность железобетона, несложно перевести массу в объем, а затем, с учётом площади плиты – прийти к ее оптимальной толщине.

Цены на цемент

цемент

Карта-схема распределения территории РФ на зоны по степени снеговой нагрузкиКарта-схема распределения территории РФ на зоны по степени снеговой нагрузки

Предполагается, что у пользователя уже имеются планы или хотя бы начальные разработки по размерам и материалам будущей постройки. Необходимо будет рассчитать площади – это несложно, особенно если воспользоваться некоторыми советами.

кф2Как быстро и точно рассчитать площадь?

С прямоугольником ни у кого проблем не возникает, но нередко более сложные конфигурации стен, пола или кровли ставят в тупик. Обратитесь к публикации нашего портала, посвященной именно расчётам площадей – там описана методика и приведены удобные калькуляторы.

Результат оптимальной толщины плиты будет выдан в метрах. И вот здесь необходимо сразу оценить его со следующих позиций.

кф3Плитный фундамент – все «за» и «против»

Более подробно с вопросами, касающимися рекомендуемых случаев применения такого основания, проведения необходимых расчетов и практического строительства монолитного плитного фундамента читатель может познакомиться в специальной публикации нашего портала.

Калькулятор толщины, арматуры и опалубки фундамента плиты

Информация по назначению калькулятора

Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

Плитный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.

Обязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.

Главным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.

Обязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.

Общие сведения по результатам расчетов

Для расчета УШП необходимо вычесть объем закладываемого утеплителя из объема рассчитанного бетона.

Плитный фундамент - расчёт и возведение своими руками.

    Плитный фундамент представляет собой основание постройки в виде плоской (либо с рёбрами жёсткости) железобетонной плиты. По своей конструкции такие фундаменты можно разделить на два вида — монолитные и сборные.

    Сборный — это уложенные с помощью строительной техники на предварительно выравненное и уплотнённое основание готовые заводские плиты. При этом используются дорожные (ПД, ПДН) или аэродномные (ПАГ) плиты. Данная технология имеет существенный недостаток, связанный с отсутствием цельности и следовательно с невозможностью сопротивляться даже незначительным подвижкам грунта. Поэтому сборные плитные фундаменты применяют только на непучинистых крупнообломочных или скальных грунтах для небольших, не ответственных, в основном деревянных построек в южных регионах с минимальной глубиной промерзания.

    Монолитные плитные фундаменты, представляют собой одну цельную жёсткую железобетонную конструкцию, возводимую под всей площадью строения. По своей геометрической форме их можно поделить на:

    В этой статье будет рассмотрен простой монолитный плитный фундамент.

    О достоинствах, недостатках и критериях выбора плитного фундамента.

    Наверное ни один вид фундамента не окружён таким количеством мифов, как плитный. Разберём основные из них:

   1) Практически абсолютная универсальность? В интернете часто можно прочитать, что строить фундаментную плиту можно практически где угодно, хоть на болоте. И ничего с ней не произойдёт, будет она себе спокойно зимой подниматься, летом опускаться, в общем плавать. Нормальный такой «бетонный кораблик» с многотонной надстройкой в виде дома.

    Всё-таки справедливее будет утверждение, что единственный фундамент, на котором можно более или менее надёжно вести строительство на заболоченных, сильнопучинистых, просадочных грунтах — это свайный, когда длины свай хватает, чтобы закрепиться в нижележащих несущих слоях грунта.

   Морозное пучение, так же как и просадки при оттаивании или связанные с увлажнением грунта (например, при подъёме грунтовых вод) никогда не будут происходить под всей плитой одинаково. Всегда одна сторона смещается больше другой. Простой пример — весеннее оттаивание грунта, которое на южной стороне дома происходит гораздо интенсивнее и быстрее, чем на северной. Понятно, что плита при этом будет испытывать колоссальные нагрузки, которые, ещё не факт что она выдержит, а дом хоть и не значительно, но может накрениться. Не очень страшно, если он деревянный. А если из блоков или кирпича, что тогда, трещины на стенах?

   Да действительно, плитные фундаменты позволяют строить дома на более сложных грунтах, включая среднепучинистые, с меньшей несущей способностью, чем например ленточные (обычно допускают до 1,5 кг/см² в сухом состоянии), но и переоценивать их возможности не стоит.

    Кстати отсюда вытекает и второй миф, являющийся отчасти противоположностью первого:

   2) Плитный фундамент не для большого дома? Распространено и такое утверждение, что на монолитной плите можно возводить только лёгкие, не особо долговечные (до 40-50 лет) дома. Это не совсем верно, ведь если условия выбраны подходящие и фундамент спроектирован и, что не менее важно, построен правильно, то выдержать он может, даже к примеру, московский ЦУМ, построенный именно на плите.

   3) Высокая стоимость? Очень распространено мнение, что плитный фундамент является самым дорогостоящим из всех других видов оснований, и что его цена составляет чуть ли не 50% от всех затрат на строительство. Может быть. Если только Вы собираетесь строить на нём деревянную избушку.

    Самое интересное, что адекватного сравнительного анализа никто не приводит, и никто не учитывает, то что при дальнейшем возведении дома, например, полы (имеются в виду черновые) делать уже не надо. О сравнении стоимости различных видов фундаментов, мы обязательно поговорим в отдельной статье.

   4) Сложность работ? Часто звучат утверждения, что для сооружения плитного фундамента нужны очень квалифицированные работники. Хотя если немного задуматься, становится очевидным, что просто кто-то усердно «набивает себе цену». При незнании технологии, ошибок можно наворотить и в любом другом фундаменте.

    Так в чём же сложность именно плитного? Выравнивание площадки? Наверное ни чуть не сложнее, чем выравнивание, например, основания заглубленного ленточного фундамента, если не наоборот. Гидроизоляция и утепление? Всё-таки наверное проще делать эти операции на ровной горизонтальной поверхности, чем на вертикальной. Вязка арматурного каркаса? Опять же сравните, что проще, вязать арматуру разложенную на ровной площадке или залезая руками в опалубку ленточного фундамента. Заливка бетона? Ну здесь скорее всё зависит не от типа фундамента, а от особенностей каждого конкретного участка, от возможности подъезда миксера к площадке и от наличия или отсутствия бетоноподающей машины.

    Возведение фундаментной плиты — это физически не простая, скорее немного нудная (из-за большой площади), но уж ни как не требующая высококвалифицированных строителей процедура. И справиться с ней вполне по силам нескольким обычным «рукастым» мужикам. А правильное следование технологии должно быть всегда, хоть при плитном, хоть при столбчатом, хоть при любом другом фундаменте.

Расчёт фундаментной плиты.

    Как и любой другой вид нулевого цикла, плитный требует проведения расчёта, заключающегося, прежде всего, в определении толщины фундаментной плиты. Выбор этого главного параметра наобум или как у соседа, может привести к тому, что для своего дома Вы сделаете либо слишком слабое основание, рискующее в первую же зиму треснуть, либо слишком массивное, совершенно напрасно опустошающее Ваш кошелёк.

    Конечно, расчёт приведённый ниже не претендует на роль настоящего инженерного расчёта, проводимого проектными организациями, но для самостоятельного домостроя, о котором мы говорим на страницах этого сайта, его будет вполне достаточно.

    I) Изучаем грунты на участке застройки. Более подробно об этом говорилось здесь…

   При дальнейшем расчёте нужно будет выбрать такую толщину фундаментной плиты и соответствующую ей массу, которая обеспечит оптимальное удельное давление на наш тип грунта. Если нагрузка будет превышена, строение может начать «утопать», а если нагрузка будет слишком мала, то небольшое морозное пучение грунта может накренить плиту со всеми вытекающими отсюда последствиями.

   Значения оптимальных удельных давлений от плитных фундаментов для типов грунтов, на которых их обычно строят приведены в таблице 1. ниже:

   Примечание: В таблице красным цветом выделены грунты, для которых при выборе типа фундамента желательно провести профессиональный сравнительный технико-экономический расчёт. Оптимальные удельные давления для них самые высокие и как мы увидим ниже, фундаментную плиту нужно будет делать более толстую и массивную.

   Если на участке будет установлена высокая вероятность чрезмерного увлажнения твёрдых глин, постройка может начать «тонуть» из-за резкого падения несущей способности грунта. Тогда возможно придётся отказаться от монолитной плиты в пользу свайного фундамента.

    А в случает с супесями, сравнительный расчёт может показать, что дешевле сделать ленточный фундамент.

   II) Основываясь на проекте, определяем общий вес будущего дома. Приблизительная удельная масса отдельных конструктивных элементов приведена в таблице 2 ниже:

    Примечание: снеговая нагрузка для всех регионов при угле наклона скатов крыши больше 60º принимается равной нулю.

   III) Исходя из проекта дома рассчитывает площадь фундаментной плиты. Определенный выше вес дома делим на эту площадь и получаем удельную нагрузку на несущий грунт без учёта массы фундамента. Сравниваем эту цифру с оптимальным удельным давлением из таблицы 1 и считаем, сколько до него не хватает (разницу). Умножаем эту разницу на площадь плиты и получаем требуемую массу фундамента.

   IV) Полученную массу фундаментной плиты делим на плотность железобетона 2500 кг/м³, получая тем самым требуемый оптимальный объём фундаментной плиты. Делим этот объём на площадь плиты и определяем её толщину.

   V) Округляем толщину до ближайшего меньшего и ближайшего большего значений, кратных 5 см. В результате мы можем выбрать любое из них. По округлённым значениям снова пересчитываем массу фундамента и сложив её с массой дома, определяем расчётное удельное давление на грунт. Сравниваем его с оптимальным, разница не должна превышать ±25%.

   Примечание: Если расчёт показывает, что фундаментная плита должна быть толщиной более 35 см, тогда желательно провести сравнительный анализ, т.к. скорее всего ленточный или столбчатый фундамент окажутся более целесообразным и дешёвым вариантом. Либо нужно делать усиленную плиту с рёбрами жёсткости, а здесь без настоящих инженерных расчётов не обойтись.

   Если же плита получается менее 15 см, то дом для данных условий слишком тяжёлый. Самостоятельное строительство без геолого-геодезических изысканий и профессиональных расчётов в этом случае лучше не начинать.

   VI) Удельная нагрузка от общей массы всей постройки действует и на сам бетон фундамента в его самом нижнем сечении (третий закон Ньютона — действие равно противодействию). Исходя из неё определяем допустимую для заливки марку бетона при условии сохранения его прочности на сжатие. Чаще всего выбирают между марками М200, М250 или М300.

   Данный расчёт не является чем-то  очень сложным. Знания математики средней школы для него более чем достаточно, но для большей наглядности рассмотрим один пример.

Пример упрощенного расчёта толщины фундаментной плиты.

   Определим оптимальную толщину плитного фундамента для 2-х этажного дома размером 6×9 метров из газосиликатных блоков марки D-600 с одной несущей перегородкой. Толщина всех несущих стен 30 см, высота дома 5,5 метра, высота фронтона 1 метр. Межэтажное перекрытие — монолитное железобетонное; чердачное перекрытие — по деревянным балкам. Кровля — металлочерепица.

   I) Допустим мы определили, что несущий грунт на площадке — пластичная глина. По таблице 1 принимаем для него оптимальное удельное давление  равное 0,25 кг/см².

   II) Считаем общий вес дома:

  1.  Суммарная площадь всех стен включая наружные, несущие перегородки и фронтоны за вычетом площади оконных и дверных проёмов равна примерно 182 м², а их масса 182×180=32760 кг.

  2. Площадь монолитного перекрытия между 1-м и 2-м этажом за вычетом лестничного проёма около 50 м². Масса его вместе с эксплуатационной нагрузкой 50×(500+210)=35500 кг.

  3. Площадь чердачного перекрытия 54 м², а масса вместе с эксплуатационной нагрузкой 54×(150+105)=13770 кг.

  4. Эксплуатационная нагрузка на первом этаже (перекрытия здесь нет, его роль играет сама фундаментная плита, но эксплуатационная нагрузка есть) равна примерно 54×210=11340 кг. Здесь, конечно правильнее взять площадь по внутренним размерам комнат 1-го этажа, но мы просто немного упростили.

  5. Площадь скатов крыши в нашем примере составляет 71 м². Масса её вместе со снеговой нагрузкой для средней полосы России составит 71×(30+100)=9230 кг.

  6. Общий вес дома, полученный суммированием, равен 102600 кг.

    Примечание! Теперь рассчитать вес дома более точно можно с помощью нашего онлайн-калькулятора, расположенного здесь…

   III) Исходя из проекта площадь фундаментной плиты равна 54 м².

   Делим вес дома на неё и получаем: 102600/54=1900 кг/м² или 0,19 кг/см².

   До оптимального удельного давления для суглинка нам не хватает: 0,25-0,19=0,06 кг/см².

   Умножаем эту цифру на площадь плиты (площадь переводим в см²):   0,06×54×10000=32400 кг.  Именно такой должна быть оптимальная масса фундамента для наших условий.

   IV) Делим полученную массу на плотность железобетона:   32400/2500=12,96 м³.  Это требуемый объём плиты.

   Соответственно оптимальную её толщину мы получим разделив объём на её площадь, т.е.  12,96/54=0,24 м или 24 см.

   V) Итак, мы можем рассмотреть для нашей плиты 2 варианта: либо она будет толщиной 20 см, либо 25 см.

   При толщине плиты в 20 см её масса составит 0,2×54×2500=27000 кг.

   Вместе с весом дома она будет оказывать удельное давление на грунт равное:   (27000+102600)/(54×10000)=0,24 кг/см²

   Отклонение от оптимального удельного давления составит (0,25-0,24)×100/0,25=4%   , что вполне допустимо.

   Очевидно, что просчитав таким же образом плиту в 25 см, отклонение так же будет допустимым. Но нам всё же более интересен вариант с плитой в 20 см, т.к. он позволяет сэкономить значительные средства. Осталось проверить, выдержит ли плита по прочности бетона на сжатие.

   VI) Сначала нужно определить общую площадь всех несущих стен (перегородок) в плане. То есть мы считаем суммарную длину всех стен и умножаем её на толщину стен. В нашем примере получится (9+9+5,4+5,4+5,4)×0,3=10,26 м².

    Отсюда, дом массой 102600 кг (считали в пункте II) с фундаментом в 27000 кг будет оказывать удельное давление на бетон фундаментной плиты равное: (102600+27000)/10,26=12600 кг/м² или всего лишь 1,26 кг/см². По большому счёту такое давление абсолютно не страшно любой марке бетона, но всё таки ниже чем М200 для фундамента не используют. На ней и остановимся (её предел прочности 196 кгс/м²).

   Таким образом, с расчётом мы более или менее определились, так что теперь о самой технологии.

Этапы возведения простого монолитного плитного фундамента.

   1) В-первую очередь, если из-за рельефа участка на пятно застройки могут пробиться ручейки с дождевой водой, копаются небольшие траншеи для их отвода. Далее производится разметка будущего фундамента.

   2) По разметке копается котлован. Дно его должно располагаться строго в горизонтальной плоскости, что контролируется при помощи оптического или лазерного нивелира, либо гидравлического уровня. Глубина котлована определяется в зависимости от нескольких факторов:

    В обычных условиях готовая фундаментная плита немного выступает над поверхностью грунта, буквально на высоту будущей отмостки (около 15 см).  Но иногда плита поднимается более высоко, либо из-за низкого рельефа участка, когда планируется дальнейшая обсыпка дома, либо из-за очень близкого к поверхности уровня грунтовых вод. Если же намечается строительство дома с цокольным этажом, глубина котлована определяется нужной глубиной подвала.

   Весь органический слой грунта под будущим фундаментом должен быть удалён. При необходимости вместо него досыпается песчано-щебёночная смесь. Гумус (чернозём) имеет свойство со временем значительно уменьшаться в объёме из-за процессов перегнивания в нём. Таким образом глубина котлована также зависит от толщины плодородного слоя грунта.

   3) Дно котлована застилается слоем геотекстиля и засыпается подушка из крупного песка либо из песчано-щебёночной смеси (количество щебня до 1/3 от всего объёма).

   Геотекстиль предотвращает заиливание. Толщина подушки должна быть не менее 25-30 см. Это надо также учитывать при определении глубины рытья котлована. Засыпка производится послойно по 10-15 см с обязательным смачиванием и уплотнением вибрационной плитой. Без средств механизации здесь не обойтись, т.к. качество уплотнения подушки очень сильно влияет на долговечность плитного фундамента. Сейчас, к счастью, даже для тех, кто строит дом своими силами, это не проблема, виброплиту не сложно найти и взять в аренду на нужный срок.

   4) Делается бетонная подготовка — заливают и разглаживают примерно 7-10-ти сантиметровый слой тощего подвижного бетона (марки М100, М150).

   5) После застывания бетонной подготовки делается гидроизоляция фундаментной плиты. Для этого используются либо обмазочные, либо рулонные материалы. Часто их комбинируют. Например, очень надёжным является такой вариант — сначала на подбетонку наносят битумный праймер, а затем клеят 2 слоя рулонной гидроизоляции (один вдоль, другой поперёк).

   Полосы рулонной гидроизоляции делаются с выпуском, чтобы потом их можно было загнуть и наклеить на боковую поверхность фундаментной плиты.

   6) Монтируется опалубка. Высота её в данной технологии не очень большая, поэтому особых трудностей здесь не возникает. Используются либо обрезные доски, либо листы фанеры. Особое внимание нужно обратить на выравнивание верха всей опалубки в одной горизонтальной плоскости.

    7) Раскладывается утеплитель — экструдированный пенополистирол толщиной 5-10 см. Можно проклеить стыки между листами обычным скотчем, чтобы через них при заливке бетона не протекало цементное молочко.

   8) На всей площади фундамента вяжется арматурный каркас (диаметр арматуры 12-16 мм), представляющий собой две горизонтальные сетки с ячейками размером от 20×20 до 30×30 см. Первая сетка приподнята над утеплителем на 5 см, а вторая вяжется на те же 5 см ниже верхнего края опалубки. По краям фундамента арматура не должна доходить до опалубки также примерно на 5 см.

   Выполнение качественного армирования — залог долговечности будущего фундамента, поэтому лучше не применять здесь для фиксации сеток на определённой высоте какие-то случайно попавшиеся под руку подставки, половинки кирпича и т.п. Для этого в продаже имеются специальные фиксоторы-подставки. Особенно разнообразен их выбор для нижней сетки. Подставки для верхней сетки, также можно приобрести готовые (фиксаторы-лягушки),  либо нагнуть самостоятельно из той же арматуры.

   9) Производится заливка бетона, причём обязательно готового заводского с миксера. Любое послойное затвердевание бетона, которое обязательно будет происходить при попытке залить плиту в ручную обычной строительной бетономешалкой, здесь не допустимо.

  Самый оптимальный и более лёгкий вариант — это заливка с помощью бетоноподающей машины. Недостаток только в более высоких затратах на аренду техники. Как происходит процесс заливки можно не описывать, видео в интернете более чем достаточно.

   Используйте при работе глубинный вибратор для бетона. После заливки и схватывания плиты (когда уже можно будет пройти), особенно в жаркую сухую погоду, её нужно покрыть влажной ветошью и полиэтиленовой плёнкой. При высыхании ветоши под плёнкой будет пропадать конденсат. За этим нужно следить и при необходимости снова смачивать для предотвращения образования трещин на бетоне. Длится набор прочности в зависимости от погоды примерно от 25 до 40 дней. Только после этого можно приступать к дальнейшему строительству.

   На грунтах, подверженных сильному морозному пучению, рекомендуется делать утеплённую отмостку, чтобы предотвратить промерзание и подъём грунта по краям плиты и появление значительных изгибающих нагрузок.

    Пока по этой теме всё, будем рады видеть Ваши комментарии.

 

толщина, расчет высоты слоя для дома

Пример самостоятельного расчёта ширины ленточного фундамента

Чтобы лучше понять, как рассчитать ширину монолитной ленты, нужно рассмотреть это на примере. Первоначально нужно систематизировать исходные данные необходимые для расчёта.

Определение суммарной нагрузки от дома на ленточный монолитный фундамент

На основе имеющихся исходных данных делают расчёт суммарной нагрузки на фундамент. Также определяют габариты монолитной ленты. Необходимо, чтобы застройщики сделали расчёт в следующем порядке:

Кровля

Крыша из шифера двускатная. С учётом уклона кровли и её свесов применяют коэффициент 1,1. Нагрузка от кровли составит: 100 м 2 х1,1х40 кг/м 2 = 4000 кг.

Кирпичные стены

Чтобы определить нагрузку от стен, зная их толщину, нужно подсчитать их длину. Длина стен по периметру составит: (10 х 4) – (0,25 х 4) = 39 м. Вычет удвоенной толщины кирпичной кладки сделан потому, что оси плана дома проведены посередине толщины стен. Длина внутренней несущей стены составит 10 – 0,25 = 9,75 м. Общая длина несущих стен будет равна 48,75 п.м.

Объём кирпичной кладки составит: 48,75 х 0,25 х 2,7 = 32,9 м 3 . Полная нагрузка от кирпичных стен равна: 32,9 х 1600 = 52 670 кг.

Перекрытие из железобетонных плит

Одноэтажный дом имеет перекрытия в двух уровнях. Это перекрытие цоколя и потолок в доме. Площадь перекрытий равняется: 100 х 2 = 200 м 2 . Соответственно нагрузка от плит перекрытий будет равна: 200 м 2 х 500 кг/м 2 = 100000 кг.

Снеговая нагрузка

Для расчёта снеговой нагрузки берут общую площадь кровли дома – 100 х 1,1 = 110 м 2 . Снеговая нагрузка составит: 110 м 2 х 50 кг/м 2 = 5 500 кг.

Полезная нагрузка

Норма этой нагрузки рассчитана на основе усреднённых величин веса технического оборудования, внутренних коммуникаций, отделки помещений, мебели и прочего. Удельный вес полезной нагрузки колеблется в пределах 18 – 22 кг/м 2 .

Расчёт полезной нагрузки производят на основе среднего показателя – 20 кг/м 2 . Вес составит: 100 м 2 х 20 кг/м 2 = 2000 кг.

Итого суммарная нагрузка на фундамент будет равна: 4 000 + 52670 + 100 000 +2 000 = 159 000кг.

Расчёт ширины монолитной ленты

Согласно вышеуказанной формуле определяют минимальную площадь подошвы фундамента:

(1,2 х 159 000 кг) : 2 кг/см 2 = 95 400 см 2 . То есть минимальная допустимая площадь подошвы основания дома будет равняться 10 м 2 .

Общая опорная площадь кирпичных стен определяется произведением длины в плане несущих стен на их толщину: 48,75 м х 0,25 м= 12,18 м 2 .

В результате видно, что расчётная опорная площадь меньше минимальной опорной площади стен. Следовательно, ширина ленточного фундамента должна быть равна 250 мм + 100 мм = 350 мм.

Потребность в материалах для устройства монолитной ленты

Учитывая толщину промерзания грунта (0,7 м) и глубину уровня грунтовых вод (2,2 м), монолитную ленту делают мелко заглублённой – 1 м.

Для заливки опалубки используют бетон М 300. Объём потребности в бетонном растворе равен: 0,35 м х 1 м х 48,75 м= 17 м 3. . С учётом непредвиденных потерь потребность в бетоне составит 17,3 м 3 .

Арматурный каркас состоит из 4-х продольных арматурных стержней периодического профиля диаметром 12 мм. Так как поперечные стержни каркаса делают из тех же стержней, то общая потребность в арматуре составит: 50 м х 4 = 200 м.

Из всего вышесказанного можно сделать вывод о том, что высчитать ширину, высоту и длину ленточного фундамента для своего дома вполне под силу мало-мальски сведущим в строительном деле людям.

Расчет фундамента

Данная процедура, как правило, не вызывает серьезных осложнений, если подойти к ней с должным уровнем ответственности. Она предполагает сбор данных по нагрузке и изучение несущих слоев почвы. Толщина фундамента для двухэтажного дома будет определяться в зависимости от соотношения этих двух составляющих.

На видео подробно рассказывается, как выполнить расчет основания самостоятельно.

В первую очередь необходимо провести тщательное изучение рабочего участка. Глубина фундамента для двухэтажного дома из пеноблоков должна быть выше средней глубины промерзания на 35–55 см.

Опалубка и армирование

Такие данные приемлемы лишь при условии отопления жилой площади в зимнее время года. В противном случае необходимо придерживаться установленной температуры промерзания для конкретного региона.

Относительное значение ширины ленты будет составлять 25 см. Это значение носит приближенный характер и будет меняться в процессе расчетов.

Следующий шаг – расчет давления на ленточный фундамент для двухэтажного дома. Для определения соответствующего значения целесообразно воспользоваться таблицей ниже.

Тип конструкции Плотность (кг/м2)
Стены
Кирпичная кладка (полкирпича) 210–240
Дома из пенобетона 170–180
Дома из бревен (d=240 мм) 130–145
Дома из бруса (150 мм) 11–125
Элементы перекрытия
Чердак (балки деревянные) 10–120
Пустотелые бетонные плиты 30–380
Железобетонные перекрытия 450–520
Кровля
Металлочерепица, профлист 25–35
Двухслойный рубероид 35–45
Шифер (высота гребня – 4 см) 50
Нагрузка снежного покрова для центральных областей России 100–120

Следующий этап – расчет суммарного веса ленточной плиты. Для этого необходимо предварительно вычислить ее объем, который рассчитывается с помощью произведения длины – L, ширины – А и высоты – В.

Полученное значение умножаем на удельный вес железобетона, который составляет 2500 кг/м3. Конечный результат – суммарный вес. Для расчета общей нагрузки – М – на несущий почвенный слой достаточно сложить это значение с весом здания.

Теперь возникает необходимость установить оптимальное значение ширины подошвы основания – O. Она выводится по следующей формуле: O = 1,3*M/(L*R). Значение 1,3 выступает в качестве показателя запаса несущей способности, а R – плотность почвенного слоя, которая указана в таблице ниже.

Вид почвенного слоя R
Глина с галькой 4,2–4,5
Глина с гравием 4
Песок крупнозернистый 6
Песок среднезернистый 5
Песок мелкозернистый 4
Супесь 3,2–3,5
Суглинок 3,2–3,5
Глина 6

При ширине ленты меньше ориентировочного значения конечная ширина будет составлять заявленные 20 см. В случае, если по результатам расчетов это значение превысило первоначальную цифру более чем на 4–6 см, необходимо произвести повторный расчет массы основания с новым значением ширины ленты.

Какие параметры влияют на расчет плиты.

Толщина плиты фундамента под газобетонный дом. Схема с указанием толщины всех слоев плитного фундамента.

Как правило, для мягких и легких строительных материалов, типа газобетона, достаточно только просуммировать все эти показатели и тогда получится толщина плиты. Оптимальной считается толщина плиты в 20− 30 см, но конечный результат также определяется составом почвы и равномерностью залегания всех грунтовых пород. Иногда к таким показателям также добавляется параметр послойного суммирования, если грунты неоднородные.

Кроме габаритов самого плитного основания, существует также толщина дренажного слоя, песчаной подушки и гидроизоляционного слоя. Также нужно помнить, что для обустройства такого фундамента нужно снять верхний плодородный слой почвы и вырыть котлован на глубину не менее 0,5 м. Такая глубина залегания дна котлована определяется необходимостью укладывать щебень толщиной 0,2 м и песок на толщину 0,3 м.

В результате получается, что расчетная толщина плитного фундамента составляет суммарно приблизительно 0,6 м. Но и такая величина не считается стандартной, ведь также существует фактор проседания почвы за счет массы здания, есть свои характеристики грунта и высота расположения грунтового горизонта. Также стоит учитывать массу бетона, которая также будет влиять на толщину конструкции в целом.

Например, фундамент для кирпичного дома должен на 5 см быть толще, чем для газобетона. Также учитывается наличие дополнительных этажей, так как каждый добавляет свою нагрузку на основание, и оно будет равномерно возрастать в толщине.

Итак, чем выше и больше здание, тем толще фундаментная плита, а если дом сделан из газобетона, тогда плита будет еще толще. Стандартный двухэтажный дом из газобетона будет устроен на плите толщиной от 35 см, иногда даже и больше, если дом имеет сложную структуру и разветвленную систему несущих стен и перегородок.

Более дешёвые альтернативы УШП

1. Плитносвайный фундамент (ПСФ) на сваях ТИСЭ. Дешевле и надежнее.

Занимается такими фундаментами Александр. У него выпущена книга и есть канал на ютюбе.

Радикального сокращения стоимости не ждите. Но выйдет дешевле за счёт меньшего количества утеплителя и бетона.

Сваи ТИСЭ с обвязкой из досок и деревянным перекрытием.

Это реальная альтернатива, в которой вычёркиваются:

  1. кубометры бетона
  2. арматура
  3. подготовка основания (выемка грунта, щебень, песок, трамбовка)
  4. дренаж
  5. отмостка

Дренаж и отмостку всё-таки придётся сделать. Можно отложить их на год-другой. Это смягчит финансовую нагрузку на стройку. Плюс и первое и второе в этом фундаменте проще, а значит немного дешевле.

Правда с таким фундаментом только деревянный дом: каркасник или СИП.

Инструкция

Начинать закладку монолитного фундамента следует с разметки, причем основание должно быть идеально ровное. Для этого:

Снимите подручным материалом верхний слой грунта, выровняйте основание при помощи нивелира.
Засыпаем дренажную подушку под будущий монолит: песок и щебень общей высотой около 12 см. отдельно следует утрамбовать щебень, а потом песок. Подушку равномерно поливаем водой.
На этом этапе можно провести необходимые коммуникации, канализацию.
Теперь можно переходить к стяжке плиты: обработка бетонной смесью и битумной смолой.
Обработать плиту гидроизоляционным слоем из любого подходящего для этих работ материала. Швы спаивают лампой или горелкой

Обратите внимание: слой должен свисать с монолита на 50-70 см, так преследуется и вторая цель: защита боков фундамента.
Это необязательное, но желательное действие: утеплить основу монолитного фундамента. Можно использовать долговечные материалы из пенопласта.
Теперь нужно оборудовать опалубку: в нее устанавливаются арматурные штыри, диаметром около 15 мм, и ячеистая сетка с размером ячеек около 20 мм

Нижний край сетки следует опустить от плиты вниз примерно на 5 см, а верхний поднять на то же расстояние.
Подготовительные работы окончены, можно заливать бетонной смесью монолит.
После полного высыхания опалубку снимают, а в целях гидроизоляции ее покрывают защитным слоем.

Конечно, обустройство монолитного фундамента наиболее сложный, по сравнению с другими типами, и несоблюдение порядка и последовательности может привести к плачевным результатам. Но если все сделать правильно, с соблюдением наших советов, то остальных проблем с перекосом окон и дверей у вас не будет никогда.

Какой толщины должна быть плита монолитного фундамента?

Плитный фундамент считается самым надежным и выбирается при строительстве домов на неустойчивых и подтапливаемых почвах. Этот тип оказывает минимальное воздействие на грунт и обеспечивает равномерное распределение всех весовых нагрузок. Технология заливки сама по себе простая, основной акцент делается на расчете параметров плиты, а именно: глубины заложения, высоты подушки, марки и толщины бетона, сечения арматуры, потребности в утеплении. Диапазон варьируется от 15 до 35 см, если расчетная величина отличается, то рассматриваются другие варианты основ.


Толщина плиты фундамента под газобетонный частный коттедж.

Особенности плитного фундамента.

Представляет собой бетонный монолит с двумя рядами сетки из арматуры, размещаемый поверх утрамбованной песчаной подушки, в особо сложных случаях – усиленный ребрами жесткости снизу. Величина затрат на его строительство зависит от степени заглубленности основания: на устойчивых почвах оно практически сравнивается с землей и требует минимальных вложений и усилий. На плывущих грунтах или при необходимости организации подвального пространства на плитный фундамент уходит до 1/3 общестроительного бюджета, так как закладка проводится ниже уровня промерзания.

Для устойчивых грунтов.

Для сильно пучинистых.

Толщина плиты для деревянного дома зависит от этажности, при использовании хорошо просушенных материалов их удельный вес не превышает 600 кг/м 3. что в 2,5-3 меньше, чем у кирпича. Как следствие рекомендуемое значение составляет 30 см.


Толщина плиты фундамента под газобетонный коттедж одноэтажный.

Пример расчета основных параметров плиты фундамента

Эскиз оптимальной толщины плиты фундамента

Чтобы правильно разобраться в расчете параметров плитного фундамента, а также четко рассчитать необходимое количество бетона, стоит использовать следующий пример:

  1. Принимается типичное здание из газобетона площадью 100 м² (10х10) и под него подбирается плитный фундамент на скальных породах толщиной 0,25 м мелкозаглубленного типа.
  2. Объем плиты в таких случаях составляет 25 м³. Это суммарное количество бетона, необходимое для заливки такой конструкции. Тут объем арматурной сетки принимается за ноль, чтобы не усложнять расчеты. На практике такие расчеты также проводятся, но уже для больших сооружений.
  3. Установка ребер жесткости, которые используются для повышения надежности конструкции. Шаг ребер жесткости составляет 3 м, при этом создаются квадраты.
  4. Длина ребер жесткости будет соответствовать длине фундамента, а высота – это толщина плиты.

Итак, для заливки плитного фундамента площадью 100 м² нужно использовать 25 м³ бетона. Также сюда пойдет некоторое количество арматуры, гидроизоляции и песка со щебнем для подушки. В целом хочется отметить, что любому застройщику посчитать толщину плиты можно самостоятельно, достаточно иметь минимальные математические знания.

Зато, если сразу сделать расчет фундаментной плиты, то можно в общем контролировать расходы строительных материалов, и следить за недобросовестными строителями, а также четко определиться с размерами дома из газобетона или кирпича. Необходимое количество материалов Вы так же можете посчитать на нашем онлайн калькуляторе.

Виды и строение плитного фундамента

Под плитным фундаментом понимают основание, выполненное в форме плоской плиты из бетона и арматуры. Выделяют два типы конструкций (с подвидами), различающихся по несущей способности. Они приведены в таблице.

Таблица – Классификация плитных оснований с их характеристикой

Монолитный Сборный
1 цельная железобетонная конструкция, занимающая всю площадь под возводимым сооружением создается из готовых стандартизированных заводских изделий
2 делится на такие виды: простые плиты, шведские утепленные (УШП), усиленные их укладывают на ровную, предварительно уплотненную, поверхность при помощи специального оборудования
3 у простых — нижняя плоскость ровная такие конструкции неустойчивы к подвижкам почвы, даже небольшим
4 у усиленных — она содержит расположенные в расчетном порядке ребра жесткости, а шведские плиты – это разновидность усиленного типа подходят в качестве опоры для деревянного сооружения на стабильных грунтах (непучинистых, каменистых)

При почвенных подвижках движется полностью все возведенное здание, что сводит к минимуму возможность деформации отдельных его частей. Поэтому плитные основания называют плавающими и применяют в следующих случаях:

Толщина монолитного плитного фундамента состоит из нескольких частей:

Применение плитного основания под дом требует расчета толщины фундамента и количества рабочего материала.

Плитный фундамент для дома из газобетона

Обустройство плитного основания для дома из газобетона

При строительстве дома из газобетона придерживаются тех же требований на этапе изысканий. Определяется уровень вод, наличие пучения и качество почв.

Для возведения газобетонного строения на грунтах с малой несущей способностью и при сильной насыщенностью влагой, единственным рациональным решением будет устройство монолита. Это могут быть сплошные монолитные конструкции или решетчатый тип основания.

Основное отличие от фундамента для гаража – основание под дом требует обязательной теплоизоляции. Этап утепления можно подразделить на два: укладка экструдированного пенополистирола и устройство «теплых полов».

С учетом отличий от устройства гаражного основания, этапы по подготовке плиты для дома из газобетона (размеры 7х8 м), можно свести к следующим:

  1. Подготовка котлована (глубина 75 см.) с дополнительными выступами по периметру (на величину, равную глубине промерзания).
  2. Прокладка коммуникаций.
  3. Устройство подушки из песка (толщина – 20см.)
  4. Укладка геотекстиля. Его задача – предотвратить заиливание дренажной системы и размывание песка.
  5. Разводка дренажной системы (только, если уровень вод высокий).
  6. Засыпка смеси гравия с песком – до 20см, утрамбовка и проверка на горизонтальность.
  7. Установка опалубки (съемной или нет). В случае установки несъемной опалубки, она дополнительно утеплит фундамент, и сыграет роль формы для заливки бетоном.
  8. Утепление из экструдированного пенополистирола (горизонтальное) с соблюдением небольшого угла наклона.
  9. Укладка гидроизоляции: плотный полиэтилен, полимерно-битумные материалы и прочие.
  10. Однако при выборе в качестве утеплителя рулонных материалов, выполняется заливка тонкого слоя «тощего» бетона (марка М100).
  11. Укладка утеплителя на верхнюю часть основания. Те же листы из пенополистирола слоем 20см.
  12. Перевязка двухуровневого каркаса из арматуры и укладка труб для «теплого пола».
  13. Заливка раствора бетона.
  14. Обеспечение ухода за готовым основанием (смотрите выше).

Следует помнить, что газобетон – достаточно хрупкий материал, и стены дома из него могут подвергаться серьезным деформациям

Поэтому на этапе проектирования жилого строения из газобетона необходимо особое внимание уделить выбору и расчету фундамента

Производим расчет плитного фундамент

Самым важным моментом в расчете является определение толщины плиты основания здания. Полный и наиболее точный расчет производит профессиональный строитель, имеющий соответствующий уровень знаний, опыта проектирования. Но на это нужно время, деньги и наличие профессионала. Частному непрофессиональному застройщику с небольшим превышением материалоемкости и меньшей точностью может быть достаточно более простого расчета фундаментной плиты.

Например, у вас пески мелкие со средней плотностью. Они выдерживают удельное давление фундамента в 0,35 кг/см2.

2. Рассчитываем общую массу будущего дома

3. Рассчитываем удельное давление здания на грунт

Рассчитанная общая масса здания делится на площадь фундаментной монолитной плиты. Получаем удельное давление здания на грунт (без веса фундамента). Определяем необходимый вес плиты.

4. Рассчитываем оптимальный объем и толщину фундамента

Массу плиты делим на плотность железобетона, равную примерно 2500 кг/куб. м. Объем делим на площадь плиты, получаем ее толщину.

5. Округляем полученную толщину

Округляем полученную толщину до большего и меньшего значений, кратных размеру строительного шага 50 мм. Выбираем подходящее значение и, учитывая его, пересчитываем массу фундаментной плиты. Сложив полученную массу с массой дома, рассчитываем удельное давление на грунт.

Затем сравниваем полученные цифры с табличными характеристиками грунта площадки. Разброс должен быть менее ± 25%.

Что нужно знать при определении размеров фундамента

Чтобы выбрать необходимый оптимальный размер фундамента, обеспечивающий надежность всего строения, нужно знать:

Допускается свес стен над фундаментом на ширину 10-13 см, но не более. Это объясняется тем, что железобетон имеет высокую прочность, намного выше прочности стеновых материалов, поэтому может выдержать нагрузку от более широкой стены, а узкий фундамент, позволяет сократить расход бетона и арматуры.

Определяемся с подошвой фундамента

Расчет ширины фундамента определяется в зависимости от ширины его подошвы, которая рассчитывается исходя из нагрузок, давящих на фундамент. Фундамент, в свою очередь, оказывает давление на грунт.

В итоге получается, чтобы правильно рассчитать размер фундамента необходимо знать свойства грунта на месте строительства.

Если грунт на участке пучинистый, а дом предполагается строить из кирпича или бетонных блоков, то лучшим вариантом выбора фундамента будет – заглубленный. А поскольку фундаменты такого типа устраиваются ниже уровня промерзания почвы, то высота ленточного фундамента для дома будет в пределах  1–2,5 м до уровня земли.

Закладка фундамента на пучинистом грунте

Для небольших строений – бани, гаража или дачного домика, вполне подойдет мелкозаглубленный фундамент с высотой от основания до верха в пределах 60-80 см. При этом в земле будет находиться 40-50 см высоты фундамента, остальная часть будет выступать над уровнем почвы и являться цоколем строения. Несмотря на малую высоту, прочность фундамента будет гарантирована свойствами бетона и арматурного каркаса.

Перед тем, как рассчитать ширину ленточного фундамента, необходимо подсчитать нагрузки, которые можно легко определить, зная размеры всех конструкций стен, крыши и удельный вес используемых материалов. К этим нагрузкам добавляется вес людей и всего того, что будет находиться в доме – мебели, бытового оборудования и прочего.

Размеры подошвы ленточного  фундамента рассчитываются таким образом, чтобы  нагрузка на основание не была больше допустимых нагрузок на грунт в данном месте строительства.

Рассчитывая ленточный фундамент, мы узнаем высоту и ширину, после чего определяем:

Как видите, размеры фундамента позволяют узнать многое для устройства надежного основания.

Первым делом необходимо определить глубину заложения фундамента ленточного заглубленного. Для этого нужно знать глубину промерзания грунта в вашем регионе в зимний период. Все это можно найти в строительных справочниках.

Глубина промерзания грунта в разных регионах

Производя расчет, сначала задают предварительные размеры фундамента (ширину подошвы, высоту), ориентируясь на конструктивные особенности дома. Если несущая способность грунта больше, чем давление здания на грунт, то выбранные размеры оставляют без изменения, в противном случае, размеры подбирают, чтобы расчетное сопротивление грунта не было меньше, чем удельное давление веса здания.

А если, ко всему прочему, есть основание полагать, что на участке высокий уровень грунтовых вод, то расчет фундамента и оценку грунта лучше всего заказать у специалистов, чтобы не рисковать вложенными в строительство деньгами. Потому что  пучинистые грунты со временем могут изменять свои свойства под действием некоторых факторов, таких, например, как изменение уровня грунтовых вод.

Самостоятельно узнать высоту ленточного фундамента над землей можно, воспользовавшись онлайн-калькулятором, где программа сама рассчитает и площадь подошвы фундамента, и его высоту, и толщину песчаной подушки на основании данных о вашем грунте.

План фундаментной плиты, сбор нагрузок на плиту

Одной из причин такого наплевательского отношения к компьютерам, существующим теориям и методикам расчета, программному обеспечению и прочим достижениям современной науки и техники являются небольшие размеры дома, ведь мы все-таки не завод собрались строить. А потому некоторый запас по прочности, получаемый при упрощенном расчете, и соответственно перерасход материалов могут обойтись дешевле, чем заказ расчета у специалистов.

Пример расчета монолитной фундаментной плиты

Далее будет рассматриваться расчет сплошного фундамента для некоего условного дома размерами 8.8х13.2 м, у которого также есть внутренние стены. Таким образом требуется рассчитать не просто некоторую плиту, опертую по контуру, а некую статически неопределимую конструкцию с дополнительными опорами посредине. При этом план первого этажа выглядит так:

Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.

Несколько необходимых пояснений:

План 2 этажа не приводится, предполагается, что он приблизительно такой же как и план 1 этажа. Отметка верха фундаментной плиты -0.400 м. Отметка пола 1 этажа +0.100 м. Таким образом подземная часть стен (или часть фундамента под стены) составляет 0.5 м (конструктивные аспекты устройства фундамента под стены в данной статье не рассматриваются). Пол 1 этажа - доски по лагам, перекрытие 1 и 2 этажа - металлические балки (см. рис. 345.1.б). Поэтому при расчете монолитной плиты используется приведенный план 1 этажа (рис. 345.1.в) на котором показаны нагрузки от стен на фундамент с учетом перераспределения нагрузок, при условии, что под дверными проемами фундамент под стены также делается. В итоге под оконными проемами с учетом того, что расстояние от низа проема до верха фундаментной плиты составляет 0.8 (от пола до подоконника) + 0.5 = 1.3 м, нагрузку от стен можно принимать равномерно распределенной по всей длине стены.

Все стены дома планируются из газобетона D600, толщина всех стен составляет 40 см. Над перекрытием 2 этажа планируется двухскатная кровля из профнастила по деревянным стропилам. Предполагаемое место строительства - живописное село под Киевом. Бурение скважин и прочие мероприятия, связанные с геологоразведкой, не планируются. Ожидаемый уровень грунтовых вод в весеннее время -0.500 м, определен опять таки не бурением скважин, а по рассказам жителей села, у которых весной затапливает подвалы.

Так как геологов в селе никогда не видели, тем не менее даже глинобитные хаты, простоявшие лет 100, в селе имеются, то даже если основанием дома будет самая пористая глина, расчетное сопротивление грунта составит Ro = 1 кг/см2 (согласно таблицы 3, приложения 3 к СНиП 2.02.01-83* "Основания и сооружения").

Конечно, можно воспользоваться формулами, приведенными в том же СНиП, и вычислить расчетное сопротивление грунта более точно, но с учетом того, что основание определено нами на глаз (как минимальное из возможных), не будем слишком углубляться в теорию оснований и сооружений, а перейдем к расчету плиты. Даже если действительное сопротивление грунта будет в 2 или даже в 3 раза больше, ничего страшного в этом нет, только дом будет стоять еще дольше.

Сбор нагрузок на фундамент

1.1 При ориентировочной толщине плиты 30 см плоская равномерно распределенная нагрузка на грунт от веса плиты составит:

qфунд.плиты = 2500х1.2х0.3 = 900 кг/м2 (0.09 кг/см2)

где 2500 - объемный вес железобетона, принимаемый для расчета при проценте армирования до 1% (вряд ли у нашей плиты процент армирования будет больше)

1.2 - коэффициент надежности по нагрузке

1.2. Нагрузку от пола 1 этажа (доски по лагам, выставленным на каменные столбики) можно считать условно равномерно распределенной, так как столбиков будет много, к тому же в теле фундамента плиты нагрузка от столбиков будет дополнительно перераспределяться. Таким образом расчетная нагрузка от пола 1 этажа составит:

qпол1эт. = 500х1.2 = 600 кг/м2 (0.06 кг/см2)

где 500 - нагрузка на пол и собственный вес пола

Общая равномерно распределенная нагрузка составит:

qф = 900 + 600 = 1500 кг/м2

Все остальные нагрузки будут рассматриваться как линейные равномерно распределенные, так как будут передаваться через стены на фундаментную плиту. А при рассмотрении метра ширины или длины плиты нагрузки, передаваемые стенами, могут рассматриваться, как сосредоточенные.

2.1. Нагрузка от подземной части стен (бетон) на расчетный метр ширины или длины плиты составит:

Qфунд.части стен = 2500х1.2х0.5х0.5 = 750 кг

2.2. Нагрузка от стен из газобетонных блоков марки D600 при общей высоте стен 6 м составит:

Qстен = 600х1.3х6х0.4 = 1872 кг

В данном случае коэффициент надежности по нагрузке (γ =1.3) дополнительно учитывает отделку стен внутри и снаружи здания.

2.3.1. Нагрузка от перекрытий на наружные стены составит:

Qнар.стен = 600х1.2х3 + 300х1.2х3 = 3240 кг

где 600 = 400 + 200 - нагрузка на перекрытие 1 этажа (200 - возможный вес конструкции перекрытия)

300 = 150 + 150 - нагрузка на перекрытие 2 этажа (чердачное перекрытие)

2.3.2. Нагрузка от перекрытий на внутреннюю стену составит:

Qвн.стены = (600 + 300)1.2х6 = 6480 кг

Снеговая нагрузка для Киева - 160 кг/м2. Вес кровли и стропильной системы - около 20 кг/м2. При этом распределение снеговой нагрузки и веса стропильной системы будет зависеть от конструктивного решения стропильной системы. В данной статье эти вопросы не рассматриваются, более подробно с принципами расчета стропильных систем можно ознакомиться здесь. При устройстве стропильной системы с подкосами большая часть этой нагузки будет передаваться внутренней стене (если таковая имеется), на которую опирается лежень и подкосы. Однако в нашем случае (см. рис. 345.1.в) в большом помещении такой внутренней стены нет, а стена в правой части здания имеет достаточно широкий дверной проем. В итоге нагрузка на стены, как наружные так и внутренние, в правой и левой частях дома будет разной. Распределение нагрузок на стены мы сделаем на основании следующего примера. Конечно с точки зрения расчетов было бы проще планировать дом с симметричными правой и левой частью, однако с точки зрения бытовых удобств план дома может быть еще более сложным, чем показано на рис. 345.1.

3.1.1. Для всего здания нагрузка от кровли на наружные стены (на рис.345.1.в) показаны более светлым цветом) составит:

Qкровли на нар.стены = (160 + 20)х1.2х4.5х0.25 = 243 кг

где 4.5 - длина горизонтальной проекции стропил, м.

0.25 - коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами.

3.1.2. Для левой части здания нагрузка от кровли на наружную и внутреннюю стены (на рис.345.1.в) показаны более темным цветом) составит:

Qлкровли на стены = (160 + 20)х1.2х4.5х0.75/2 = 364.5 кг

где 0.75 - коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами

2 - коэффициент, учитывающий распределение нагрузки на 2 стены

3.1.3. Для правой части здания нагрузка от кровли на внутреннюю стену (с большим дверным проемом) составит:

Qпкровли на вн.стену = (160 + 20)х1.2х4.5х0.75 = 729 кг

Теперь можно приступать к расчету фундаментной плиты, но сначала не мешает ознакомиться с основными положениями, принимаемыми при подобном расчете.

Детали и изоляция фундамента на основе плиты, Руководство по строительству

Плита на ровном фундаменте, рабочий проект; основы

Существует множество различных почвенных условий и соответствующих конструкций плит. На этой странице рассказывается о том, как построить бетонную плиту с утолщенными краями на основе FPSF на почве с высоким уровнем грунтовых вод, чтобы предотвратить морозное пучение, предварительно установив дренаж под плитой.

Связанная плита на фундаментном фундаменте Страницы:

Ниже приводится техническое руководство по строительству монолитного дома.Конструкция и размеры любой фундаментной плиты будут определяться размером и дизайном здания, которое будет стоять на ней, а также условиями почвы, на которую будет залита плита. Всегда консультируйтесь с инженером перед началом строительства, так как он почти наверняка понадобится вам для штамповки ваших чертежей, чтобы ваш фундамент прошел через Код.

Детали конструкции неглубокого фундамента с защитой от замерзания или изоляции FPSF для плиты на уровне

Плита на грунте, шаг за шагом Инструкции для проблемных обширных грунтов и высоких уровней грунтовых вод

РАССТОЯНИЕ для плиты на фундаментном уровне:

Примечания по выкопке плиты на фундаментном уровне:

1) Начиная с траншеи для щебня для несущей части фундамента (согласно инструкциям инженера), гравийный грунт может быть более доступным вариантом, чем щебень.

2) Попросите вашего подрядчика защитить верхний слой почвы для будущего использования. Вынутый верхний слой почвы должен быть помещен в специально отведенное место и защищен от вымывания водонепроницаемым покрытием, например, брезентом.

ДРЕНАЖ под плитой на фундаментном уровне:

Примечания для водостоков под FPSF или плитами на уровне:

1) Некоторые опытные строители предпочитают жесткие пластиковые желоба французского типа гибким желобам для увеличения прочности.

2) Наличие доступного Т-образного соединения для очистки является хорошей дополнительной функцией, поскольку они позволяют легко обслуживать в случае накопления отложений.

3) При решении проблемы бактерий, содержащих железо, основание траншеи из щебня потенциально может быть более долгосрочным решением, чем обычные французские водостоки. Это включает в себя включение уплотненного слоя камня под опорами.

ЗАПОЛНЕНИЕ перекрытия

СТРОИТЕЛЬНАЯ ОПАЛУБКА для плиты по сорт:

ОТВОД РАДОНОВЫХ ГАЗОВ с плитой на фундаментном фундаменте:

Радон - это радиоактивный газ природного происхождения, который образуется, когда уран, присутствующий в земной коре, начинает распадаться. Газ проникает в дома через трещины в плите. Облучение радоном является причиной примерно 16% смертей от рака легких в Канаде и является второй по значимости причиной рака легких после курения.

Министерство здравоохранения Канады рекомендует принимать меры по снижению уровней радона, когда концентрация радона превышает 200 Бк / м3.Воздействие радона в высоких концентрациях в течение длительного времени может подвергнуть вас риску рака легких. Чтобы узнать все о смягчении воздействия радона в домах, см. Здесь.

УСТАНОВКА МЕХАНИЧЕСКИХ СИСТЕМ СНИЖЕНИЯ РАДОНА:

Детальный проект Примечания:

Если вы планируете в конечном итоге построить вторую ванную комнату, попросите вашего подрядчика выполнить черновую подготовку перед заливкой плиты на грунт или неглубокий фундамент с защитой от замерзания (FPSF), поскольку очень сложно изменить водопровод после заливки.

ИЗОЛЯЦИЯ И ВОЗДУХ / ПАРОБАРЬЕРЫ ДЛЯ ПЛИТЫ МАРКИ:

1) Мы используем термин «воздух / пароизоляция», чтобы не путать их индивидуальные роли. Полиэтилен должен быть неповрежденным, без отверстий просто для удержания и удаления скоплений радонового газа под плитой. Если вы живете в районе с неизвестным загрязнением радоном или не собираетесь устанавливать систему отвода радона, дыры в полиуретане не являются проблемой, поскольку «пароизоляция» не должна быть герметичной или герметичной.Смотрите наши страницы пароизоляции для получения дополнительной информации.

2) Уровни изоляции в строительных нормах США и Канады различаются в зависимости от региона, но неизменно то, что они недостаточны для предотвращения потерь тепла через подвальные этажи и стоят домовладельцам больших денег. Региональные строительные нормы и правила будут требовать от 5 до 7,5 рандов, но удвоение этого показателя окупится всего за 2 года. Мы рекомендуем как минимум R15 в большинстве холодных климатов, и больше, если вы включаете лучистое тепло внутри плиты на фундаменте.

БЕТОННАЯ АРМАТИВНАЯ СЕТКА:

УСТАНОВКА ИЗЛУЧАЮЩЕЙ ТЕПЛОВОЙ ТРУБКИ В ПЛИТУ МАРКИ:

Именно здесь вы должны установить трубы для водяных излучающих полов или излучающих полов с воздушным обогревом.Финансовые вложения, вложенные в комфорт теплых полов, можно, вероятно, перенаправить на изоляцию. Лучистое тепло для пола - это комфортное тепло, но с достаточной изоляцией черного пола вы можете уменьшить дискомфорт от холода, связанный с бетонными полами, поддерживая их при комнатной температуре.

Примечание. Если вы выбрали водяной теплый пол с водяным подогревом, сантехнический подрядчик установит сеть трубопроводов из сшитого полиэтилена (PEX).Арматурную сетку часто используют как сетку для крепления трубопроводов. Пластиковые застежки-молнии отлично подходят для этого, но убедитесь, что концы обрезаны или закреплены, и не выступают над уровнем заливаемого бетона.

СОВЕТЫ ПО ЗАЛИВКЕ БЕТОНА ПЛИТЫ ПРИ КОНСТРУКЦИИ СОРТА:

Убедитесь, что подрядчик дождется подходящих погодных условий перед заливкой бетонной плиты FPSF. Согласно CMHC (Canada Mortgage and Housing Corporation), нельзя заливать бетон в замерзшую опалубку.Кроме того, бетон должен выдерживаться при температуре выше 10 ° C в течение трехдневного периода отверждения после его укладки, чтобы обеспечить надлежащую прочность и отделку поверхности без повреждений от мороза.

Когда вы будете готовы начать заливку бетона:

См. Другие плиты на страницах с информацией о сортах здесь:

Прочтите, как построить плиту на уклоне шаг за шагом, Построение плиты с утолщенной кромкой на уровне грунта, Плотные плиты для плохих почвенных условий или заполнение, чтобы избежать выемки грунта и восстановления почвы. Все, что вам нужно знать о строительстве дома с высокими эксплуатационными характеристиками, можно найти в руководстве по экологическому строительству Ecohome, страницы

.

.

Виды строительных нагрузок на композитные перекрытия и расчет

Композитные перекрытия - одна из важнейших систем перекрытий, используемых при возведении многоэтажных стальных конструкций. Обсуждаются различные типы нагрузок, действующих на плиту.

Типы и определение строительных нагрузок, обсуждаемых здесь, в основном основаны на спецификациях и рекомендациях Британского стандарта и Еврокода.

В статье рассматриваются типы строительных нагрузок, их величины и различные факторы, учитываемые при расчетах.

Обсуждаются следующие темы, касающиеся строительных нагрузок на композитные плиты:

1. Почему важно оценивать нагрузки на композитную плиту при ее строительстве?

2. Виды строительных нагрузок

Рис.1: Бетонная композитная плита

Почему важно оценивать нагрузки на композитную плиту во время ее строительства?

Очень важно определить и оценить строительные нагрузки на композитную плиту, чтобы предотвратить разрушение плиты во время строительства.

Если такой сбой произойдет, это не только приведет к гибели рабочих и рабочих, но и будет стоить очень дорого.

Следовательно, описание и расчет строительных нагрузок неоценимы.

Виды строительных нагрузок на композитные плиты

Типы строительных нагрузок на композитные плиты подразделяются на два основных класса:

Строительные нагрузки, возникающие при бетонировании

Строительные нагрузки на композитную плиту во время бетонирования складываются из веса рабочего, свежего бетона, трубопроводов, опалубки и несущих элементов, веса небольшого оборудования и ударных сил.

Строительные нагрузки, которые должен учитывать проектировщик, включают вес персонала, занимающегося бетонированием, и их количество не должно превышать 6 человек, и только четверо из них должны находиться вокруг выхода трубопровода.

Что касается нагрузки на опалубку и небольшое оборудование, их можно легко рассчитать и учесть во время проектирования.

Что касается бетонной нагрузки, указано, что высота бетона не должна быть больше уровня колена над настилом, и проектировщик учитывает нагрузку на бетон, который заливается соответствующим образом. Это гарантирует отсутствие чрезмерной ударной нагрузки.

Вес трубопровода, рассматриваемый проектировщиком конструкций, равен весу 150 мм трубы, заполненной бетоном.Эту нагрузку необходимо правильно распределить на больших площадях, используя подходящие средства, такие как древесина. Эта мера рекомендуется для предотвращения локальных повреждений террасной доски.

Другая нагрузка, возникающая при бетонировании и рассматриваемая проектировщиком, - это конус из бетона с ворсом высотой 20 см и основанием 100 см. Рекомендуется регулярно перемещать выпускное отверстие трубопровода, чтобы предотвратить слишком большое скопление. При использовании скипа для бетонирования необходимо контролировать расход бетона.

Существует вероятность укладки дополнительного бетона, если настил и стальные балки прогибаются, особенно когда требуется отделка плиты на определенном уровне. Укладку дополнительного бетона необходимо проводить после консультации с проектировщиком конструкций, чтобы проверить, допускается ли такая дополнительная нагрузка в соответствии с проектом.

Строительные нагрузки после бетонирования

Нагрузки, которые могут быть наложены на композитную плиту, включают мешки противопожарной защиты, бункеры для мусора, поддоны с блоками и другое оборудование.

Если эти нагрузки не превышают 1,5 кН / м 2 , то считается, что на бетон не накладываются дополнительные нагрузки и, следовательно, это не повлияет на нежелательное воздействие на недавно уложенную бетонную плиту.

Однако, если такие нагрузки превышают 1,5 кН / м. 2 , тогда необходимо учитывать прочность бетона, и такие нагрузки не следует прикладывать до тех пор, пока бетон не достигнет примерно 75 процентов своей прочности.

Если композитная плита подвергается нагрузке до возраста 28 дней, то прочность бетона следует оценивать путем испытания бетона, будь то цилиндрические или кубические образцы.

В проекте объекты, составляющие строительные нагрузки после бетонирования, размещаются на поддонах, которые устанавливаются на опорных балках.

Примеры строительных нагрузок по их величине, предусмотренной Британским стандартом, показаны в Таблице-1.

Таблица-1: Примеры строительных нагрузок и их величина, использованные при проектировании

Артикулы Нагрузки на композитную плиту после бетонирования, кН / м 2
Бетонный блок Поддон блоков высотой 1 м принимает нагрузку до 10
Кирпичи Поддон кирпича высотой 1 м может выдерживать нагрузку более 15
Сумки противопожарные Поддон с мешками высотой 1 м может быть эквивалентен загрузке 2 человек.5
Мешки с цементом Стандартный поддон из них весит 12

При наличии высоких строительных нагрузок следует проконсультироваться с проектировщиком конструкций, и такие нагрузки следует разместить на балках. Примеры тяжелых строительных нагрузок по их возможной величине, оказываемых на композитную плиту, можно увидеть в таблице 2.

Таблица-2: Обычные тяжелые нагрузки, оказываемые на композитный пол после бетонирования

Артикулы Тяжелые нагрузки на композитную плиту после бетонирования
Генераторы Сварочные генераторы могут прикладывать нагрузку до 50 кН
Вилочный погрузчик Вилочные погрузчики могут выдерживать нагрузку до 100 кН, не считая их динамической нагрузки
Противовесы крановые На каждом противовесе четко указано значение веса
Мобильная платформа доступа Потенциальная нагрузка от любых платформ мобильного доступа, используемых для установки услуг, отделки и т. Д.следует проверить.

Подробнее:

Стальные бетонные композитные балки

Причины чрезмерных прогибов железобетонных плит

Плоская плита - типы конструкции плоской плиты и их преимущества

Стальные композитные колонны - расчет и проектирование

Артикул:

  1. BS EN. Еврокод 1 - Воздействия на конструкции, часть 1-6: Общие действия - Действия во время выполнения.Европейский комитет по стандартизации. Брюссель, стр. 21-24. 2005. (1991-1-6: 2005).
  2. Дж. В. Рэкхэм, Дж. Х. Каучман, С. Дж. Хикс. Композитные перекрытия и балки с использованием стального настила: передовой опыт проектирования и строительства. Ассоциация производителей металлических покрытий и кровли в партнерстве с Институтом стальных конструкций. Аскот, стр. 81-83. 2009. (P300).
.

Как рассчитать количество стали для сляба?

В этом посте мы объясним, как рассчитать количество стали для сляба? Пример для односторонней и двухсторонней плиты.

Примечание. Для лучшего обзора прочтите этот пост в альбомном режиме, если вы используете мобильное устройство.

Надеемся, вы уже знакомы с

Если вы это пропустили, прочтите эти сообщения.

Краткое описание,

Односторонняя плита Ly / Lx> 2
Двунаправленная плита Ly / Lx
.

Расчет нагрузок на бетонную опалубку и расчет давления

Бетонная опалубка подвергается различным нагрузкам и давлению. Расчеты нагрузок на бетонную опалубку и давления описаны в этой статье.

Опалубки или формы очень важны для строительства сужений, поскольку свежая бетонная смесь удерживается на месте до тех пор, пока она не приобретет необходимую прочность, с помощью которой можно выдержать собственный вес.

Как правило, на опалубку могут действовать различные нагрузки.Вертикальные нагрузки являются одной из наиболее значительных нагрузок, действующих на опалубку, и возникают из-за собственного веса опалубки и литого бетона, а также динамической нагрузки рабочих в дополнение к их оборудованию.

Кроме того, на вертикальную опалубку действует внутреннее давление, вызванное поведением жидкого свежего бетона. Кроме того, обязательно наличие боковых распорок для достижения устойчивости против боковых сил, например ветровых нагрузок.

Расчет нагрузок и давления на бетонную опалубку

На бетонную опалубку действуют различные виды нагрузок и давлений:

  1. Вертикальная нагрузка
  2. Боковое давление бетона
  3. Горизонтальные нагрузки
  4. Специальные грузы

1. Вертикальные нагрузки на бетонную опалубку

Вертикальные нагрузки действуют на опалубку и могут состоять из статических нагрузок, таких как собственная нагрузка на опалубку, стальная арматура, встроенная в опалубку, формованный свежий бетон и временные нагрузки, такие как вес рабочих, оборудования и инструментов.

Рекомендуется рассчитывать вес материалов отдельно в случае тяжелой арматуры, чтобы указать точный удельный вес.

ACI 347-04: Руководство по опалубке бетона указывает, что для рабочих и их инструментов для укладки, таких как стяжка, вибраторы и шланги, должно быть не менее 2.При проектировании горизонтальной опалубки следует использовать динамическую нагрузку 4Kpa, а в случаях, когда используются моторизованные тележки и тележки, следует использовать минимальную временную нагрузку 3,6 кПа.

Кроме того, ACI 347-04 определяет комбинированную расчетную динамическую и статическую нагрузку не менее 4,8 кПа или 6 кПа, если используются моторизованные тележки.

Наконец, собственный вес опалубки рассчитывается на основе удельного веса и размеров различных частей опалубки. Вес опалубки существенно меньше собственного веса свежего бетона и динамической нагрузки конструкции.Вот почему припуск определяется как дополнительная нагрузка на квадратный метр для компонентов опалубки во время проектирования.

Исходное предположение составляет 0,239–0,718 кПа на основе опыта и проверяется после определения размера элемента. Эта оценка зависит от того, что общий вес опалубки составляет 0,239-0,718 кПа.

2. Боковое давление на Бетонная опалубка

На вертикальные опалубки, такие как стены и колонны, воздействует внутреннее давление, возникающее в результате накопленной глубины уложенного бетона.Во время вибрации и в течение короткого периода после вибрации свежий бетон, уложенный близко к верху и на небольшую глубину опалубки, ведет себя как жидкость и оказывает боковое давление на опалубку, равное вертикальному напору жидкости. Свежий бетон гранулирован с внутренним трением, но вибрации устраняют связи в смеси и создают жидкое состояние.

Существуют различные причины, такие как скорость укладки, температура бетона и внутреннее трение, которые влияют на боковое давление на глубине ниже контролируемой вибрацией и делают боковое давление меньше, чем давление жидкости.

Когда вертикальная укладка выполняется в медленном темпе, свежий бетон может успеть начать застывать. Более того, если температура бетона не низкая, время для начала схватывания не короткое.

Другие факторы, такие как движение поровой воды, создание трения и другие параметры, могут привести к снижению бокового давления. Различные типы цемента, добавки, заменители цемента, методы строительства могут влиять на уровень бокового давления.

В основном, давление распределения бетона в поперечном направлении, которое основано на испытаниях, изображено, как показано на Рисунке 1.Распределение начинается близко к вершине в виде жидкости и достигает пикового значения на более низком уровне. По конструктивным причинам предлагается, чтобы предельное давление было однородным при консервативном значении.

Рисунок-1: Типичное и предполагаемое распределение бокового давления бетона на опалубку

Расчет бокового давления на бетонную опалубку

ACI 347-04 указывают, что поперечное давление бетона рассчитывается по уравнению-1, если величина осадки свежего бетона превышает 175 мм и не укладывается с нормальной внутренней вибрацией на глубину 1.2 м или меньше.

Где:

P : Боковое давление бетона, кПа

: плотность бетона, кг / м 3

г : гравитационная постоянная, 9,81 Н / кг

h : Глубина жидкого или пластичного бетона от верха застройки до точки рассмотрения в форме, м

Однако в ACI 347-04 указано, что если величина осадки бетона не превышает 175 мм и размещается с нормальной вибрацией на глубину 1.2 м или менее, то боковое давление бетона рассчитывается следующим образом:

Боковое давление на бетонную опалубку колонн

Минимум 30Cw кПа, но ни в коем случае не более

.

Где:

P max : Максимальное боковое давление бетона, кПа

C w : Коэффициент удельного веса, указанный в

C c : Коэффициент химии, указанный в

R : Скорость укладки бетона, м / ч

T : Температура бетона во время укладки, o C

Боковое давление на бетонную опалубку стен

Боковое давление бетона для стен с нормой укладки менее 2.1 м / ч при высоте укладки не более 4,2 м.

Минимум 30Cw кПа, но ни в коем случае не более

.

Боковое давление бетона для стен со скоростью укладки более 2,1 м / ч и высотой укладки более 4,2 м, а также для всех стен со скоростью укладки от 2,1 до 4,5 м / ч.

Минимум 30Cw кПа, но ни в коем случае не более.

Таблица-1: Весовой коэффициент единицы, C w

Плотность бетона, кг / м 3 C w
Менее 2240 C w = 0.5 [1+ (масса 2320 кг / м 3 )], но не менее 0,80
2240 до 2400 1,0
Более 2400 C w = w / 2320 кг / м 3

Таблица 2: Коэффициент химии, C c

Тип цемента или смеси C C
Тип I, II и III без замедлителей 1 1.0
Тип I, II и III с замедлителем схватывания 1 1,2
Другие типы или смеси, содержащие менее 70 процентов шлака или 40 процентов летучей золы без замедлителей схватывания 1 1,2
Другие типы или смеси, содержащие менее 70 процентов шлака или 40 процентов летучей золы с замедлителем схватывания 1 1,4
смесь, содержащая более 70 процентов шлака или 40 процентов летучей золы 1.4

1 Замедлители схватывания включают любые добавки, такие как замедлители схватывания, замедляющие водоредукторы, замедляющие средние водоредуцирующие добавки или водоредуцирующие добавки высокого уровня (суперпластификатор), которые замедляют схватывание бетона.

Кроме того, для использования уравнения давления колонны определяются как вертикальные элементы, размеры в плане которых не превышают 2 м, а стены - это вертикальные элементы, по крайней мере, один размер в плане больше 2 м.

Наконец, в формах колонн внутреннее давление передается на внешние элементы связи на смежной стороне формы, которые используются в качестве звеньев между противоположными сторонами квадратной или круглой колонны. Кроме того, внутреннее давление в стеновых опалубках передается от фанеры, стоек или пластин к натяжным стяжкам, которые соединяют две противоположные стороны опалубки.

В дополнение к вышеупомянутым методам противостояния внутреннему давлению, обеспечение сопротивляющихся элементов, например, распорок, необходимо для противостояния внешним горизонтальным нагрузкам, которые имеют тенденцию опрокидывать стены, колонны, формы плит, как показано на Рисунках 2 и 3.

Рисунок 2: Схема крепления в опалубке перекрытий

Рисунок-3: Схема крепления в опалубке стен

3. Горизонтальные нагрузки на бетонную опалубку

Горизонтальные нагрузки могут возникать в результате таких сил, как ветер, сброс бетона, запуск и остановка оборудования, а наклонным опорам следует противопоставить правильно спроектированные распорки и берег.

Для строительства зданий предполагаемое значение этих нагрузок не должно быть меньше большего из 1.5 кН / м кромки пола или 2% от общей статической нагрузки как равномерная нагрузка на погонный метр кромки плиты, эти допущения указаны в ACI 347-04.

Стяжки для стеновых опалубки должны быть спроектированы таким образом, чтобы соответствовать требованиям минимальных ветровых нагрузок ASCE 7-10 с поправками на более короткие интервалы повторения, которые можно найти в ASCE 37-02

.

Для стеновых конструкций, подверженных воздействию элементов, в качестве минимальной расчетной ветровой нагрузки используется 0,72 кПа или больше. Стену от распорок необходимо рассчитывать на нагрузки не менее 1.5 кН / м длины стены, которая наносится сверху.

4. Особые нагрузки на бетонную опалубку

Требуется спроектировать опалубку для нестандартных условий строительства, которые могут возникнуть, например, сосредоточенные нагрузки на арматуру, несимметричное размещение бетона, механические удары бетона, подъем, нагрузки при опалубке.

Возведение стен на пролетах из плиты или балок, которые могут создавать другую схему нагружения до затвердевания бетона, чем та, на которую рассчитана несущая конструкция, является примером особых условий, которые следует учитывать при проектировании формы.

Подробнее:

Виды опалубки (опалубки) для бетонных конструкций

Пластиковая опалубка для бетона - применение и преимущества в строительстве

Соображения при проектировании бетонной опалубки - Основа для проектирования бетонной опалубки

Критерии проектирования деревянной бетонной опалубки с расчетными формулами

Время снятия опалубки и технические характеристики

Измерение опалубки

Опалубка (опалубка) для различных элементов конструкции - балок, перекрытий и т. Д.

Контрольный список безопасных методов опалубки

.

% PDF-1.7 % 2553 0 объект > endobj xref 2553 87 0000000016 00000 н. 0000003771 00000 н. 0000004094 00000 н. 0000004148 00000 п. 0000004278 00000 н. 0000004623 00000 н. 0000005297 00000 н. 0000005336 00000 н. 0000005451 00000 п. 0000005722 00000 н. 0000006384 00000 п. 0000007047 00000 н. 0000007606 00000 н. 0000007863 00000 н. 0000008471 00000 п. 0000009024 00000 н. 0000009275 00000 н. 0000009876 00000 н. 0000010239 00000 п. 0000055144 00000 п. 0000081857 00000 п. 0000111042 00000 н. 0000113693 00000 н. 0000123521 00000 н. 0000123779 00000 н. 0000124128 00000 н. 0000189671 00000 н. 0000189746 00000 н. 0000189834 00000 н. 0000189992 00000 н. 0000190049 00000 н. 0000190301 00000 н. 0000190358 00000 н. 0000190466 00000 н. 0000190523 00000 н. 0000190631 00000 н. 0000190688 00000 н. 0000190847 00000 н. 0000190903 00000 н. 0000191065 00000 н. 0000191181 00000 н. 0000191370 00000 н. 0000191426 00000 н. 0000191580 00000 н. 0000191706 00000 н. 0000191861 00000 н. 0000191917 00000 н. 0000192025 00000 н. 0000192149 00000 н. 0000192287 00000 н. 0000192343 00000 п. 0000192455 00000 н. 0000192511 00000 н. 0000192633 00000 н. 0000192689 00000 н. 0000192799 00000 н. 0000192855 00000 н. 0000192971 00000 н. 0000193027 00000 н. 0000193145 00000 н. 0000193201 00000 н. 0000193257 00000 н. 0000193449 00000 н. 0000193505 00000 н. 0000193631 00000 н. 0000193687 00000 н. 0000193797 00000 н. 0000193853 00000 н. 0000193997 00000 н. 0000194053 00000 н. 0000194175 00000 н. 0000194231 00000 п. 0000194287 00000 н. 0000194343 00000 н. 0000194487 00000 н. 0000194543 00000 н. 0000194599 00000 н. 0000194656 00000 н. 0000194842 00000 н. 0000194899 00000 н. 0000195051 00000 н. 0000195108 00000 н. 0000195262 00000 н. 0000195318 00000 н. 0000195374 00000 н. 0000003544 00000 н. 0000002082 00000 н. трейлер ] / Предыдущая 2190065 / XRefStm 3544 >> startxref 0 %% EOF 2639 0 объект > поток h ޼ UyPWv $] ݈! hF1B> PAVT DQXjkgmcNq: cn2Ӿ} ~ ^

.

Смотрите также