Главное меню

Расчет фундамента под оборудование


Пример расчета фундамента под оборудование — Студопедия.Нет

 

 

 

 

Рисунок 9 – Площадь подошвы фундамента

 

 

Данные для расчета.

 

Вес аппарата, кН Gм = 14,7;
Расстояние между осями фундаментных болтов, мм А = 1880 В = 1300;
Высота наземной части фундамента, мм Н1 = 100;
Глубина заложения фундамента, мм Н2 = 500
Нормативное давление на грунт, кПа Rн = 200;
Коэффициент уменьшения* α = 0,5;
Удельный вес бетона, кН/м3 γ = 20.

*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).

 

1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного

Р = (Gм + Gф)/(α F) ≤ Rн , (45)

где Gм – вес фундамента:

V – объем фундамента, м3

Н – общая высота фундамента, м

 

Н = 100 + 500 = 600 мм = 0,6 м

   F – площадь фундамента, м2

F = (А + 2∆) (В + 2∆) (49)

  ∆ - припуск на каждую сторону, ∆ = 0,1 м

F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м2

V = 6,36∙0,6 = 3,8м3

Gф = 3,8∙20 = 76 кН

Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН

28,5 ≤ 200

Условие выполняется.

2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента

Из пропорций находим предельные эксцентриситеты е и е1, мм

100мм – 5мм

2080 – е

1500 – е1

е = 2080∙5/100 = 104мм

е1 = 1500∙5/100 = 75 мм

Расчет приспособлений для монтажа оборудования.

Расчет строп.

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).

Канатные стропы рассчитываются в следующем порядке (рисунок 10).

1. Определяем натяжение в одной ветви стропа, кН:

(50)

где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;

m – общее количество ветвей стропа;

 - угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).

2. Находим разрывное усилие в ветви стропа, кН:

(51)

где kз- коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).

3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.

Рисунок 10. Расчетная схема.

Пример расчета.

Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.

Решение.

1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.

2. Находим разрывное усилие в ветви стропа.

3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:

временное сопротивление разрыву, МПа…………………..1960

разрывное усилие, кН………………………………………….338

диаметр каната, мм………………………………………….....23,5

масса 1000м каната, кг………………………………………...2130

Расчет траверс.

В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.

Расчет траверс, работающих на изгиб.

1. Подсчитываем нагрузку, действующую на траверсу, кН

, (52)

где GO – масса поднимаемого груза, кг,

  kП – коэффициент перегрузки,  kП=1,1

  kД – коэффициент динамичности,  kД=1,1

2. Определяем изгибающий момент в траверсе,

(53)

где а – длина плеча траверсы, см.

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см3.

(54)

где m и R выбирают по приложению Г (таблицы 3 и 4).

Рисунок 11. Расчетная схема траверсы, работающей на изгиб.

4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.

Пример расчета.

Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).

Решение.

1. Подсчитываем нагрузку, действующую на траверсу:

2. Определяем изгибающий момент в траверсе:

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:

4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.

5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см3, определяем момент сопротивления сечения траверсы в целом:

> WТР=1624 см3

что удовлетворяет условию прочности расчетного сечения траверсы.

расчет, устройство и установка основания для ударных механизмов

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования).  Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

особые требования, виды, проектирование, формулы расчета и особенности применения

На сегодняшний день существует СП для фундаментов под оборудование. СП - это свод правил, номер которого 26.13330.2012. Эти правила устанавливаю все необходимые требования, которые касаются не только практической части заливки фундамента, но и расчетной части, и проектировки.

Требования к фундаменту

Фундамент под оборудование должен соответствовать определенным требованиям, чтобы он мог успешно эксплуатироваться. Соблюдать их очень важно, так как обычно основание будет подвергаться воздействию агрессивных сред, динамическим нагрузкам, которые будет создавать промышленное оборудование, и т. д.

Необходимо, чтобы фундамент соответствовал следующим требованиям:

Стоит отметить, что прочность и химическая стойкость - это те свойства, от которых напрямую зависит срок службы фундамента. Теми веществами, которые негативно влияют на фундамент, являются:

Описание параметров

Кроме двух основных свойств, очень важно, чтобы фундамент под оборудование мог успешно гасить вибрации, которые создает рабочий механизм. Это является очень важной функцией, так как если вибрации будут постоянно воздействовать на основание и агрегат, то от этого снизится срок эксплуатации. В некоторых случаях это негативно будет сказываться даже на соседних устройствах. Сами по себе вибрации возникают из-за того, что в промышленных машинах постоянно работают неравномерно расположенные вращающиеся детали.

Что касается совпадений с проектом и расчетами, то здесь важно отметить, что кроме стандартных высоты, длины и ширины, должны совпадать даже места расположения креплений оборудования. Допускаются лишь самые минимальные расхождения между проектом и фактической конструкцией.

Здесь можно добавить, что устройство фундамента под оборудование, которое весит до 2 т и считается малогабаритным, не всегда необходимо. Если такой аппарат помимо небольшого веса еще и не вызывает сильных динамических нагрузок во время работы, то его можно монтировать непосредственно на железобетонный пол. В некоторых случаях можно установить его на межэтажное перекрытие.

Регламентации по обустройству

Выше были рассмотрены основные требования, которым должен удовлетворять любой фундамент, предназначенный для установки на нем промышленного оборудования. Однако существуют и другие требования - для фундамента под оборудование с динамическими нагрузками, которым он должен соответствовать.

  1. Проектировочные работы, как и практическая часть по обустройству основания, должны проводиться лишь компетентными специалистами, которые, кроме этого, имеют еще и опыт проведения данного вида работ.
  2. Для того чтобы создать правильный и полноценный проект, необходимо, чтобы в наличии были все требуемые данные.
  3. Во время устройства фундамента под оборудование необходимо периодически проводить контроль качества.
  4. Очень важно, чтобы действия всех участников рабочего процесса были строго скоординированы.
  5. Те фундаменты, что уже были возведены, должны эксплуатироваться лишь с тем оборудованием, для которого они предназначаются. Для этого имеется техническая документация.
  6. Для строительства можно использовать лишь те материалы, которые подходят по проектной документации.
  7. В будущем нужно проводить обслуживание фундамента, чтобы конструкция эксплуатировалась максимально долго.
  8. В качестве крепления рекомендуется использовать максимально простые детали. К примеру, это могут быть анкерные болты, которые вмуровываются в бетон.

Разные виды агрегатов

При устройстве фундамента под оборудование, необходимо понимать, что в настоящее время существует огромное количество разных машин, которые объединены в группы. Для каждой группы необходимо создавать основание по своим правилам и с разными требованиями.

В настоящее время существуют следующие виды групп, для которых нужно возводить отдельные фундамент.

  1. Агрегаты, у которых имеется криво-шатунный механизм. Сюда можно отнести поршневые компрессоры, лесопильные рамы и прочее.
  2. Отдельной группой выступают турбоагрегаты, к примеру, турбокомпрессоры.
  3. Некоторое электрическое оборудование, такое как моторы-генераторы также нуждаются в основании.
  4. Обустраивается фундамент под промышленное оборудование прокатного типа.
  5. Отдельной группой выступают станки для резки металла и прессы разного предназначения.

Виды оснований

Далее будут представлены разные виды оснований, которые используются для монтажа различного оборудования:

  1. Наиболее простой вариант - это фундамент-плита без подвала. Здесь существует ограничение, которое заключается в том, что установить такое основание можно лишь на первом этаже. Кроме того, плита получается достаточно дорогая, так как приходится тратить значительное количество средств на строительные материалы. Однако есть и хорошее преимущество, которые заключается в том, что фундамент отлично гасит вибрации.
  2. Второй вариант - это рамная основа, которая снабжена ростверком из балок. Данное основание характеризуется тем, что способно хорошо переносить колебания с высокой частотой. По этой причине очень часто применяется для монтажа механизмов, у которых наблюдается ударный принцип действия.
  3. Третий вариант - это ступенчатая опора. Такое основание возводится только со второго этажа. В данном случае нагрузка от оборудования будет передаваться внешними стенами, а также перегородками.
  4. Последняя разновидность фундамента под динамическое оборудование - это фундамент-перекрытие, имеющее подвал. Обустраивать такое основание можно лишь выше первого этажа. Все вибрации, которое будет создавать оборудование, в данном случае будет передаваться перекрытиям, то есть перекрытиям каркаса. Сам по себе фундамент способен выдерживать лишь незначительные колебания.

На сегодняшний день довольно популярными становятся такие основания, которые имеют пружины или же виброопоры другого типа. Они часто используются для установки механизмов, относящихся к легкому и среднему типу по своему весу. Существует такое приспособление, как демпфер, которое предназначено для гашения вибраций. Лучше всего оно подходит для установки под основы рамного типа. Стоит отметить, что фундамент под технологическое оборудование делится на два вида.

Первый тип - это бесподвальный фундамент. У него практически полностью отсутствует часть, которая располагается над полом. Второй же тип - подвальный, у которого данная часть развита достаточно сильно.

Фундаменты группового и индивидуального типа

На сегодняшний день фундаменты под монтаж оборудования могут быть индивидуальные и групповые.

Что касается группового вида, то данный фундамент предназначается для размещения нескольких промышленных агрегатов легкого или среднего веса - до 8 тонн. При этом у них должна быть жесткая станина, нормальная точность работы, а эксплуатироваться они должны в основном в статическом режиме. Толщина обычно составляет от 150 до 250 мм. Жестко станиной считается та, у которой соотношение длины к высоте - не более чем 2 к 1.

Что же касается строительства фундамента под оборудование индивидуального типа, то в данном случае на основание устанавливается механизм, масса которого позволяет его отнести к среднему или тяжелому классу. Кроме этого, обычно такие механизмы характеризуются динамическими нагрузками среднего или значительного класса. Такое основание не только успешно гасит вибрации, но и изолирует агрегаты друг от друга. Это важно, так как в таком случае отсутствует колебания между ними.

Можно добавить, что машины, которые имеют средний или легкий вес, а также характеризуются статическим периодом работы, нередко монтируются прямо на железобетонный пол или же перекрытие. Если необходимо такое основание, можно дополнительно усилить бетонной стяжкой, чтобы не заливать отдельный фундамент.

Какие материалы используются для строительства

Так как фундамент должен быть очень прочным, устойчивым к вибрациям, а также к воздействию химических веществ, то и расходные материалы должны быть высокого качества, чтобы получить хорошее основание. Для обеспечения результата используют следующие расходные материалы:

Очень важно использовать качественный цемент для подвального и бесподвального фундамента. Если будут устанавливаться легкие агрегаты, то можно использовать марку М200 или М300. Если планируется монтаж тяжелого промышленного агрегата, то необходимо использовать марку М400. Цемент должен принадлежать к классу В15.

Стоит отметить, что при обустройстве фундамента в частном цеху или в домашней мастерской можно использовать в качестве исходного сырья бутовый камень. Редко, но все же иногда встречается фундамент кирпичного типа. То есть кирпичи укладываются на цементную основу. Здесь очень важно, чтобы грунтовые воды располагались достаточно глубоко. Чаще всего такая основа применяется только для тех машин, чья масса не превышает 4 тонн. Толщина фундамента обычно составляет минимум 50 см. Важно добавить, что в таком случае применение силикатного кирпича исключается.

Раньше довольно часто устанавливали легкие машины на деревянный пол, однако сейчас это практически исключено. Основной недостаток связан с тем, что дерево слишком сильно коробится, и очень быстро, из-за чего меняется форма основания. Деревянный пол можно использовать, но лишь в качестве временной основы.

Что касается крепления оборудования к основанию, то в данном случае всегда используется болтовое соединение, которое прописано в СП. Стоит лишь отметить, что если агрегат характеризуется высокими ударными нагрузками или сильными вибрациями во время работы, то используются болты не менее 42 мм, и съемного типа. Также очень важно, чтобы расстояние от нижнего конца болта до подошвы фундамента составляло не менее 10 см. На сегодняшний день популярным стало химическое анкерное крепление.

Проектирование

Проектирование фундаментов под оборудование - это первоначальный этап всей работы. В данном случае исходными данными для проведения проектировочных работ являются следующие факторы:

Еще одно важное требование, которое должен учитывать проектировщик - это воздействие агрессивных сред, а также защитные меры. Прежде чем начать строительство, необходимо провести гидрогеологическое инженерное исследование почвы, чтобы узнать ее характеристики. Если грунт считается рыхлым, то фундамент должен быть более массивным.

Расчетные работы

Расчет фундамента под оборудование - это следующий этап его строительства. Основой расчетов в данном случае станут два фактора. Первый из них - это несущая способность грунта, а второй - это статическая и динамическая нагрузка, которую будет оказывать монтируемое устройство. В данном случае необходимо рассчитать все так, чтобы сумма нагрузок статического и динамического типа, которые будут передаваться через подошву фундамента грунту, была равна несущей способности почвы.

При расчетах фундамента для оборудования важно вычислить статическую нагрузку. Она зависит от массы оборудования. Что касается расчетов динамической нагрузки, то она вычисляется по давлению, которое воздействует на ростверк фундамента. Стоит отметить, что давление, которое возникает из-за массы станка, необходимо корректировать, используя следующие коэффициенты:

Зная все три необходимые составляющие, не составляет труда провести все требуемые расчеты, чтобы получить точные характеристики, необходимые для основания конкретного станка.

Армирование фундамента под оборудование

Для того чтобы качественно и правильно провести армирование фундамента, необходимо знать несколько основных пунктов:

  1. Чтобы добиться максимальной прочности от армирования, необходимо закреплять прутья в "клеточку".
  2. В данном случае рекомендуется не использовать сварку для соединения прутьев, а скреплять их при помощи проволоки. Таким образом можно снизить количество швов и более хрупких соединений.
  3. Можно сделать конструкцию еще более прочной, если в углах конструкции загибать арматуру. Кроме того, само соединение лучше всего производить внахлест.

Стоит также отметить, что армирование фундамента разного типа производится разными методами. Наиболее трудоемкий - процесс армирования ленточного фундамента. Он требует больше всего затрат и строительных материалов. Можно проводить армирование плитного фундамента. Однако данный процесс достаточно сложный, а также требует высокой квалификации специалиста. Кроме того, рекомендуется иметь опыт такой работы.

Расчет фундамента под оборудование пример

9.5. ПРИМЕРЫ РАСЧЕТА КОЛЕБАНИЙ ФУНДАМЕНТОВ МАШИН С ДИНАМИЧЕСКИМИ НАГРУЗКАМИ (ч. 1)

Ниже приведены примеры расчетов массивных фундаментов на периодическую (гармоническую) и ударную нагрузки и пример расчета рамного фундамента на гармоническую нагрузку. Примеры расчетов фундаментов под машины можно найти в «Руководстве по проектированию фундаментов машин с динамическими нагрузками» [6].

Пример 9.1. Рассчитать фундамент лесопильной рамы. Расчет фундаментов лесопильных рам производится как для машин с кривошипно-шатунными механизмами по главе СНиП «Фундаменты машин с динамическими нагрузками». Целью расчета является определение размеров фундамента, соответствующих требованиям экономичности и обеспечивающих допустимый уровень колебаний.

Исходные данные: марка машины РД 76/6; масса машины 15 т; масса приводного электродвигателя 2 т; мощность приводного электродвигателя 90 кВт; частота вращения электродвигателя 720 мин –1 ; частота вращения главного вала nr = 320 мин –1 . Расчетные динамические нагрузки, координаты точек их приложения, координаты центра тяжести машины, размеры верхней части фундамента, диаметр, конструкция и привязка анкерных болтов и другие исходные данные для проектирования заданы в строительном задании завода — изготовителя машины на устройство фундамента. Схема нагрузок, действующих на фундамент, приведена на рис. 9.1. Допускаемые амплитуды горизонтальных и вертикальных колебаний фундамента для I гармоники должны быть не более 0,19 мм.

Решение. Конструкцию фундамента пилорамы принимаем массивной из монолитного железобетона. Фундамент состоит из нижней прямоугольной плиты размером 6×7,5 м и высотой 2 м, принятыми из условий расположения приводного электродвигателя, требований симметрии и оптимальной массы фундамента, и верхней скошенной части, принятой по технологическим условиям. Отметка засыпки грунта находится на уровне верха прямоугольной плиты. Материал фундамента — бетон марки М200, арматура — горячекатаная, круглая и периодического профиля, соответственно классов A-I и А-II.

Схема масс элементарных объемов фундамента и машины с привязкой их к осям фундамента, проходящим через центр тяжести подошвы фундамента, приведена на рис. 9.1. Масса пилорамы m1 = 15 т; масса скошенной части фундамента m 2 = 22,25 т; масса прямоугольной части фундамента m3 = 216 т; масса электродвигателя с подбеточкой m4 = 2+18 = 20 т.

Полная масса фундамента

mf = 22,25 + 216 + 18 = 256,25 т.

Масса пилорамы и электродвигателя привода

Масса всей установки

Находим координаты центра тяжести установки по оси Z . Статические моменты масс элементов установки относительно оси, проходящей через подошву фундамента, будут:

т·м.

Расстояние от центра тяжести установки до подошвы фундамента

м.

Находим координаты по оси X . Расстояние до центра тяжести установки по оси X

м.

Координату центра тяжести установки по оси Y не определяем, так как эксцентриситет до оси Y весьма мал ( 4 кПа. Проверяем условие (9.1) при γc = 1 и γc1 = 1. Среднее давление p = Q/A , где Q = mg , тогда

кПа 3 ;

Cφ = 2·44 140 = 88 280 кН/м 3 ;

Cx = 0,7·44 140 = 30 900 кН/м 3 .

Коэффициенты жесткости для естественного основания находим по формулам (9.8), (9.9) в (9.10), где Iφ = 6·7,5 3 /12 = 210,94 м 4

kz = 44 140·6·7,5 = 1 986 400 кН/м;

kx = 30 900·6·7,5 = 1 390 000 кН/м;

kφ = 88 280·210,94 = 18 623 000 кН/м.

Значения коэффициентов относительного демпфирования определяем по формулам (9.13) и (9.15):

; .

Расчетные динамические нагрузки (для первой гармоники возмущающих сил и моментов) определяем следующим образом:

тогда при Fv = 208 кН, Fh = 39 кН, e = 0,173 – 0,08 = 0,093 м и e1 = 5,95 – 1,516 = 4,434 м

M = 208·0,093 + 39·4,434 = 19,4 + 173 = 192,4 кН·м.

Амплитуды горизонтально-вращательных и вертикальных колебаний фундамента определяются по формулам:

;

;

;

.

Для вычисления по этим формулам амплитуд следует определить входящие в них дополнительные параметры:

с –1 ;

;

здесь значение θ = 1614,4 т·м 2 получено путем разбивки фундамента и машины на элементарные тела, вычисления для них собственных моментов инерции и добавления переносных моментов инерции, равных произведению масс элементарных тел на квадраты расстояний от их собственных центров тяжести до общего центра тяжести установки;

;

с –1 ;

кН·м ;

т·м 2 ;

с –1 ;

с –1 ;

;

;

;

;

.

; ;

;

;

;

;

;

;

;

;

;

;

;

.

Подставляя найденные параметры в соответствующие формулы находим:

= 0,111 мм –4 м = 0,12 мм;

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Фундамент для оборудования

Основания и фундаменты

Прошу прощения, если задам глупый вопрос (т.к. сам я не строитель).

Есть пожарный насос, стоит в помещении. Для него (я думаю) необходим фундамент. Где посмотреть методику расчета такого фундамента? Реально ли человеку не сталкивавшемуся с этим посчитать по этой методике (или нужны годы практики и тома справочников :shock:-)? Может бывают типовые фундаменты под оборудование?

ФУНДАМЕНТЫ МАШИН
С ДИНАМИЧЕСКИМИ НАГРУЗКАМИ

но если вы радикально не строитель, то я бы советовал обратиться к професионалом.
Обычно данный фундамент представляет из себя раму из двух 20 швеллеров с отверстиями поб болты обетонированную бетоном, или просто подливку по сетке из бетона кл. В15-В25 высотой 200-300 мм

Сообщение от str02:
ФУНДАМЕНТЫ МАШИН
С ДИНАМИЧЕСКИМИ НАГРУЗКАМИ

Самый запутаный и загадочный нормативный документ. Я не знаю никого из специалистов, кто бы мог толком сказать, как и к чему его применить. Что-бы проектировать фундамент под машину с динамикой, нужен сначала динамический анализ самой машины, чего обычно нет. Так что такие фундаменты делают на «глазок», по опыту, с запасом.

Какой насос еще не определились, по независящим от нас причинам. Скорее всего, это будет тип Д. Но планируемые параметры расход/напор обеспечивают агрегаты массой от 550кг. СНиП посмотрю, но начальство уже само склоняется к тому, чтобы отдать расчет проектному институту.

Масса фундамента 550*5(6)=>2,75т-3,3т 😯 ничего себе. Или по строительным меркам это мелочи?

Сообщение от Mzw:
СНиП посмотрю, но начальство уже само склоняется к тому, чтобы отдать расчет проектному институту.

В этом СНиПе, как я уже говорил, тебе мало что будет понятно. А отдавать такие фитюльки проектным институтам официальным договором — разоритесь. Если уж на то пошло, предложите какому-нибудь дядьке из того же института как халтурку. А так, по нашему производственному опыту — мелкие щековые дробилки массой 500 кг стоят на 1,4-2,0 кубах бетона мертво. А у них динамика поболее насосов.

Надежды юношей питают, сейчас чаще всего устанавливают китайское барахло и всевозможный самопал часто без какой бы то ни было документации. Может это я такой невезучий?

Сообщение от Mzw:
Ярослав, какие меры необходимо предпринять для виброизоляции. Хоть в двух словах для общего развития.

Существуют разные типы виброизоляции. Если вибрация идет в вертикальной плоскости, то иногда подвешивают оборудование, в этом случае динамика то загружает, то разгружает. Так подвешивают сортировки на заводах (весят они много). Если применить более простые методы, то это установка оборудования на виброизоляторах, пружинных, резиновых и пр. По пружинным и резиновым есть серия, правда сделана она не ахти. Также делают виброизоляцию самого фундамента, т.е. фундамент представляет собой стальную раму (может быть и ж/б корыто и еще что-либо) на который устанавливают оборудование, а этот фундамент ставят на несущие конструкции при помощи виброизоляторов. Вообще в литературе чаще описывают именно этот способ.

Обычно виброизоляцию применяют тогда когда нельзя погасить вибрацию увеличением массы фундамента, это актуально для оборудования на металлических площадках, в сейсмических районах и т.п.

Сообщение от Ярослав:
>Serge Krasnikov

Надежды юношей питают, сейчас чаще всего устанавливают китайское барахло и всевозможный самопал часто без какой бы то ни было документации. Может это я такой невезучий?

Проблему ф-тов с динамикой разделил бы на 2 проблемы:
— реальное проектирование,
— защита принятых решений.

В реальном проектировании существуют давно и успешно работающие аналоги — компрессора, технологическое оборудование и проч..
Вибрацию гасят балансировкой и массой фундамента. Соотношение вращающейся массы и фундамента 1 : 5, 1 : 10; у каждого свое.

СНиП действительно непростой, если на заниматься специально, то вузовских знаний маловато. По требованию всяких смотрящих прикладываю расчет по простенькой программе Стройэкспертизы из Тулы — частенько упоминается на Форуме и когда-то, кажется версия 7, в рекламных целях, именно ветвь расчета на динамику передавалась бесплатно.

Фундаменты под машины и оборудование с динамическими нагрузками .

Основные положения. Существует огромное разнообразие типов машин и оборудования, передающих через фундамент динамичес­

кие воздействия на грунты основания. По характеру динамического воздействия все они различаются на машины периодического и не­периодического, включая импульсное, действия. Динамические на­грузки, возникающие при работе таких машин, могут изменяться по различным законам и приводить к разным колебаниям системы «машины — фундамент — основание». Поэтому при едином теоре­тическом подходе практические приемы расчета и проектирования фундаментов различных групп машин и оборудования могут раз­личаться.

Общая задача проектирования фундаментов заключается в том, чтобы обеспечить нормальную работу установленных на них ма­шин и оборудования, исключить вредное воздействие вибрации на расположенные вблизи строительные и технологические объекты, удовлетворить требования санитарных норм в отношении уровня допустимых вибраций для обслуживающего персонала. При этом фундаменты должны быть экономичными и соответствовать со­временному технологическому уровню строительных, работ.

Расчет фундаментов производится на действие статических и ди­намических нагрузок.

Расчетные статические нагрузки определяются обычным спосо­бом (масса машины и вспомогательного оборудования, фундамента и грунта на его обрезах с коэффициентом перегрузки п— 1). Значения динамических нагрузок обычно даются заводом-изготовителем в техническом задании на проектирование фундамента. При отсут­ствии данных динамические нагрузки допускается определять по указаниям СНиП 2.02.05 — 87 «Фундаменты машин с динамичес­кими нагрузками».

В: соответствии с общими правилами основания и фундаменты под машины рассчитываются по двум группам предельных состоя­ний. По первой группе (по несущей способности) во всех случаях производится проверка среднего статического давления под подо­швой фундамента на естественном основании или расчет несущей способности свайного фундамента, а также выполняется расчет прочности отдельных элементов конструкции фундамента. Расчеты по второй группе (по деформациям) включают сопоставление на­ибольшей амплитуды колебаний фундамента с предельно допусти­мой для данного типа машин и, если это требуется по техническим условиям (например, для фундаментов турбоагрегатов), определе­ние неравномерных осадок, прогибов, кренов и т. п. и их сопостав­ление с предельными значениями, устанавливаемыми проектом.

При проектировании машин и оборудования с динамическими нагрузками применяют как фундаменты неглубокого заложения, так и свайные фундаменты. Фундаменты могут быть монолитные, сборно-монолитные и сборные. Форма и размеры фундаментов определяются особенностями оборудования и уточняются расче­том.

В практике часто применяют следующие: три конструктивных

Рис. 17.3. Основные конструктивные типы фундаментов под машины: а — массивный; б — стенчатый; в — рамный

типа фундаментов (рис. 17.3): массивные в виде блока или плиты; стенчатые, состоящие из продольных или поперечных стен, жестко связанных с фундаментной плитой; рамные, представляющие собой пространственную конструкцию из верхней плиты или системы балок, опирающихся через стойки на фундаментную плиту.

Для машин ударного действия с большими нагрузками (различ­ного рода прессов, молотов, формовочных машин литейного произ­водства и т. п.), как правило, применяют массивные фундаменты. Для других типов машин кроме массивных могут быть исполь­зованы облегченные стенчатые и рамные фундаменты.

Фундаменты могут проектироваться как под отдельную маши­ну, так и под группу машин. Фундаменты под машины, как прави­ло, отделяются сквозными швами от смежных фундаментов зданий, сооружений и оборудования, а также от пола примыкающего поме­щения. Для уменьшения вибрации фундаментов при соответству­ющем обосновании рекомендуется предусматривать их виброизоля- цйю.

Глубина заложения фундамента зависит от его конструкции, технологических требований, инженерно-геологических условий площадки и глубины заложения соседних фундаментов. При уста­новке машин на открытых площадках или в неотапливаемых поме­щениях следует учитывать и глубину сезонного промерзания грун- . — , ■ ‘ 461

Пример расчета фундамента под оборудование

Рисунок 9 – Площадь подошвы фундамента

Данные для расчета.

*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).

1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного

где Gм – вес фундамента:

V – объем фундамента, м 3

Н – общая высота фундамента, м

Н = 100 + 500 = 600 мм = 0,6 м

F – площадь фундамента, м 2

∆ — припуск на каждую сторону, ∆ = 0,1 м

F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м 2

V = 6,36∙0,6 = 3,8м 3

Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН

2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента

Из пропорций находим предельные эксцентриситеты е и е1, мм

е = 2080∙5/100 = 104мм

е1 = 1500∙5/100 = 75 мм

Расчет приспособлений для монтажа оборудования.

Расчет строп.

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).

Канатные стропы рассчитываются в следующем порядке (рисунок 10).

1. Определяем натяжение в одной ветви стропа, кН:

где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;

m – общее количество ветвей стропа;

— угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).

2. Находим разрывное усилие в ветви стропа, кН:

где kз коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).

3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.

Рисунок 10. Расчетная схема.

Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.

1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.

2. Находим разрывное усилие в ветви стропа.

3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:

временное сопротивление разрыву, МПа…………………..1960

масса 1000м каната, кг………………………………………. 2130

Расчет траверс.

В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.

Расчет траверс, работающих на изгиб.

1. Подсчитываем нагрузку, действующую на траверсу, кН

где GO – масса поднимаемого груза, кг,

2. Определяем изгибающий момент в траверсе,

где а – длина плеча траверсы, см.

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см 3 .

где m и R выбирают по приложению Г (таблицы 3 и 4).

Рисунок 11. Расчетная схема траверсы, работающей на изгиб.

4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.

Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).

1. Подсчитываем нагрузку, действующую на траверсу:

2. Определяем изгибающий момент в траверсе:

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:

4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.

5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см 3 , определяем момент сопротивления сечения траверсы в целом:

> WТР=1624 см 3

что удовлетворяет условию прочности расчетного сечения траверсы.

Дата добавления: 2018-05-12 ; просмотров: 3836 ; ЗАКАЗАТЬ РАБОТУ

Фундаменты под оборудование — особенности монтажа

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Расчет фундамента – Онлайн калькулятор

Онлайн калькулятор расчета фундамента KALK.PRO позволяет заниматься полноценным проектированием фундаментов, облегчает вычисления и способствует экономии на материалах, без пренебрежения строительными нормами. Методика расчета основана на продвинутом алгоритме математической модели с учетом нормативных документов СНиП 2.02.01-83 (СП 22.13330.2011), СНиП 3.03.01-87 (СП 70.13330.2011), СНиП 52-01-2003 (СП 63.13330.2010), СНиП 23-01-99 (СП 131.13330.2012).

По результатам работы калькулятора вы получите подробную смету на строительство фундамента под ключ, удобный и наглядный чертеж конструкции, простую и понятную схему вязки арматуры, а также интерактивную 3D-модель для оценки получившегося сооружения. Мы даем доступ к скачиванию всех материалов в форматах OBJ, PNG и PDF.

Вам будут известны следующие параметры:

На данный момент доступен расчет ленточного фундамента (полноценный) и монолитной плиты (упрощенный). В скором времени должны появиться калькуляторы для вычисления свайного, столбчатого и винтового фундаментов. Добавьте наш сайт в закладки и не пропустите их появление!

Калькулятор фундамента KALK.PRO на основании встроенного расчета материалов и арматуры продемонстрирует вашу будущую конструкцию. С помощью 3D-визуализации вы сможете посмотреть, как должен выглядеть ваш армокаркас, вплоть до мельчайших деталей.

 

Содержание

 

Расчет фундамента

Возведение любого дома начинается с расчета фундамента, он является опорой для всей вышележащей конструкции и оттого насколько качественно его смонтировали, зависит долговечность всего сооружения. Принимая решение о выполнении работ по созданию основания своими руками, важно не допустить ошибок при начальных вычислениях и тем более не нужно пытаться сэкономить на материалах. Помните, что грамотно спроектированный фундамент — залог вашей безопасности.

 

Инструкция

Рядовому пользователю необязательно быть специалистом в строительстве для того, чтобы пользоваться нашим сервисом. Интерфейс интуитивно понятен, а любое недопустимое значение программа обозначит красной подсветкой.

В большинстве случаев, от вас требуется лишь ввести минимальное количество информации:

В процессе расчета фундамента под дом, вам может быть потребуется ввести некоторые дополнительные величины, но их также можно рассчитать на наших калькуляторах:

Мы подготовили для вас ознакомительное видео, в котором поэтапно рассказывается весь функционал и принцип работы калькулятора фундамента онлайн.

Наш калькулятор также позволяет произвести расчет объема (кубатуру) фундамента в м3, для того чтобы заранее знали, какой объем земляных работ предстоит выполнить.

 

Расчет бетона на фундамент

Бетон является важнейшим компонентом фундамента, по сути это его «плоть» и от того насколько качественная смесь используется, зависит большинство характеристик основания. При выборе раствора особое внимание стоит уделять показателю класса (марки) прочности, который определяет предельно-допустимые нагрузки на сжатие полностью сформировавшейся смеси. Выражается в кгс/см², т.е. сколько кг способен выдержать 1 см2 поверхности.

По большей части, марка бетона определяется пропорциями цемента, песка (щебня, гравия) и воды, а также условий при которых раствор затвердевал Всего существует около 15 классов прочности о тМ50 (В3,5) до М800 (B60), но в частном строительстве наиболее распространены марки М100-М400. Соответственно, бетон М100 подходит для легких сооружений – гаражей, бань, оборудования, а М400 – для многоэтажных тяжелых зданий, например, из кирпича. Но в абсолютном большинстве случаев, выбирается бетон марки М300.

С помощью нашего калькулятора, вы получите расчет бетона на фундамент (объем, масса). Все значения будут доступны прямо в интерфейсе – вам не нужно переключаться на другие вкладки. Однако от вас требуется ввести, используемую марку бетона.

Расчет цемента на фундамент с помощью нашего онлайн-калькулятора никогда не был таким простым. Просто заполняйте поля в инструменте и в результатах расчета вы получите необходимые значения!

 

Расчет арматуры для фундамента

Арматура – второй по важности компонент фундамента (его «кости»), который позволяет компенсировать и нивелировать воздействующие нагрузки на расстяжение и изгиб. Всеизвестный факт, что бетон не отличается гибкостью и пластичностью, однако он обладает высокой прочностью на сжатие. Для того чтобы объединить эти качества и повысить эксплуатационные характеристики основания, а также недопустить деформации после возведения сооружения – фундаменты армируют.

Армирование фундамента представляет собой создание определенный типа каркаса из соединенных горизонтальных, вертикальных и поперечных стержней. Наиболее значимой характеристикой арматуры является ее диаметр и ее выбор зависит от типа грунта, температурных особенностей, стеновых материалов и габаритов возводимой конструкции. Считается, что для легких построек оптимально применять 10 мм стержни, 12 мм – для одноэтажных и малоэтажных зданий из пористых материалов, 14 мм – для малоэтажных из тяжелых материалов, 16 мм – для многоэтажных сооружений и сложных грунтов.

Вторым важным показателем является шаг вязки арматуры. Обычно он подбирается на глаз, на основании общей массы конструкции и типа подстилающего грунта, величина должна находится в пределах 200-600 мм. Стандартный интервал, который применяют в частном строительстве – 500 мм.

Встроенный калькулятор расчета арматуры на фундамент позволяет получить посчитать количество стержней, их общую длину, массу и объем. Результат предоставляется, как при расчете ленточного фундамента, так и монолитной плиты.

Наш калькулятор будет полезен при расчете фундамента для дома из газобетона, пенобетона, кирпича и других строительных блоков!

 

Рассчитать фундамент под дом

В современных реалиях рассчитать фундамент под дом может практически каждый — вам не нужно обладать специальными знаниями и необязательно пользоваться дорогостоящими услугами специалистов. Однако перед тем, как начать строительство необходимо понимать, какой вид фундамента будет наиболее рациональным для вашего участка. Напомним, что физико-географическое положение и геоморфологические условия местности, оказывают непосредственное влияние на тип и стоимость будущей конструкции.

 

Факторы выбора типа основания

Почва — важнейший фактор при строительстве дома, от ее состава напрямую зависит, трудоемкость процесса и затраты на сооружение фундамента. В некоторых случаях доходит до того, что выгоднее купить новый участок, чем вкладываться в преобразование существующего. Поэтому самое первое, что вам необходимо сделать на новом участке – это определить тип грунта.

Если у вас нет лишних денег, то вам необходимо научиться определять почвы самостоятельно. Важно знать, что все виды грунтов делятся на скальные, глинистые и песчаные. Каждый тип обладает своим набором уникальных свойств, самыми важными из которых являются несущая способность, пучинистость и глубина промерзания.

Грунтовые воды — второй коварный спутник любого строителя. Если у вас высокий уровень залегания водоносного горизонта, то это очень плохие перспективы в будущем. В теплых регионах будут беспокоить бесконечные подтопления, сырость, плесень и грибки. Растворенные агрессивные химические соединения будут медленно убивать ваше основание, разрыхляя и растворяя бетон.

В холодных областях предыдущие факторы действуют в меньшей степени, зато силы морозного пучения с легкостью разорвут неправильно построенное основание за несколько зим. Поэтому крайне важно строить дом на возвышенностях и избегать низменностей, особенно если рядом находится водотоки и водоемы.

Провести анализ грунта и узнать уровень грунтовых вод, вам помогут наши статьи в разделе «Фундаменты, грунты, основания». Рассчитать нагрузки и остальные важные параметры, согласно СНИП, вы сможете с помощью соответствующих калькуляторов нашего проекта KALK.PRO.

Температура – объединяет два предыдущих фактора в единое целое. Она является последним решающим фактором, который может повлиять на выбор основания.

При строительстве фундамента наиболее важными показателями являются глубина промерзания грунта и уровень залегания подземных вод. В условиях континентального климата (при низких температурах зимой и высоких летом), который встречается на большей части территории России, ежегодно почвы промерзают на значительную глубину, а затем оттаивают.

В случае, если УГВ находится выше отметки промерзания, то начинают действовать силы пучения. Вода, содержащаяся в грунте, замерзает и превращается в лед, тем самым увеличивая свой объем.

Мощь этого процесса нельзя недооценивать, силы с которой они могут давить на фундамент составляют десятки тонн на квадратный метр. Такое внушительное воздействие с легкостью деформирует любую конструкцию и приведет ее в движение.

Поэтому очень важно знать нормативную глубину, на которую ежегодно промерзает грунт. Закладывая фундамент ниже этого уровня, вы оберегаете его от этих разрушительных сил, но одновременно с этим пропорционально возрастает стоимость основания.

 

Виды фундаментов для дома

Отталкиваясь от этих «входных» условий, теперь можно перейти к обзору видов фундаментов. Их классификация основывается на конструктивных особенностях и технологии возведения. Наибольшей популярностью пользуются ленточные, монолитные, столбчатые, свайные основания и их комбинации.

 

Ленточный фундамент

Ленточный фундамент – свое название получил из-за внешнего сходства с лентой. Монолитная или сборная железобетонная полоса проходит под всеми несущими стенами здания, оказывая равномерное давление на грунт.Один из самых простых и доступных в частном строительстве.

Трудоемкость процесса минимальна, технология монтажа не отличается особой сложностью и обходится относительно недорого. Подходит для большинства случаев при сооружении малоэтажных зданий, легко выдерживает большие нагрузки. При низком уровне грунтовых вод используется мелкозаглубленный ленточный фундамент, при высоком – заглубленный.

При крайне проблематичных почвах, когда ленту приходится очень сильно заглублять на 2 м и более, целесообразность использования данного вида основания пропадает и следует рассмотреть другие варианты.

 

Монолитная плита

Плитный фундамент – монолитная железобетонная плита, расположенная под всей площадью здания. За счет большого объема земляных работ и огромных затрат на бетон, стоимость конструкции возрастает в разы, по сравнению с лентой. Это один из самых дорогих, но в то же время эффективных видов оснований.

Из-за однородности и большой площади соприкосновения с грунтом, этот вид фундамента легко переносит значительные вертикальные и горизонтальные нагрузки. ;Ему не страшны силы морозного пучения и высокий уровень грунтовых вод. Он стабильно проявляет себя на слабонесущих почвах, а также выдерживает тяжелые дома из кирпича и камня.

 

Столбчатый фундамент

Столбчатый фундамент – это конструкция из столбов и перекрытий, которая применяется при возведении сооружений из легких материалов. ;Устройство фундамента крайне незамысловато. По периметру и в местах повышенной нагрузки (чаще всего это пересечении стен), ставятся столбы, которые сверху соединяются балками из дерева или металла.

Данное основание приобрело широкую популярность из-за активного строительства домов из бруса и СИП-панелей. Оно экономично, надежно и не требует работ по гидроизоляции. Защищает ваш дом от плесени и преждевременного разрушения древесины. Тем не менее, фундамент крайне требователен к грунту, ему категорически запрещены подвижки и пучения.

 

Свайный фундамент

Свайный фундамент – представляет собой комплекс из многочисленных свай, которые создают устойчивый каркас для равномерного распределения нагрузки по всем элементами конструкции. Основания данного типа являются спасением для обладателей участков с неустойчивыми грунтами и сложным рельефом местности. Помимо того, что они позволяют надежно закрепить здание, так они еще и укрепляют саму почву, предотвращая подвижки и оползни.

Существует три основных вида свайных фундаментов:

Каждый из них имеет свои плюсы и минусы, но наиболее распространенным является первый тип, так как сочетает в себе низкую стоимость и отвечает всем стандартам частного строительства.

Спасибо, что пользуетесь нашим калькулятором фундамента, с уважением команда KALK.PRO!

9.5. Примеры расчета колебаний фундаментов машин с динамическими нагрузками ч.1

Ниже приведены примеры расчетов массивных фундаментов на периодическую (гармоническую) и ударную нагрузки и пример расчета рамного фундамента на гармоническую нагрузку. Примеры расчетов фундаментов под машины можно найти в «Руководстве по проектированию фундаментов машин с динамическими нагрузками» [6].

Пример 9.1. Рассчитать фундамент лесопильной рамы. Расчет фундаментов лесопильных рам производится как для машин с кривошипно-шатунными механизмами по главе СНиП «Фундаменты машин с динамическими нагрузками». Целью расчета является определение размеров фундамента, соответствующих требованиям экономичности и обеспечивающих допустимый уровень колебаний.

Исходные данные: марка машины РД 76/6; масса машины 15 т; масса приводного электродвигателя 2 т; мощность приводного электродвигателя 90 кВт; частота вращения электродвигателя 720 мин–1; частота вращения главного вала nr = 320 мин–1. Расчетные динамические нагрузки, координаты точек их приложения, координаты центра тяжести машины, размеры верхней части фундамента, диаметр, конструкция и привязка анкерных болтов и другие исходные данные для проектирования заданы в строительном задании завода — изготовителя машины на устройство фундамента. Схема нагрузок, действующих на фундамент, приведена на рис. 9.1. Допускаемые амплитуды горизонтальных и вертикальных колебаний фундамента для I гармоники должны быть не более 0,19 мм.

Решение. Конструкцию фундамента пилорамы принимаем массивной из монолитного железобетона. Фундамент состоит из нижней прямоугольной плиты размером 6×7,5 м и высотой 2 м, принятыми из условий расположения приводного электродвигателя, требований симметрии и оптимальной массы фундамента, и верхней скошенной части, принятой по технологическим условиям. Отметка засыпки грунта находится на уровне верха прямоугольной плиты. Материал фундамента — бетон марки М200, арматура — горячекатаная, круглая и периодического профиля, соответственно классов A-I и А-II.

Схема масс элементарных объемов фундамента и машины с привязкой их к осям фундамента, проходящим через центр тяжести подошвы фундамента, приведена на рис. 9.1. Масса пилорамы m1 = 15 т; масса скошенной части фундамента m2 = 22,25 т; масса прямоугольной части фундамента m3 = 216 т; масса электродвигателя с подбеточкой m4 = 2+18 = 20 т.

Полная масса фундамента

mf = 22,25 + 216 + 18 = 256,25 т.

Масса пилорамы и электродвигателя привода

mm = 15 + 2 = 17 т.

Масса всей установки

m = mf + mm = 256,25 + 17 = 273,25 т.

Находим координаты центра тяжести установки по оси Z. Статические моменты масс элементов установки относительно оси, проходящей через подошву фундамента, будут:

S1 = 15·5,95 = 89,25 т·м; S2 = 22,25·2,65 = 58,96 т·м;

S3 = 216·1 = 216 т·м; S4 = 20·2,5 = 50 т·м;

т·м.

Расстояние от центра тяжести установки до подошвы фундамента

м.

Рис. 9.1. Фундамент лесопильной рамы РД-75/6

Находим координаты по оси X. Расстояние до центра тяжести установки по оси X'

м.

Координату центра тяжести установки по оси Y не определяем, так как эксцентриситет до оси Y весьма мал (<< 3 % стороны фундамента), а расчет фундамента па колебания должен производиться только в направлении оси X (по направлению действия динамических сил).

В основании фундамента залегают пески средней крупности, средней плотности маловлажные с расчетным сопротивлением R = 350 кПа и модулем деформации E = 3·104 кПа. Проверяем условие (9.1) при γc0 = 1 и γc1 = 1. Среднее давление p =  Q/A, где Q = mg, тогда

кПа  < 1·1·350 = 350 кПа.

Расчет прочности массивного железобетонного фундамента не требуется. Армирование фундамента выполняется конструктивно.

Расчет колебаний фундамента пилорамы производится в следующем порядке.

Определяем упругие характеристики песчаного грунта основания по формулам (9.6) и (9.7):

кН/м3;

Cφ = 2·44 140 = 88 280 кН/м3;

Cx = 0,7·44 140 = 30 900 кН/м3.

Коэффициенты жесткости для естественного основания находим по формулам (9.8), (9.9) в (9.10), где Iφ = 6·7,53/12 = 210,94 м4

kz = 44 140·6·7,5 = 1 986 400 кН/м;

kx = 30 900·6·7,5 = 1 390 000 кН/м;

kφ = 88 280·210,94 = 18 623 000 кН/м.

Значения коэффициентов относительного демпфирования определяем по формулам (9.13) и (9.15):

; .

Расчетные динамические нагрузки (для первой гармоники возмущающих сил и моментов) определяем следующим образом:

M = Fve + Fhe1,

тогда при Fv = 208 кН, Fh = 39 кН, e = 0,173 – 0,08 = 0,093 м и e1 = 5,95 – 1,516 = 4,434 м

M = 208·0,093 + 39·4,434 = 19,4 + 173 = 192,4 кН·м.

Амплитуды горизонтально-вращательных и вертикальных колебаний фундамента определяются по формулам:

;

;

;

.

Для вычисления по этим формулам амплитуд следует определить входящие в них дополнительные параметры:

с–1;

;

здесь значение θ = 1614,4 т·м2 получено путем разбивки фундамента и машины на элементарные тела, вычисления для них собственных моментов инерции и добавления переносных моментов инерции, равных произведению масс элементарных тел на квадраты расстояний от их собственных центров тяжести до общего центра тяжести установки;

;

с–1;

кН·м ;

т·м2 ;

с–1;

с–1;

;

;

;

;

.

; ;

;

;

;

;

;

;

;

;

;

;

;

.

Подставляя найденные параметры в соответствующие формулы находим:

= 0,111 мм < Aadm = 0,19 мм;

= 1,2·10–4 м = 0,12 мм;

Av = 0,12 + 0,0082 = 0,128 мм < Aadm = 0,19 мм.

Следовательно, параметры фундамента выбраны правильно.

Руководство по проектированию фундаментов машин с динамическими нагрузками

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} .

Как рассчитать общую эффективность оборудования: практическое руководство

Обзор OEE и эффективность по сравнению с эффективностью

Существует много путаницы в отношении OEE (эффективности рабочего оборудования) и в отношении слов «эффективность» и «эффективность». Давайте посмотрим на эти вещи объективно и ясно.

Является ли OEE просто приятной вещью? Нет, это простая, но действенная дорожная карта, которая помогает людям и руководству производственных цехов визуализировать и устранять потери и отходы оборудования.

OEE - это не прихоть. Прежде всего, OEE существует уже несколько десятилетий в своей элементарной форме. Слова «эффективность» и «действенность» существуют дольше, но в последнее десятилетие или около того использовались нечетко. Для начала, мы должны провести четкое различие между эффективностью и эффективностью , прежде чем мы сможем обсуждать OEE.

Эффективность - это отношение между тем, что теоретически могло быть произведено в конце процесса, и тем, что фактически получилось или было произведено в конце процесса.

Если ваша машина или система способна производить 100 качественных продуктов в час, а она производит только 70, то это 70% эффективный , но мы не знаем, насколько эффективен , потому что ничего не говорится о том, что мы пришлось вложить (сколько операторов, энергии, материалов и т. д.), чтобы получить 70% эффективности.

Таким образом, если машина или система работают с 50% эффективностью с 1 оператором и становятся эффективными на 65% с 2 операторами, эффективность возрастает на 30% (да, 65 на 30% больше, чем 50…), но ее эффективность упала до 50%, по труду!

То же самое касается yield или более широко известного как quality (в основном товарный продукт).Если вы разливаете напиток по бутылкам, все бутылки с наполнением, этикетками и крышками теоретически могут быть идеальными, поэтому качество будет 100%. Но если вы выбросите половину заполненных бутылок из-за дефектов упаковки или материала, ваш выход или качество составит всего 50%. В этом примере вы будете эффективны на 100%, но только на 50%.

Простой пример

В основном OEE - это (как следует из названия) эффективность: это соотношение между тем, что машина теоретически может производить, и тем, что она действительно делала.Таким образом, самый быстрый способ вычисления прост: если взять теоретическую максимальную скорость (например, 60 продуктов в минуту), вы знаете, что в конце 480-минутной смены должно получиться 28 800 единиц.

1 смена = 8 часов = 480 минут

Максимальная скорость производства = 60 продуктов в минуту

480 x 60 = 28 800 единиц

Затем нам нужно подсчитать, что мы произвели в конечной точке производственного процесса, например, что находится на поддоне, идущем на склад. Если на поддоне всего 14 400 хороших товаров, эффективность будет 50%, верно?

Пока не ракетостроение.

A-P-Qs OEE

Почему формула OEE на рисунке 1 включает доступность (A), производительность (P) и качество (Q)? Что означают эти слова и какую ценность они несут? Они помогут нам найти, куда пропали остальные 14 400 продуктов, которые должны были быть на поддоне.

OEE поднял планку и отвлек нас от традиционного расчета эффективности как показателя производительности производственной линии, которым легко манипулировать, чтобы показать посредственные линии, работающие с эффективностью до 150%.

Вот сила OEE. OEE, если разбить его на три основных компонента, отследит, где мы его потеряли. Каждый день, когда мы используем 50% OEE, мы можем терять единицы по-разному, и каждая потеря имеет свою собственную структуру затрат.

Если мы потеряем 14 400 продуктов из-за того, что машина работала безупречно, без потери качества, но на половине максимальной скорости, это полностью отличается от производства 28 800 продуктов на полной скорости, а затем сброса 14 400 продуктов, не соответствующих техническим характеристикам, на свалку.

Эффективность:

Делаем правильные вещи - правильный продукт или артикул с нужной скоростью (производительность)

Делаем все правильно - без переделок, без дефектов, без отходов (Качество)

Делаем в нужное время - Производство в соответствии с планом, поддержание машины в рабочем состоянии, минимизация потерь времени (доступность)

Итак, как нам узнать, что мы потеряли и где? И как предотвратить это в будущем?

Наличие

Возвращаясь к примеру с бутылкой, давайте проследим обычный день.Стандартная смена длится 480 минут. Наши операторы берут перерывы в 10 + 30 + 10 минут, а также выполняют 2 переналадки по 35 минут каждая и теряют 60 минут простоя машин за смену. Все остальное время машина находится в рабочем режиме.

Перерывы = 10 минут утром + 30 минут в обед + 10 минут после обеда = 50 минут

Переналадки = 2 x 35 минут = 70 минут

Время простоя станка = 60 минут в смену

Итого = 180 минут потерянного времени

Это означает, что мы потеряли 180 минут, и осталось только 300 минут, чтобы действовать.Даже если в остальное время мы будем работать на полной скорости без потери качества, мы никогда не сможем достичь эффективности более 62,5% в течение этой смены. Это соотношение мы называем «доступностью» или тем, как используется время.

480 минут - 180 минут = 300 минут

300 ÷ 480 = 62,5% Готовность

Давайте посмотрим, как мы потратили 62,5% имеющегося времени…

Производительность

Давайте также предположим, что наша упаковочная система имеет идеальное время цикла или время такта, равное 1 секунде на бутылку, что составляет 60 бутылок в минуту.(Время такта, производное от немецкого слова Taktzeit, которое переводится как время цикла, задает темп для промышленных производственных линий.)

Это означает, что за оставшиеся 300 минут машина или система могут произвести 300 х 60 бутылок = 18 000. Таким образом, если в конце этой смены машина произвела бы 18 000 бутылок за время работы, она работала со 100% скоростью. Если бы производство было на более медленной скорости, допустим, время цикла было бы 1,5 секунды, это снизило бы максимальную скорость на 2/3, и, таким образом, его производительность стала бы 66.7%. Фактический объем производства при производительности 66,7% составляет 12 000 бутылок.

300 минут @ 1 секунда на бутылку = 300 x 60 бутылок = 18000 единиц

1,5 секунды на бутылку = 1 ÷ 1,5 = 2/3 = 66,7% Производительность

66,7% x 18 000 бутылок = 12 000 единиц

Работа с производительностью 66,7% в этом случае приравнивается к потере еще 300 x 33,3% = 100 минут или линия работает в среднем 2/3 x 60 = 40 бутылок в минуту.

Если в этот момент вся продукция будет соответствовать спецификации или продаваться, какова будет эффективность?

Из 480 минут мы потеряли 180 минут из-за «бездействия» и 100 минут из-за «слишком медленного времени цикла»; поэтому (480- (180 + 100)) / 480 = 41.7% пока.

(480 минут - (180 минут + 100 минут)) ÷ 480 - 41,7% КПД

Качество

Фактическая эффективность зависит от того, сколько бутылок соответствует спецификации. Если из 12000 бутылок было 3000, не соответствующих спецификации, то показатель качества этих бутылок был (12000-3000) / 12000 = 75%, или при пересчете в минуты было бы 3000 бутылок / 60 бутылок в минуту = 50 минут, потерянных из-за качество.

(12000 - 3000 дефектов) ÷ 12000 = 75% качества

3000 бутылок ÷ 60 бутылок в минуту = потеря 50 минут Качество

Другими словами, мы потеряли 180 минут, не бегая; из оставшихся 300 минут мы потеряли 100 минут из-за медленного бега; из оставшихся 200 минут мы потеряли 50 минут на лом.В результате линия дала 150 минут безупречной работы с высоким качеством и скоростью.

Теоретически мы могли бы сделать 480 х 60 = 28 800 бутылок. В конце концов, было продано 9000 бутылок, поэтому общая эффективность оборудования составила 31,25%.

9000 ÷ 28800 = 31,25% OEE

Доступность (62,5%) x производительность (66,7%) x качество (75%) = 31,25%

Время - деньги

OEE основывается исключительно на времени (преобразовано во время), но поскольку 1 время такта равно 1 бутылке, OEE может быть рассчитано в бутылках для простоты использования.Большинство операторов не скажут: «Сегодня я запускал время такта 1,5 секунды, а вместо этого« сегодня я запускал 40 продуктов в минуту », что одно и то же. Точно так же «Я остановился на 5 минут» - это то же самое, что «Я потерял 200 потенциальных бутылок, которые должен был сделать».

OEE помогает создать такую ​​осведомленность; с операторами, инженерами, логистическими отделами и всеми, кто участвует в процессе создания добавленной стоимости. Это дает общий язык всем, кто участвует в производстве, и ведет к эффективным и действенным улучшениям.

Простой подход к OEE

OEE и его базовый подход уже несколько десятилетий используются в других отраслях и недавно перешли в область упаковки. Хотя концепции довольно просты, их определения и применение значительно различались, что не позволяет использовать их в качестве тестов и инструментов для оценки производительности внутри и между заводами, не говоря уже о компаниях. Идея состоит в том, чтобы представить общее определение и простой формат электронной таблицы, чтобы реализовать ясный общий подход.

Практическое определение OEE

OEE - это общая эффективность оборудования определенного производственного процесса в течение определенного рабочего периода или режима, в котором все действия, связанные с производством, персоналом и затратами, учитываются во время всех производственных или зависимых действий в течение определенного запланированного времени или времени рабочего режима. Определенный производственный процесс - это начальная и конечная граница, на которой проводится анализ, например депалетизация на паллетирование или прохождение до складирования.

OEE определяется как продукт или функция затрат или взаимодействие всей доступности или времени безотказной работы рабочего режима, умноженные на производительность или фактическую результирующую скорость производства (от фактической скорости набора и скорости линейного изменения), разделенные на скорость нормального или устойчивого состояния, а затем умноженные на качество или выпуск качественного продукта, деленное на вход критического компонента или совокупность всех входов (компоненты, потребленные, утерянные, переработанные, уничтоженные или неучтенные в процессе производства).Схему см. На Рис. 1, стр. 30.

Качество - это доля, равная 1 минус отходы (отходы и переработка). Переделка обычно рассматривается как качество, но ее труднее всего отделить. Качество обычно не относится к дефектным компонентам, не поставленным на производственную линию, но, когда они поставлены на производственную линию, их необходимо учитывать. Это исключает предварительные проверки, потому что, как только они попадают на производственную линию, есть время и влияние на текущий производственный процесс, такие как удаление и замена поэтапно дефектных продуктов, материалов и расходных материалов.

Объем анализа

Несмотря на то, что OEE может проводиться на основе машины за машиной, продукта за продуктом или посменно, это обычно объединение производства за одну неделю или за один месяц заданного размера и продукта (на машине или на линии). ), потому что просмотр меньших срезов может не дать статистически значимых данных для принятия решений. Можно проводить тенденции или конкретные сравнения, а также анализировать месячный объем производства одного и того же продукта, семейства продуктов или крайних размеров продукта и состава.

Время работы менее 10 080 минут (одна неделя) само по себе не имеет значения для принятия решений, но может быть адекватным для тенденций и проверок ранее принятого решения для обеспечения положительных направлений или обеспечения ожидаемых результатов. достигнуто.

Причина этого определения рабочего режима состоит в том, чтобы охватить все действия, необходимые для обеспечения возможности выполнения производственного процесса. Некоторые компании в прошлом скрывали свое переключение, PM, отпуск, обучение и уборку, выполняя это в так называемое внеплановое производственное время или сбрасывая его в определенное время, но на самом деле это является частью природы производственного процесса.

Плановое время производства - это период времени, в течение которого должны производиться определенные продукты, но зависящие от процесса действия или ситуации должны быть выполнены или рассмотрены заранее (например, праздники), чтобы гарантировать соблюдение графика или его разумность.

Календарные часы или календарное время представляют собой сумму действий в рабочем режиме и действий в потенциальном режиме, которые составляют неделю (10 080 минут) или месяц (в среднем 43 800 минут) или определенный период, в течение которого актив как функционирующий производственный элемент существует на предприятии. .

Если какой-либо актив удаляется из процесса таким образом, чтобы сделать процесс для данного продукта нежизнеспособным, то ожидаемое число OEE считается нулевым.

Это также относится к отозванному с рынка продукту, который подвергается переработке или списанию. В действительности полный отзыв дает ноль OEE за период, когда был произведен отозванный продукт. Частичный отзыв будет иметь дело только с потерей определенной партии или партии в пределах общей суммы, но значительно снизит OEE на этот период.

Любые вопросы планирования и трудозатрат считаются интегрированными в OEE. Можно выйти за рамки OEE с помощью других соотношений, таких как возможность расписания, в котором оцениваются трудозатраты и время планирования, а их взаимодействие рассчитывается как отношения или затраты к операциям, но OEE сохраняет вид выручки, который подходит для подавляющего большинства отраслей и условий простым, но действенным способом.

Высокие показатели OEE указывают на точное выполнение графика и оптимизированный труд.Выполнение графика и оптимизация труда - побочные продукты оптимизированного процесса. OEE - это дорожная карта для понимания, направления и проверки всех других действий, таких как непрерывное совершенствование, бережливое производство, шесть сигм и учетная информация верхнего уровня. Это дает правильное окно при просмотре стоимости качества.

OEE и стоимость качества

«Стоимость качества» - это не цена создания качественного продукта или услуги. Это цена отсутствия качественного продукта или услуги (подробности можно узнать на сайте ASQ - Американского общества качества).

Каждый раз, когда работа тратится впустую, возникает убыток, который приводит к увеличению «стоимости качества». Говоря об отходах, мы можем дать определение или посмотреть на множество определений, вариаций или типов потерь, таких как: отходы ожидания, перепроизводства, запасов или незавершенного производства, транспортировка, движение, входные дефекты, производство дефектных продуктов, ненужные шаги процесса, задержка

При рассмотрении операций OEE просто дает ясное и мощное представление о возможности поддерживать качество производства или о том, как взаимодействуют доступность (время), качество (хороший продукт) и производительность (скорость).Часть потерь - это часть времени, которое теряется из-за неспособности производственного процесса быть последовательным и под контролем. Эти потери связаны с простоями или простоями, потерями производительности в процессе, а также браком и переделками, возникающими в рабочем режиме.

Оперативный режим - это не только запланированное запланированное время производства, но и время, которое охватывает характер производственного процесса и поддерживающие его действия, которые связаны, зависят или требуются для обеспечения своевременного производства запланированного продукта.Это означает, что пропорциональное профилактическое обслуживание, переналадка, очистка и / или санитарная обработка включены.

Понятие простоя в понимании доступности

Для простоты и порядка, простои любой машины или системы можно разделить на две части - событий запланированного простоя событий и незапланированного простоя событий.

Запланированные события могут быть определены как те события, при которых не выводятся результаты коммерческой продукции, и руководство которых контролирует сроки и масштабы деятельности; предписывает их, или правила страны определяют их часть или все.

Праздники - это всегда обязательные мероприятия, продиктованные руководством, правительством или обоими. Кто-то может возразить, что праздники следует исключить, но это неверно, поскольку руководство принимает решение не использовать это время в нормальном рабочем режиме, и неправильно переводить его в потенциальный режим.

Планируемые мероприятия можно разбить на любое количество категорий. Остерегайтесь, когда в анализ включены праздники, некоторые дни, недели или месяцы будут показывать заниженные числа и должны быть выделены.Из-за этого их не следует включать. Но включать их нужно по мере их появления.

Можно разбить незапланированных событий на любое количество категорий, но наиболее распространенными из них являются операции подразделения или машины. Операции блока могут быть далее подразделены на первичные и вторичные машины, зоны, неисправности и т. Д.

Первичные машины (PM) - это единичные операции, которые представляют собой основное оборудование, которое принимает непосредственное участие в сборке упаковки, например устройства для расшифровки, ополаскивания, наполнители, укупорочные машины, этикетировщики, картонажные машины, упаковщики в коробки, паллетизаторы и т. Д.

Вторичные машины (SM) - это второстепенные подразделения, которые передают, манипулируют, сопоставляют, проверяют, кодируют или маркируют упаковку, например конвейеры, комбайнеры, делители (когда они отделены от основного устройства), кодеры (лазерные, струйные, слепочные и т. д.), чеквейеры, рентген, гамма-контроль, независимое заполнение, обнаружение крышки или этикеток, блоки отбраковки (независимо от основной единицы и т. д.

Большинству компаний, особенно компаниям, не способным или не способным выявлять незапланированные простои или убытки, следует использовать макроанализ OEE и использовать сосредоточенные или агрегированные оценочные числа до тех пор, пока улучшенный сбор данных не приблизится к оценочному количеству.Время следует указывать в минутах, а не в часах, с точностью до десятых десятичных долей, для более детального представления проблемы.

Можно также рассматривать единичные операции как VE (создание ценности), VA (создание стоимости или добавленную стоимость) и NVA (без добавленной стоимости, например конвейер, которому просто нужно доставить продукт из точки A в точку B, не влияя на качество. дефекты).

Проверенная технология производства - упаковка

Обычно OEE ограничивается производственным процессом или процессом упаковки, но это не обязательно.Производство, распространение и т. Д. Можно включать или рассматривать отдельно, но границы должны быть четко определены, а подход стандартизирован для всех линий и заводов. Соблюдайте осторожность при использовании и / или сравнении значений OEE внутри компании, потому что они могут оказаться бесполезными, если границы другие.

Фактически, OEE была принята обрабатывающей промышленностью, от автомобилестроения до электроники, задолго до того, как она перешла в упаковку. Это проверенный метод с обширными ресурсами, доступными на рынке, и полезная методология, которая может быть применена к самым мелким операциям с ручным сбором данных в самой крупной организации со сложными программными инструментами OEE и автоматизированными системами сбора данных.И OEE - одно из основных приложений, оправдывающих вложения во внедрение PackML (глава 5).

Понравилась статья? Загрузите полную версию playbook.

.

Расчет OEE - Определения, формулы и примеры

Предпочтительный расчет OEE основан на трех факторах OEE: доступность, производительность и качество.

OEE рассчитывается путем умножения трех факторов OEE: доступности, производительности и качества.

Наличие

Доступность учитывает все события, которые останавливают запланированное производство на достаточно долгое время, когда имеет смысл отследить причину сбоя (обычно несколько минут).

Доступность рассчитывается как отношение времени работы к плановому времени производства:

Доступность = время работы / плановое время производства

Время выполнения - это просто запланированное время производства за вычетом времени остановки, где время остановки определяется как все время, в течение которого производственный процесс должен был выполняться, но не был вызван незапланированными остановками (например,g., поломки) или плановые остановки (например, переналадка).

Время выполнения = плановое время производства - время окончания

Производительность

Производительность принимает во внимание все, что заставляет производственный процесс работать со скоростью, меньшей максимально возможной во время его работы (включая как медленные циклы, так и малые остановки).

Производительность - это отношение чистого времени работы к времени работы. Рассчитывается как:

Производительность = (идеальное время цикла × общее количество) / время работы

Идеальное время цикла - это самое короткое время цикла, которое ваш процесс может достичь в оптимальных условиях.Следовательно, при умножении на общий счет получается чистое время работы (максимально быстрое время для изготовления деталей).

Поскольку скорость обратно пропорциональна времени, производительность также можно рассчитать как:

Производительность = (общий счет / время работы) / идеальная скорость работы

Производительность никогда не должна превышать 100%. Если это так, это обычно означает, что идеальное время цикла установлено неправильно (оно слишком велико).

Качество

Качество учитывает произведенные детали, не соответствующие стандартам качества, включая детали, требующие доработки.Помните, что OEE Quality похож на First Pass Yield в том смысле, что он определяет хорошие детали как детали, которые успешно проходят производственный процесс с первого раза без необходимости переделки.

Качество рассчитывается как:

Качество = хорошее количество / общее количество

Это то же самое, что и отношение Полного производственного времени (только качественные детали, произведенные как можно быстрее, без времени остановки) к чистому времени работы (все детали, изготовленные как можно быстрее, без времени остановки).

OEE

OEE учитывает все потери, что позволяет определить действительно продуктивное время производства. Рассчитывается как:

OEE = доступность × производительность × качество

Если подставить уравнения для доступности, производительности и качества в приведенные выше и свести к их простейшим терминам, результат будет:

OEE = (Хорошее количество × Идеальное время цикла) / Планируемое время производства

Это самый простой расчет OEE, описанный ранее.И, как описано ранее, умножение количества хороших деталей на идеальное время цикла приводит к полному продуктивному времени (производство только хороших деталей, как можно быстрее, без времени остановки).

Почему предпочтительный расчет OEE?

Оценка

OEE дает очень ценную информацию - точное представление о том, насколько эффективно работает ваш производственный процесс. И это позволяет легко отслеживать улучшения в этом процессе с течением времени.

Ваша оценка OEE не дает никакого представления об основных причинах потери производительности.Это роль доступности, производительности и качества.

В предпочтительном расчете вы получаете лучшее из обоих миров. Единое число, отражающее вашу эффективность (OEE), и три числа, отражающие фундаментальный характер ваших потерь (доступность, производительность и качество).

Вот интересный пример. Посмотрите на следующие данные OEE за две последовательные недели.

Коэффициент OEE Неделя 1 Неделя 2
OEE 85.1% 85,7%
Доступность 90,0% 95,0%
Производительность 95,0% 95,0%
Качество 99,5% 95,0%

OEE улучшается. Прекрасная работа! Или это? Копните немного глубже, и картина станет менее четкой. Большинство компаний не хотели бы увеличивать доступность на 5,0% за счет снижения качества на 4,5%.

.

Калькулятор объема

Ниже приводится список калькуляторов объема для нескольких распространенных форм. Заполните соответствующие поля и нажмите кнопку «Рассчитать».

Калькулятор объема сферы


Калькулятор объема конуса


Калькулятор объема куба


Калькулятор объема цилиндра


Калькулятор объема прямоугольного резервуара


Калькулятор объема капсулы


Калькулятор объема сферической крышки

Для расчета укажите любые два значения ниже.


Калькулятор объема конической ствола


Калькулятор объема эллипсоида


Калькулятор объема квадратной пирамиды


Калькулятор объема трубки


Калькулятор площади сопутствующих поверхностей | Калькулятор площади

Объем - это количественная оценка трехмерного пространства, которое занимает вещество.Единицей измерения объема в системе СИ является кубический метр, или м 3 . Обычно объем контейнера - это его вместимость и количество жидкости, которое он может вместить, а не количество места, которое фактически вытесняет контейнер. Объемы многих форм можно рассчитать с помощью четко определенных формул. В некоторых случаях более сложные формы могут быть разбиты на более простые совокупные формы, а сумма их объемов используется для определения общего объема. Объемы других, еще более сложных фигур можно рассчитать с помощью интегрального исчисления, если существует формула для границы фигуры.Помимо этого, формы, которые нельзя описать известными уравнениями, можно оценить с помощью математических методов, таких как метод конечных элементов. В качестве альтернативы, если плотность вещества известна и однородна, объем можно рассчитать, используя его вес. Этот калькулятор вычисляет объемы для некоторых из наиболее распространенных простых форм.

Сфера

Сфера - это трехмерный аналог двумерного круга. Это идеально круглый геометрический объект, который математически представляет собой набор точек, которые равноудалены от данной точки в ее центре, где расстояние между центром и любой точкой на сфере составляет радиус r .Вероятно, самый известный сферический объект - это идеально круглый шар. В математике существует различие между шаром и сферой, где шар представляет собой пространство, ограниченное сферой. Независимо от этого различия, шар и сфера имеют одинаковый радиус, центр и диаметр, и расчет их объемов одинаков. Как и в случае с кругом, самый длинный отрезок, соединяющий две точки сферы через ее центр, называется диаметром d . Уравнение для расчета объема шара приведено ниже:

EX: Клэр хочет заполнить идеально сферический воздушный шар с радиусом 0.15 футов с уксусом, чтобы использовать его в борьбе с ее заклятым врагом Хильдой на воздушных шарах в ближайшие выходные. Необходимый объем уксуса можно рассчитать с помощью приведенного ниже уравнения:

объем = 4/3 × π × 0,15 3 = 0,141 фута 3

Конус

Конус - это трехмерная форма, которая плавно сужается от своего обычно круглого основания к общей точке, называемой вершиной (или вершиной). Математически конус образован аналогично окружности набором отрезков прямых, соединенных с общей центральной точкой, за исключением того, что центральная точка не входит в плоскость, содержащую окружность (или другую основу).На этой странице рассматривается только случай конечного правого кругового конуса. Конусы, состоящие из полуосей, некруглых оснований и т. Д., Которые простираются бесконечно, не рассматриваются. Уравнение для расчета объема конуса выглядит следующим образом:

, где r - радиус, а h - высота конуса

EX: Би полна решимости выйти из магазина мороженого, не зря потратив свои с трудом заработанные 5 долларов. Хотя она предпочитает обычные сахарные рожки, вафельные рожки, несомненно, больше.Она определяет, что на 15% предпочитает обычные сахарные рожки вафельным рожкам, и ей необходимо определить, превышает ли потенциальный объем вафельного рожка на ≥ 15% больше, чем вафельный рожок. Объем вафельного рожка с круглым основанием радиусом 1,5 дюйма и высотой 5 дюймов можно рассчитать с помощью следующего уравнения:

объем = 1/3 × π × 1,5 2 × 5 = 11,781 дюйм 3

Беа также вычисляет объем сахарного рожка и обнаруживает, что разница составляет <15%, и решает купить сахарный рожок.Теперь все, что ей нужно сделать, это использовать свой ангельский детский призыв, чтобы заставить посох выливать мороженое в ее рожок.

Куб

Куб является трехмерным аналогом квадрата и представляет собой объект, ограниченный шестью квадратными гранями, три из которых пересекаются в каждой из его вершин, и все они перпендикулярны своим соответствующим смежным граням. Куб - частный случай многих классификаций геометрических фигур, включая квадратный параллелепипед, равносторонний кубоид и правый ромбоэдр.Ниже приведено уравнение для расчета объема куба:

объем = 3
где a - длина ребра куба

EX: Боб, который родился в Вайоминге (и никогда не покидал штат), недавно посетил свою исконную родину, Небраску. Пораженный великолепием Небраски и окружающей средой, непохожей на какие-либо другие, с которыми он когда-либо сталкивался, Боб знал, что должен привезти с собой домой часть Небраски. У Боба есть чемодан кубической формы с длиной по краям 2 фута, и он рассчитывает объем почвы, который он может унести с собой домой, следующим образом:

объем = 2 3 = 8 футов 3

Цилиндр

Цилиндр в его простейшей форме определяется как поверхность, образованная точками на фиксированном расстоянии от данной прямой оси.Однако в обычном использовании термин «цилиндр» относится к правильному круговому цилиндру, где основания цилиндра представляют собой окружности, соединенные через их центры осью, перпендикулярной плоскостям его оснований, с заданной высотой h и радиусом r . Уравнение для расчета объема цилиндра показано ниже:

объем = πr 2 ч
где r - радиус, а h - высота резервуара

EX: Кэлум хочет построить замок из песка в гостиной своего дома.Поскольку он является твердым сторонником рециркуляции, он извлек три цилиндрических бочки с незаконной свалки и очистил бочки от химических отходов, используя средство для мытья посуды и воду. Каждая бочка имеет радиус 3 фута и высоту 4 фута, и Кэлум определяет объем песка, который может вместить каждая, используя уравнение ниже:

объем = π × 3 2 × 4 = 113.097 футов 3

Он успешно строит замок из песка в своем доме и в качестве дополнительного бонуса экономит электроэнергию на ночном освещении, так как его замок из песка светится ярко-зеленым в темноте.

Прямоугольный бак

Прямоугольный резервуар - это обобщенная форма куба, стороны которого могут иметь различную длину. Он ограничен шестью гранями, три из которых пересекаются в его вершинах, и все они перпендикулярны своим смежным граням. Уравнение для расчета объема прямоугольника показано ниже:

объем = длина × ширина × высота

EX: Дарби любит торт. Она ходит в спортзал по 4 часа в день, каждый день, чтобы компенсировать свою любовь к торту.Она планирует отправиться в поход по тропе Калалау на Кауаи, и, хотя она в очень хорошей форме, Дарби беспокоится о своей способности пройти этот маршрут из-за отсутствия торта. Она решает упаковать только самое необходимое и хочет набить свою идеально прямоугольную упаковку длиной, шириной и высотой 4 фута, 3 фута и 2 фута соответственно тортом. Точный объем торта, который она может поместить в свою упаковку, рассчитан ниже:

объем = 2 × 3 × 4 = 24 фута 3

Капсула

Капсула - это трехмерная геометрическая форма, состоящая из цилиндра и двух полусферических концов, где полусфера - это полусфера.Отсюда следует, что объем капсулы можно рассчитать, объединив уравнения объема для сферы и правого кругового цилиндра:

объем = πr 2 ч + πr 3 = πr 2 ( р + з)

, где r - радиус, а h - высота цилиндрической части

EX: Имея капсулу с радиусом 1,5 фута и высотой 3 фута, определите объем растопленного молочного шоколада, который Джо может унести в капсуле времени, которую он хочет похоронить для будущих поколений на пути к самопознанию. Гималаи:

объем = π × 1.5 2 × 3 + 4/3 × π × 1,5 3 = 35,343 фута 3

Сферический колпачок

Сферический колпачок - это часть сферы, которая отделена от остальной сферы плоскостью. Если плоскость проходит через центр сферы, сферическая крышка называется полусферой. Существуют и другие отличия, включая сферический сегмент, где сфера сегментируется двумя параллельными плоскостями и двумя разными радиусами, где плоскости проходят через сферу. Уравнение для вычисления объема сферической крышки выводится из уравнения для сферического сегмента, где второй радиус равен 0.Относительно сферической крышки, указанной в калькуляторе:

Имея два значения, калькулятор вычисляет третье значение и объем. Уравнения для преобразования между высотой и радиусом показаны ниже:

Для r и R : h = R ± √R 2 - r 2

Для R и h : r = √2Rh - h 2
где r - радиус основания, R - радиус сферы, а h - высота сферической крышки.

EX: Джек действительно хочет победить своего друга Джеймса в игре в гольф, чтобы произвести впечатление на Джилл, и вместо того, чтобы тренироваться, решает саботировать мяч для гольфа Джеймса.Он отрезает идеальную сферическую крышку от верхней части мяча для гольфа Джеймса и должен рассчитать объем материала, необходимый для замены сферической крышки и перекоса веса мяча для гольфа Джеймса. Учитывая, что мяч для гольфа Джеймса имеет радиус 1,68 дюйма, а высота сферической крышки, которую срезал Джек, составляет 0,3 дюйма, объем можно рассчитать следующим образом:

объем = 1/3 × π × 0,3 2 (3 × 1,68 - 0,3) = 0,447 дюйма 3

К несчастью для Джека, за день до игры Джеймс получил новую партию мячей, и все усилия Джека были напрасны.

Коническая Frustum

Усеченный конус - это часть твердого тела, которая остается, когда конус рассекается двумя параллельными плоскостями. Этот калькулятор рассчитывает объем специально для правильного кругового конуса. Типичные конические усики, встречающиеся в повседневной жизни, включают абажуры, ведра и некоторые стаканы для питья. Объем усеченного правого конуса рассчитывается по следующей формуле:

объем = πh (r 2 + rR + R 2 )

где r и R - радиусы оснований, h - высота усеченного конуса

EX: Би успешно приобрела мороженое в сахарном рожке и только что съела его так, что мороженое остается упакованным внутри рожка, а поверхность мороженого находится на уровне и параллельно плоскости отверстия рожка.Она собирается начать есть свой рожок и оставшееся мороженое, когда ее брат хватает ее рожок и откусывает часть дна ее рожка, которая идеально параллельна ранее единственному отверстию. У Би теперь остается конусообразная усеченная вершина, из которой вытекает мороженое, и ей необходимо рассчитать объем мороженого, который она должна быстро съесть, учитывая высоту усеченной кости 4 дюйма с радиусом 1,5 дюйма и 0,2 дюйма:

объем = 1/3 × π × 4 (0,2 2 + 0,2 × 1,5 + 1,5 2 ) = 10.849 из 3

Эллипсоид

Эллипсоид является трехмерным аналогом эллипса и представляет собой поверхность, которую можно описать как деформацию сферы посредством масштабирования элементов направления. Центр эллипсоида - это точка, в которой пересекаются три попарно перпендикулярные оси симметрии, а отрезки прямых, ограничивающие эти оси симметрии, называются главными осями. Если все три имеют разную длину, эллипсоид обычно называют трехосным.Уравнение для расчета объема эллипсоида выглядит следующим образом:

, где a , b и c - длины осей

EX: Хабат любит есть только мясо, но его мать настаивает на том, что он ест слишком много, и позволяет ему есть столько мяса, сколько он может уместить в булочке в форме эллипса. Таким образом, Хабат выдалбливает булочку, чтобы максимально увеличить объем мяса, который он может уместить в своем сэндвиче. Учитывая, что его булочка имеет длину оси 1,5 дюйма, 2 дюйма и 5 дюймов, Хабат рассчитывает объем мяса, который он может уместить в каждой полой булочке, следующим образом:

объем = 4/3 × π × 1.5 × 2 × 5 = 62,832 дюйма 3

Квадратная пирамида

Пирамида в геометрии - это трехмерное твердое тело, образованное путем соединения многоугольного основания с точкой, называемой его вершиной, где многоугольник - это форма на плоскости, ограниченная конечным числом отрезков прямых линий. Есть много возможных многоугольных оснований пирамиды, но квадратная пирамида - это пирамида, в которой основание представляет собой квадрат. Еще одно отличие пирамид заключается в расположении вершины. У правых пирамид есть вершина, которая находится прямо над центром тяжести ее основания.Независимо от того, где находится вершина пирамиды, если ее высота измеряется как перпендикулярное расстояние от плоскости, содержащей основание, до ее вершины, объем пирамиды может быть записан как:

Объем обобщенной пирамиды:

.

Финансовый калькулятор

Этот финансовый калькулятор можно использовать для расчета любого количества следующих параметров: будущая стоимость (FV), количество периодов начисления сложных процентов (N), процентная ставка (I / Y), аннуитетный платеж (PMT) и начальная основная сумма, если другие параметры известны. Каждая из следующих вкладок представляет параметры, которые необходимо вычислить.

Результаты

FV (будущая стоимость) 48 997,75 долларов США
PV (текущая стоимость) 27 360 долларов США.09
N (количество периодов) 10.000
I / Y (процентная ставка) 6.000%
PMT (периодический платеж) $ 1,000.00
Начальные инвестиции 20000.009
Общая сумма основного долга 30 000,00 долларов США
Итого проценты 18 997,75 долларов США

График накопления баланса

График

начальная основная сумма начальный баланс процентов конечный баланс конечная основная сумма
1 $ 20,000.00 $ 20,000.00 $ 1,200.00 $ 22,200.00 $ 21,000.00
2 $ 21,000.00 $ 22,200.00 $ 1,332.00 $ 24,532.00 $ 22,000.00
3 $ 22,000.00 $ 24,532.00 $ 1,471.92 $ 27,003.92 23 000,00 долл. США
4 23 000,00 долл. США 27 003,92 долл. США 1 620,24 долл. США 29 624 долл. США.16 $ 24,000.00
5 $ 24,000.00 $ 29,624.16 $ 1,777.45 $ 32,401.60 $ 25,000.00
6 $ 25,000.00 $ 32,401.60 $ 1,944.10 $ 35,345.70 $ 26,000.00
7 26 000,00 долларов США 35 345,70 долларов США 2120,74 долларов США 38 466,44 долларов США 27 000,00 долларов США
8 27 000 долларов США.00 $ 38,466.44 $ 2,307.99 $ 41,774.43 $ 28,000.00
9 $ 28,000.00 $ 41,774.43 $ 2,506.47 $ 45,280.90 $ 29,000.00
10 $ 29,000.00 $ 45,280.90 $ 2,716.85 $ 48,997.75 $ 30,000.00

Калькулятор связанного кредита | Калькулятор процентов | Ипотечный калькулятор

На основных курсах финансов много времени тратится на вычисление временной стоимости денег, которое может включать 4 или 5 различных элементов, включая текущую стоимость (PV), будущую стоимость (FV), процентную ставку (I / Y) и количество периодов (N).Аннуитетный платеж (PMT) может быть включен, но не является обязательным элементом.

Временная стоимость денег

Предположим, кто-то должен вам 500 долларов. Вы бы предпочли, чтобы эти деньги были возвращены вам сразу же одним платежом или распределены в течение года четырьмя платежами в рассрочку? Что бы вы почувствовали, если бы вам пришлось ждать полной оплаты вместо того, чтобы получать ее сразу? Разве вы не почувствуете, что просрочка платежа вам чего-то стоит?

В соответствии с концепцией, которую экономисты называют «временной стоимостью денег», вы, вероятно, захотите сразу все деньги, потому что их можно сразу же использовать для различных целей: потратить на роскошный отпуск своей мечты, инвестировать, чтобы заработать проценты, или использовать чтобы полностью или частично погасить ссуду.«Временная стоимость денег» относится к тому факту, что доллар в руках сегодня стоит больше, чем доллар, обещанный в будущем.

Это основа концепции процентных платежей; Хороший пример - когда деньги помещаются на сберегательный счет, получаются небольшие дивиденды за то, что деньги остаются в банке; финансовое учреждение платит небольшую цену за наличие этих денег. По этой же причине банк будет платить больше за более длительное хранение денег и за фиксирование их там на фиксированные периоды.

Это увеличение стоимости денег в конце периода взимания процентов называется будущей стоимостью в финансах. Вот как это работает.

Предположим, что 100 долларов (PV) инвестируются на сберегательный счет, на который выплачивается 10% годовых (I / Y) в год. Сколько будет через год? Ответ - 110 долларов (FV). Эти 110 долларов равны первоначальной основной сумме 100 долларов плюс 10 долларов процентов. 110 долларов - это будущая стоимость 100 долларов, инвестированных в течение одного года под 10%. Это означает, что 100 долларов сегодня стоят 110 долларов через год при условии, что процентная ставка составляет 10%.

В целом, инвестирование в течение одного периода с процентной ставкой r вырастет до (1 + r) на каждый вложенный доллар. В нашем примере r составляет 10%, поэтому инвестиции вырастут до:

.

1 + 0,10 = 1,10

1,10 доллара на каждый вложенный доллар. Поскольку в этом случае было инвестировано 100 долларов, результат, или FV, составляет:

.

$ 100 × 1,10 = 110 $

Первоначальные инвестиции в размере 100 долларов теперь составляют 110 долларов. Однако, если эти деньги и дальше будут храниться на сберегательном счете, какой будет полученная справедливая стоимость через два года, если процентная ставка останется прежней?

$ 110 × 0.10 = 11

долларов США

11 долларов будут начислены в виде процентов после второго года, в результате чего в общей сложности будет:

110 + 11 = 121

121 доллар - это будущая стоимость 100 долларов через два года под 10%.

Кроме того, PV в финансах - это то, что будет стоить FV с учетом ставки дисконтирования, которая имеет то же значение, что и процентная ставка, за исключением того, что применяется обратно пропорционально времени (в обратном направлении, а не вперед. В примере, PV FV равной 121 доллар со ставкой дисконта 10% после 2 периодов начисления сложных процентов (N) составляет 100 долларов.

Этот FV стоимостью 121 доллар состоит из нескольких частей с точки зрения денежной структуры:

  • Первая часть - это первая первоначальная основная сумма в 100 долларов или ее текущая стоимость (PV)
  • Вторая часть - это 10 долларов процентов, заработанных в первый год.
  • Третья часть - это остальные 10 долларов США по процентам, полученным во второй год.
  • Четвертая часть - 1 доллар, который представляет собой проценты, полученные во второй год по процентам, выплаченным в первый год: (10 долларов × 0,10 = 1 доллар)

PMT

PMT или аннуитетный платеж - это сумма притока или оттока, которая происходит в каждый период начисления сложных процентов финансового потока.Возьмем, к примеру, арендуемую недвижимость, которая приносит доход от аренды в размере 1000 долларов в месяц, постоянный денежный поток. Инвесторы могут задаться вопросом, сколько стоит денежный поток в размере 1000 долларов в месяц в течение 10 лет, в противном случае у них нет убедительных доказательств того, что они должны вкладывать такие деньги в арендуемую недвижимость. В качестве другого примера, как насчет оценки бизнеса, приносящего 100 долларов дохода в год? А как насчет выплаты первоначального взноса в размере 30 000 долларов и ежемесячной ипотеки в размере 1 000 долларов? Для этих вопросов формула оплаты довольно сложна, поэтому лучше оставить ее в руках нашего финансового калькулятора, который может помочь оценить все эти ситуации с включением функции PMT.Не забудьте выбрать правильный ввод для того, производятся ли выплаты в начале или в конце периодов начисления сложных процентов; выбор имеет большое значение для окончательной суммы процентов.

Финансовый класс

Для любого студента, изучающего бизнес, будет чрезвычайно сложно ориентироваться в курсах по финансам без удобного финансового калькулятора. Хотя большинство основных финансовых расчетов технически можно выполнить вручную, профессора обычно позволяют студентам использовать финансовые калькуляторы даже во время экзаменов.Важна не способность выполнять вычисления вручную; это понимание финансовых концепций и того, как их применять с помощью этих удобных вычислительных инструментов, которые были изобретены. Наш веб-финансовый калькулятор может служить хорошим инструментом для использования во время лекций или выполнения домашних заданий, а поскольку он работает в Интернете, он всегда под рукой, пока рядом находится смартфон. Включение графика накопления баланса, графика амортизации и круговой диаграммы с разбивкой основной суммы и процентов, двух вещей, отсутствующих в физических калькуляторах, может быть более визуально полезным для учебных целей.

Важность финансового калькулятора

По сути, наш финансовый калькулятор является основой большинства наших финансовых калькуляторов. Это помогает думать о нем как об эквиваленте парового двигателя, который в конечном итоге использовался для питания самых разных вещей, таких как пароход, железнодорожные локомотивы, фабрики и дорожные транспортные средства. Не может быть ипотечного калькулятора, или калькулятора кредитной карты, или калькулятора автокредитования без концепции временной стоимости денег, как объясняется Финансовым калькулятором.По сути, наш инвестиционный калькулятор - это просто ребрендинг финансового калькулятора, в то время как все, что скрывается под капотом, по сути то же самое. Начальный принцип просто переименован в «Начальная сумма», FV - на «Конечная сумма», N - на «Инвестиционная длина» и так далее.

.Калькулятор стандартного отклонения

Использование калькулятора

Стандартное отклонение - это статистическая мера разнообразия или изменчивости набора данных. Низкое стандартное отклонение указывает на то, что точки данных обычно близки к среднему или среднему значению. Высокое стандартное отклонение указывает на большую изменчивость в точках данных или более высокий разброс от среднего.

Этот калькулятор стандартного отклонения использует ваш набор данных и показывает работу, необходимую для вычислений.

Введите набор данных, разделенный пробелами, запятыми или переносом строки. Нажмите «Рассчитать», чтобы найти стандартное отклонение, дисперсию, количество точек данных. n , среднее и сумма квадратов. Вы также можете увидеть проделанную работу для расчета.

Вы можете копировать и вставлять строки точек данных из таких документов, как электронные таблицы Excel или текстовые документы с запятыми или без них, в форматах, показанных в таблице ниже.

Формула стандартного отклонения

Стандартное отклонение набора данных - это квадратный корень из вычисленной дисперсии набора данных.

Формула дисперсии (s 2 ) представляет собой сумму квадратов разностей между каждой точкой данных и средним значением, деленную на количество точек данных.

При работе с данными из полной совокупности сумма квадратов разностей между каждой точкой данных и средним значением делится на размер набора данных, .2} \)

Дополнительное объяснение стандартного отклонения и его связи с распределением колоколообразной кривой см. На странице Википедии на Стандартное отклонение.

Статистические формулы и расчеты, используемые данным калькулятором

Сумма

Сумма - это сумма всех значений данных x 1 + x 2 + x 3 + ... + x n

\ [\ text {Sum} = \ sum_ {i = 1} ^ {n} x_i \]

Размер, количество

Размер или количество - это количество точек данных в наборе данных.{2}} {n - 1} \]

Допустимые форматы данных

Колонна (новые строки)

42
54
65
47
59
40
53

42, 54, 65, 47, 59, 40, 53

, разделенные запятыми (CSV)

42,
54,
65,
47,
59,
40,
53,

или

42, 54, 65, 47, 59, 40, 53

42, 54, 65, 47, 59, 40, 53

Помещения

42 54
65 47
59 40
53

или

42 54 65 47 59 40 53

42, 54, 65, 47, 59, 40, 53

Смешанные разделители

42
54 65`` 47`` 59,
40 53

42, 54, 65, 47, 59, 40, 53

.

Смотрите также