Главное меню

Расчет фундамента под колонну


Расчет фундамента под металлическую колонну, стальную: сбор нагрузок

Изображение металлической колонны на обустроенном фундаменте

Несмотря на огромную популярность каркасных ленточных или монолитных фундаментов, в некоторых случаях они не могут использоваться из-за особенностей почвы, нагрузок на единицу площади конструкции, особенностей самого здания. Как правило, колонные фундаменты часто строятся для промышленных предприятий тяжелой энергетики, машиностроения и для военных нужд.

Такие бескаркасные фундаменты выдерживают огромные нагрузки, но расчет делается всегда каждой колонны отдельно, ведь тут проводится полный сбор всех допустимых нагрузок со стороны самого здания, почвы и климатических условий в регионе строительства.

Какие бывают колонны?

Эскиз обустройства фундамента под металлической колонной

Железобетонные. Они отличаются прочностью, производятся в промышленных условиях, поэтому соответствуют всем нормам качества, а также марке бетона. Внутри таких колонн уже предусмотрено несущее армирование, но колонны такого типа тяжелые и для их монтажа приходится использовать мощную строительную технику.

Металлические. Они более легкие, чем железобетонные, но при этом тут используются совсем иные методы монтажа. К тому же, при расчете нужно однозначно определиться изначально, какой тип колонны лучше использовать.

Какие данные нужно собрать для правильного расчета фундамента под колонны?

Схема соединения металлической колонны с арматурой фундамента

Расчет колонного фундамента провести довольно сложно, ведь тут проводится сбор сразу многих факторов. Понятно, что самостоятельно такие сложные вычисления сделать практически невозможно, нужно специальное образование и навыки. Поэтому, перед началом расчета колонного фундамента, нужно получить следующие данные:

Раньше расчет колонного основания делали на глаз, используя стандартные показатели допустимых нагрузок. Например, стандартная глубина погружения подушки составляла до 200 мм, а верхняя ее часть выступала из грунта на высоту до 50 мм.

Такие колонны не способны выдерживать подвижки почвы, ведь подушка быстро вымывалась и основание разрушалось. Теперь в расчете четко указывается максимально допустимая глубина погружения подушки, она должна быть ниже глубины промерзания почвы, где нагрузок уже практически нет.

Как делается расчет колонного фундамента

Монолитный столбчатый фундамент под металлическую колонну

Как правило, расчет фундамента для металлической колонны подразумевает, способен ли грунт выдержать расчетную нагрузку фундамента, с которой он будет воздействовать на квадратном сантиметре площади, и сбор всех данных о будущем строительстве. Фактически, нужно получить полную информацию о здании, грунтах и грунтовых водах, провести сбор и систематизацию полученных данных и уже на их основании передать строителям готовый проект. Для этого нужно:


Как узнать нагрузку, которая будет создавать само здание? Для этого нужно получить подробные данные о самом здании, сделать сбор массы и характеристик всех материалов, которые могут использоваться при его возведении, а также проектируемых коммуникаций, будущей мебели, количества снега на крыше. Такой расчет состоит из нескольких частей:

  1. Расчет перекрытий зданий и стальных колонн. Сначала нужно узнать массу самой металлической колонны, ведь она также, хоть и незначительно, создает давление на грунт. Для этого требуется посчитать объем конструкции. Делается это по геометрической формуле вычисления объема цилиндра. Так получится объем, который затем умножается на плотность металла для получения массы стальной колонны.
  2. Затем нужно узнать массу перекрытий. Как правило, это фабричные изделия и каждый производитель уже указывает их массу. Поэтому, достаточно связаться с поставщиками.
  3. Бывают случаи, когда на металлические колонны устанавливается ростверковая конструкция. Ее массу также не проблема рассчитать, ведь для этого достаточно знать, какое количество бетона или готовых бетонных конструкций пойдет на строительство ростверка.
  4. Расчет массы стен. Тут многое зависит от материала, ведь кирпич весит меньше, чем бетон, но больше, чем пеноблоки. Соответственно, стоит провести сбор данных обо всех строительных материалах, используемых при строительстве здания.
  5. Расчет крыши. Сюда входит спецификация материалов, из которых сделано чердачное помещение, а также спецификация всех материалов крыши, вплоть до внешнего покрытия. При проектировании сооружения архитектор предоставляет подробную спецификацию, поэтому посчитать суммарную массу конструкций не составит труда.
  6. После суммирования всех полученных данных будет вычислена цифра, которая характеризует максимально допустимую нагрузку на опоры фундамента.

Чтобы узнать, какая сила давит на единицу площади опоры, нужно знать ее габаритные размеры. Если стальной столб имеет квадратное сечение 50 х 50 см, то площадь опоры будет составлять 2500 см². Тогда давление, которое будет воздействовать на единицу площади грунта, вычисляется методом деления массы здания на площадь одной опоры.

Теперь самый важный этап расчета фундамента для стальной опоры – это исследование характеристик грунта и сбор данных о его расчетном сопротивлении. Такие данные предоставит геодезическая служба. Если сопротивление грунта будет больше, чем расчетное от самого здания, тогда опора выдержит нагрузку и не деформируется со временем. Если показатели меньше, тогда нужно увеличивать количество столбов.

Но всегда существует правило: большее количество опор не будет лишним, поэтому часто проектировщики устанавливают опоры с интервалом приблизительно 1,5 – 3 м. Это делается с целью предоставления необходимого резерва прочности на конструкции, связанные с несанкционированной достройкой, обустройством помещений или установкой тяжелого промышленного оборудования. Как правило, при расчетах предоставляют обязательный 50% резерв прочности на каждую опору.

Дополнительные расчеты фундаментов для металлических колонн

Расположение металлической колонны в колодце

Также проводится дополнительный расчет под существующие и перспективные геодезические изыскания. Для правильного обеспечения геодезии проводится контроль анкерных соединений, а именно высотное расположение их головок. Для этого используются шаблоны или кондуктор.

Шаблон – это металлическая плоская рама с готовыми гнездами для болтовых соединений. Они соединяются на опалубке с основными осями фундамента, затем закрепляются. Для получения более точных данных, на колонне изначально указывается уровень установки шаблона с целью контроля степени его смещения.

Анкера шаблона рекомендуется приварить к арматуре колонны, чтобы устранить вертикальное смещение во время крепежа конструкций. После заливки бетоном основания колонны, проводится первичный контроль над месторасположением шаблона и при необходимости делается корректировка еще до того, как бетон застынет.

Сейчас, увеличения прочности каркаса основания для стальной колонны достигают с помощью соединения стали и размещения в специальных колодцах. Такие углубления изначально предусматриваются в чаше основания, оно постоянно остается открытым, и бетоном не заливается на первом этапе строительства. Только, когда болт будет установлен, зафиксирован и его расположение точно замерено, тогда колодец закрывают.

6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Пример 6.1. Определить размеры и площадь сеченая арматуры внецентренно нагруженного фундамента со ступенчатой плитной частью и стаканным сопряжением с колонной размером сечения lс × bс= 400 × 400 мм. Глубина заделки колонны 0,75 м. Отметки: низа колонны — 0,90 м, обреза фундамента — 0,15 м, низа подошвы — 2,65 м. Размер подошвы 3,3 × 2,7 м.

Расчетные нагрузки на уровне обреза фундамента приведены в табл. 6.1.

ТАБЛИЦА 6.1. К ПРИМЕРУ 6.1
Расчетное
сочетание
При γf = 1 При γf > 1
N,
кН
Mx,
кН·м
Qx,
кН
Mу,
кН·м
Qy,
кН
N,
кН
Mx,
кН·м
Qx,
кН
Mу,
кН·м
Qy,
кН
1 2000 80 30 50 20 2400 96 36 60 24
2 800 110 50 70 30 960 132 60 84 36
3 1750 280 60 10 5 2100 336 72 12 6

Примечание. Индексы обозначают; х — направление вдоль большого размера подошвы; у — то же, вдоль меньшего.

Материалы: сталь класса А-III, Rs = 360 МПа (ø 6-8 мм), Rs = 375 МПа (ø 10 мм), бетон тяжелый класса В10 (В15).

Расчетные сопротивления приняты со следующими коэффициентами условий работы: γb1 = 1; γb2 = 0,9; γb4 = 0,85.

Решение. 1. Назначение предварительных геометрических размеров фундамента (рис. 6.12). Определим необходимую толщину стенок стакана по сочетанию 3:

е0 = Mx/ N = 336/2100 = 0,16 м, т.е. е0 < 2lc = 2 · 0,4 = 0,8 м.

Рис. 6.12. Размеры проектируемого фундамента

Толщина стенок должна быть δ > 0,2lс = 0,2 · 0,4 = 0,08 м, но не менее 0,15 м. Тогда размеры подколонника luc = buc = 2 · 0,15 + 2 ·0,075 + 0,4 = 0,85 м. Принимаем с учетом рекомендуемого модуля 0,3 м.

luc = buc = 0,9 м.

Высоты ступеней плитной части hi = 0,3 м. Площадь подошвы фундамента A = 3,3 · 2,7 = 8,92 м2. Момент сопротивления в направлении большего размера

Wx = l2b/6 = 3,32 · 2,7/6 = 4,9 м2.

Рабочая высота плитной части h = 0,3 · 2 – 0,05 = 0,55 м. Глубина стакана hg = 0,75 + 0,05 = 0,8 м.

2. Расчет фундамента на продавливание. Расстояние от верха плитной части до низа колонны 1,05 м, в то время как huc = (luc – 1c)/2 = 0,25 м, следовательно, проверка на продавливание плитной части производится от низа подколонника.

Максимальное краевое давление на грунт (6.9):

сочетание 1

pmax = N/A + (Mx+QxH)/Wx = 2400/8,92 + (96 + 36 · 2,4)/4,9 = 0,268 + 0,033 = 0,306 МПа;

сочетание 3

pmax = 2100/8,92 + (336 + 72 · 2,4)/4,9 = 0,339 МПа.

Принимаем наибольшее значение pmax = 0,339 МПа. Продавливающая сила F = А0pmax.

По формуле (6.6)

A0 = 0,5b(l – l – 2h0) – 0,25(b – buc – 2h0)2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,55) – 0,025(2,7 – 0,9 – 2 · 0,55)2 = 1,64 м2.

Тогда F = 1,64 · 0,339 = 556 кН.

Задаемся классом бетона В10 с Rbt = 0,57 МПа. С учетом γb2 = 0,9 и γb4 = 0,85 Rbt = 0,57 · 0,9 · 0,85 = 0,436 МПа.

По формуле (6.7) bр = bс+ h0 = 0,9 + 0,55 = 1,45 м.

Тогда

kRbtbph0 = 1 · 0,436 · 1,45 · 0,55 = 305 < 556 кН.

Следовательно, принятая высота плитной части фундамента недостаточна. Переход на бетон класса В15 повысит несущую способность на продавливание в 250/150 = 0,7/0,57 = 1,2 раза, чего также недостаточно. Следует либо увеличить высоту верхней ступени (например, с 0,3 до 0,45 м), либо внести еще одну (третью) ступень, т.е. принять высоту плитной части h = 0,9 м; h0 = 0,85 м.

Принимаем трехступенчатый фундамент. Проверку на продавливание производим (при разном числе ступеней плитной части) в двух направлениях по формулам (6.27) и (6.28):

A0 = 0,5b(l – luc – 2h0) – 0,25 [b – buc – 2(h0h3)]2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,85) – 0,25[2,7 – 0,9 – 2(0,85 – 0,3)]2 = 0,85 м2;

F´ = 0,85 · 0,339 = 288 кН; b1p = buc + (h0h3) = 0,9 + (0,85 – 0,3) = 1,45 м.

Несущая способность фундаментов по формуле (6.26)

F = 0,436 [(0,85 – 0,3)1,45 + 0,3 · 0,9] = 465 кН > 288 кН.

Принятый фундамент удовлетворяет условию прочности на продавливание

Рассмотрим дополнительно вариант при двухступенчатом фундаменте с высотой верхней ступени 0,45 м. Тогда (при h0 = 0,7 м):

A0 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,7) – 0,25(2,7 – 0,9 – 2 · 0,7)2 = 1,31 м2;

F´ = 1,31 · 0,339 = 444,1 кН;

b1p =0,9 + 0,7 = 1,6 м.

Несущая способность фундамента по формуле (6.1)

F = 1 · 0,436 · 1,6 · 0,7 = 488,3 кН > 444 кН,

т.е. и такой фундамент удовлетворяет прочности на продавливание.

Покажем, однако, что последний вариант менее экономичен. Действительно, объем плитной части высотой 0,9 м при трехступенчатом фундаменте

V3 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,3 + 1,5 · 0,9 · 0,3 = 4,37 м3, а при двухступенчатом фундаменте с учетом дополнительного объема подколонника на высоте 0,9 – 0,75 = 0,15 м

V2 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,45 + 0,9 · 0,9 · 0,15 = 4,74 м3 > 4,37 м3.

Итак, принимаем трехступенчатый фундамент с высотой плитной части 0,9 м.

Проверим прочность нижней ступени при заданном ее выносе 450 мм и h01 = 0,25 м:

A0 = 0,5 · 2,7(3,3 – 2,4 – 2 · 0,25) – 0,25(2,7 – 1,8 – 2 · 0,25)2 = 0,5 м2;

P = 0,5 · 0,339 = 169 кН:

b1p = 1,8 + 0,25 = 2,05 м.

Несущая способность ступени F = 1 · 0,436 · 2,05 · 0,25 = 223 кН > 169,5 кН.

Размеры лежащих выше ступеней назначаются пересечением линии AB с линиями, ограничивающими высоты ступеней (рис. 6.13).

Рис. 6.13. К определению размеров ступеней

Определение площади сечений арматуры плитной части фундамента проведем на примере нижней арматуры (направленной вдоль большей стороны подошвы фундамента) класса А-II.

Расчетные усилия на уровне подошвы принимаем по сочетанию 3 без учета веса фундамента:

N = 2100 кН; M = 336 + 72 · 2,4 = 509 кН·м; е0x = 509/2100 = 0,242 м.

Определим давление на грунт в расчетных сечениях (см. рис. 8.12)

Pmax = N/ A + M/ W = 2100/8,92 + 509/4,9 = 370 кН/м2;

По формуле (6.33)

k´I = 1 – 2 · 0,45/3,3 = 0,73.

тогда

pI = N/A + k´IM/W = 236 + 0,73 · 135 = 345 кН/м2.

Аналогично получаем:

k´II = 1 – 2 · 0,9/3,3 = 0,45;

pII = 236 + 0,45 · 135 = 297 кН/м2.

k´III = 1 – 2 · 1,2/3,3 = 0,28

pIII = 236 + 0,28 · 135 = 274 кН/м2.

Изгибающие моменты:

кН·м;

кН·м;

кН·м.

Принимаем арматуру класса А-II с Rs = 285 МПа:

см2;

см2;

см2.

Расчет столбчатого фундамента под колонну

Расчёт фундамента под колонну

3.1. Исходные данные

Рассчитать и законструировать столбчатый сборный фундамент под колонну среднего ряда. Бетон класса С 20 /25, рабочая арматура класса S400.

Таблица 8. Исходные данные

3.2. Расчет фундамента под колонну

3.2.1. Определяем глубину заложения фундамента из условия длины колонны:

Определяем глубину заложения фундамента из условий заложения грунта:

Рис. 15. Определение глубины заложения фундамента

По схематической карте нормативной глубины промерзания грунтов для г. Гродно определяем глубину промерзания – 1,0 м.

Dф2 =150+1000+100=1250 мм 16 /20 при сжатии:

– Расчетное сопротивление бетона класса С 16 /20 при растяжении:

– Расчетное сопротивление арматуры класса S500 fyd = 450 МПа.

Определяем предварительные размеры подошвы фундамента:

Тогда размер стороны квадратной подошвы фундамента:

Вносим поправку на ширину подошвы и на глубину заложения фундамента.

Тогда размер стороны квадратной подошвы фундамента:

b = √A = √2,87 = 1,69 м.

Окончательно принимаем: b = 1,8 м (кратно 0,3 м).

Определяем среднее давление под подошвой фундамента от действующей нагрузки:

Определяем расчётное сопротивление грунта:

k – коэффициент, принимаемый равным: k = 1, если прочностные характеристики грунта (φ и с) определены непосредственными испытаниями, и k = 1.1, если они приняты по таблицам, k = 1,1,

kz = 1 при b ’ II = γII = 18 кН/м 3 – удельный вес грунта соответственно ниже и выше подошвы фундамента.

R = 1,3 ⋅ 1,2/ 1,1 [1,81⋅1⋅1,8⋅18+8,24⋅1,4⋅18+9,97⋅4]= 434,75 МПа> 285,94 кПа

Следовательно, расчёт по II группе предельных состояний можно не производить.

3.2.3. Расчёт тела фундамента

Определяем реактивное давление грунта:

Определяем размеры фундамента.

Рабочая высота фундамента из условия продавливания колонны через тело фундамента:

+ 0,5⋅ √( 1128,23 / 1,0⋅1,47⋅10 3 + 348,22) = 267 мм

c = a + 0.5⋅∅ , где: a = 45 мм – толщина защитного слоя бетона для арматуры (для сборных фундаментов).

с = 50 мм – расстояние от центра тяжести арматуры до подошвы фундамента.

Полная высота фундамента:

Для обеспечения жесткого защемления колонны в фундаменте и достаточной анкеровки ее рабочей арматуры высота фундамента принимается:

∅ = 18 мм – диаметр рабочей арматуры колонны,

fbd = 2,0 МПа – предельное напряженное сцепление для бетона класса С 20 /25,

Принимаем окончательно высоту фундамента:

Hf = max(Hf1, Hf2) = 1013 мм. Принимаем Hf = 1050 мм – кратно 150 мм.

Рабочая высота фундамента:

d = H − c = 1050−50 =1000 мм.

Принимаем первую ступень высотой: h1 = 300 мм.

Принимаем остальные размеры фундамента.

Рис.16. Определение размеров фундамента

Высота верхней ступени фундамента:

Глубина стакана hcf = 1,5 ⋅ hc + 50 = 1,5 ⋅ 300 + 50 = 500 мм, принимаем hcf = 650 мм. Так как h2 = 750 мм bc = 225 мм.

Следовательно, требуется армирование стенки стакана.

Т. к. bc+75=225+75=300 мм = 348,22⋅0,1/1,0⋅1,27⋅10 3 = 27 мм.,

что не превышает принятую d1 = 250 мм.

3.2.4. Расчет армирования подошвы фундамента

Площадь сечения рабочей арматуры сетки, укладываемой по подошве фундамента, определяется из расчета на изгиб консольного выступа ступеней, заделанных в массив фундамента, в сечениях по грани колонны и по граням ступеней.

Значения изгибающих моментов в этих сечениях:

Требуемое сечение арматуры:

As1 = MI-I / 0,9⋅ d ⋅ α ⋅ fyd = 176,29⋅10 6 / 0,9⋅1000⋅1,0⋅365 = 435,28 мм 2 ,

As2 = MII-II / 0,9⋅ d1 ⋅ α ⋅ fyd = 63,46⋅10 6 / 0,9⋅250⋅1,0⋅365 = 626,77 мм 2 ,

Арматуру подбираем по максимальной площади:

Принимаем шаг стержней S = 200 мм.

Количество стержней в сетке в одном направлении:

n = b / S +1 = 1800 / 200 + 1 = 10 шт. Принимаем 10 шт.

Требуемая площадь сечения одного стержня:

Принимаем один стержень ∅8 S400, Ast = 50,3 мм 2 .

Такое же количество стержней укладывается в сетке в противоположном направлении.

3.2.5. Расчет монтажных петель

Вес фундамента определяем по его объему и объемному весу бетона, из которого он изготовлен.

Объем бетона на 1 стакан фундамента:

Вес стакана с учетом коэффициента динамичности kд = 1,4:

Усилие, приходящиеся на одну монтажную петлю:

N = 43942,8 / 2 = 21971,4 Н.

Определяем площадь поперечного сечения одной петли из арматуры класса S240, fyd = 218 МПа.

Принимаем петлю 1∅14 S240 As1 = 113,1 мм 2 .

Литература

1. СНБ 5.03.01–02. «Конструкции бетонные и железобетонные». – Мн.: Стройтехнорм, 2002 г. – 274с.

2. Нагрузки и воздействия: СНиП 2.01.07-85.–М.:1987.–36c.

3. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции:

Общий курс.– М.: Стройиздат , 1991.–767с.

4. Железобетонные конструкции. Основы теории расчета и конструирования // Учебное пособие для студентов строительной специальности. Под редакцией профессора Т.М. Петцольда и профессора В.В. Тура. – Брест, БГТУ, 2003.– 380с.

5. Строительные конструкции. Методические указания по выполнению курсового проекта специальность 2-70 02 01 «Промышленные и гражданские здания». Брест 2007 г.

Расчёт фундамента под колонну
Расчёт фундамента под колонну 3.1. Исходные данные Рассчитать и законструировать столбчатый сборный фундамент под колонну среднего ряда. Бетон класса С 20 / 25 , рабочая арматура класса

Источник: mydocx.ru

Расчет фундамента под колонну,

1. Данные для проектирования фундамента.

Усилия колонны у заделки в фундаменте:

Ввиду относительно малых значений эксцентриситета, фундамент колонны рассчитываем как центрально загруженный.

Усредненное значение коэффициента надежности по нагрузке ,

Нормативное значение нагрузки

Расчётное сопротивление грунта

Бетон тяжелый класса ,

Арматура класса A-II

Вес единицы объема бетона фундамента и грунта на его срезах

Высоту фундамента предварительно принимаем равной .

2. Определение размера сторон подошвы фундамента.

Площадь подошвы фундамента определяем предварительно без поправок на её ширину и заложение

Размер стороны квадратной подошвы

Принимаем (кратно 0,3м)

Давление на грунт от расчетной нагрузки

Рабочая высота фундамента из условий продавливания:

Полную высоту фундамента устанавливаем из условий:

2) заделки колонны в фундаменте:

3) анкеровки растянутой арматуры колонны Æ32 А III (d = 3,2 см)

Принимаем окончательно фундамент высотой (кратно 30 см), трёхступенчатый (2 верхних ступени по 30 см нижняя ступень 60 см). Глубина стакана толщина дна фундамента (120 – 85) = 35см ³ 20см. Для неармированного подколонника толщина стенки

Принимаем по конструктивным требованиям, с учётом призмы продавливания t = 22,5см.

Проверим, отвечает ли рабочая высота нижней ступени фундамента

условию прочности по поперечной силе без поперечного армирования в наклонном сечении, находящемся в сечении III–III. Для единицы длины этого сечения b = 100:

– условие прочности удовлетворяется.

3. Определение площади рабочей арматуры фундамента.

Расчетные изгибающие моменты колонны в сечениях I-I и II-II:

Площадь сечения арматуры:

Т.к. стороны фундамента больше 3 м, половину стержней принимаем длиной , где – размер длинных стержней.

В соответствии с конструктивными требованиями диаметр стержней принимаем не менее 12мм, шаг стержней S не менее 100мм и не более 200мм

Для удобства армирования принимаем две сетки с общей площадью стержней:

Расчет фундамента под колонну
Расчет фундамента под колонну, 1. Данные для проектирования фундамента . Усилия колонны у заделки в фундаменте: Ввиду относительно малых значений эксцентриситета, фундамент колонны

Источник: studopedia.su

Расчет фундамента под колонну

Сбор нагрузок под колонну

Делаем сбор нагрузок на фундамент под колонну в табличной форме.

Коэффициент надежности по нагрузке,

на единицу площади,

от грузовой площади, кН

От бетонного пола по перекрытию

Кратковременная на 1 м2 перекрытия (табл.3 /7/)

Расчет отдельно стоящего фундамента

Вертикальная нагрузка на уровне спланированной отметки земли N=251,58 кН, Nn=211,37 кН,

Условное расчетное сопротивление основания, сложенного гравийно-галечниковым грунтом, определяем по табл. 45/16/ кПа.

Вес единицы объема фундамента на его обрезах гmt=18 кН/м 3 .

Бетон тяжелый класса В 20, Rbt=0,9МП, Rb=11,5 МПа, гb2=1,

Арматура класса А-II, Rs=280 МПа.

Рис. 3.3. Заложение отдельно стоящего фундамента

Грунт под подошвой фундамента – песчано-гравийная смесь. Т.о., в соответствии с табл.2. СНиП 2.02.01-83, глубина заложения фундамента не зависит от .

Учитывая наличие подвала, принимаем глубину заложения фундамента, равную 3,3м.

Предварительные размеры фундамента

Предварительная площадь фундамента:

– суммарная расчетная нагрузка по обрезу фундамента, кН,

– расчетное сопротивление грунта основания, кПа,

– средний удельный вес грунта и материала фундамента, кН/м 3 ,

– глубина заложения фундамента, м.

Предварительная ширина фундамента:

где и -коэффициенты условий работы.

k-коэффициент, принимаемый равным 1,

-коэффициенты, принимаемые по табл. 4,

-коэффициент, принимаемый равным 1, т.к. b 10 м,

b-ширина подошвы фундамента, м,

-осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента кН/м 3 (тс/м 3 ),

-то же, залегающих выше подошвы,

-расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа (тс/м 2 ),

d1-глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала

Размеры фундамента при R=608,02 кПа

Принимаем , исходя из конструктивных соображений.

Рис. 3.4. Конструирование отдельно стоящего фундамента

Вес грунта на обрезах фундамента

Среднее напряжение по подошве

Условия выполняются, размеры фундамента принимаются.

Расчет свайного фундамента

– глубина заложения ростверка

– принимаем глубину заложения 3,4 м, исходя из конструктивных соображений.

– за несущий слой принимаем песчано-гравийную смесь.

– длина сваи 3 м, сечение 30Ч30

Рис.3.5. Заложение свайного фундамента

Определение несущей способности сваи:

где – коэффициент условий работы сваи в грунте, принимаемый = 1,

R= 9295 кПа- расчетное сопротивление грунта под нижним концом сваи (Н =6,1 м), принимаемое по табл.1 СНиП 2.02.03-85,

при Н=5м, R=8800 кПа,

при Н=7м, R=9700 кПа,

– площадь опирания сваи на грунт, м 2 ,

– наружный периметр поперечного сечения сваи, м,

– расчетные сопротивления слоев грунта основания по боковой поверхности сваи, принимаемые по табл.2 СНиП 2.02.03-85,

hi – толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м,

и – коэффициенты условий работы.

Допустимая нагрузка на сваю

где =1,4 – коэффициент надежности.

Несущая способность сваи по материалу:

Расчет продолжаем по наименьшей несущей способности

Среднее условное давление под подошвой:

Вес ростверка и грунта:

Требуемое количество свай:

Рис. 3.6. Конструирование ростверка

Вес грунта на обрезах

Нагрузка на сваю в ростверке

Следовательно, использование свайного фундамента является нецелесообразным, т. к даже при использовании минимального количества свай возникает значительное недонапряжение.

Исходя из этого, принимаем отдельно стоящий монолитный фундамент под колонну.

Расчет фундаментов под колонну
Расчет фундамента под колонну Сбор нагрузок под колонну Делаем сбор нагрузок на фундамент под колонну в табличной форме. Коэффициент надежности по нагрузке, на единицу площади, от

Источник: vuzlit.ru

Расчет столбчатого фундамента под колонну

Расчет фундамента выполняем под колонну среднего ряда, которая работает как центрально сжатый элемент. Фундамент под колонну среднего ряда считается как центрально-загруженный.

7.1.Расчет подошвы столбчатого фундамента.

Усилия от нормативной нагрузки определяются приблизительно, путём деления расчётных нагрузок на средний коэффициент надежности по нагрузке:

γн=1.15 – средний коэффициент надежности по нагрузке,

7.2.Глубина заложения фундамента

Глубина заложения фундамента d определяется с учетом:

– конструктивных особенностей сооружения,

– глубины заложения соседних фундаментов и прокладки коммуникаций,

– рельефа, характера напластования и свойств грунтов,

– глубины сезонного промерзания грунтов.

7.3.Определение глубины сезонного промерзания:

dfn=1,2 – нормативная глубина сезонного промерзания, м, кn=0,6 – коэффициент характеризующий параметры эксплуатации здания.

Глубина фундамента должна быть больше 0.9м. Принимаю глубину заложения фундамента 1,5 м. Защитный слой бетона принимаю равным a=3,5 см, так как будет производиться подготовка по грунту, толщиной слоя 10 см

7.4.Определение ширины подошвы фундамента.

расчётное сопротивление грунта (принимается по СНиП МПа – пески пылеватые маловлажные плотные).

глубина заложения фундамента. м.

удельный вес грунта на обрезок фундамента. кН/м 3 .

7.5.Длина стороны фундамента

При центрально-загруженном фундаменте принимаем квадратную форму основания фундамента. Длина стороны фундамента:

Принимаем фундамент: 1,6´1,6 м и Аф = 2,6 м 2

7.6.Давление на подошву грунта

Принимаем бетон В15 с прочностью на одноосное сжатие Rb = 8.7 МПа, нормативным сопротивление бетона при растяжении Rbt = 0.75 МПа и рабочую арматуру А-II с расчетным сопротивлением растяжению RS = 280 МПа.

7.7.Полезная минимальная высота фундамента определяется из условия продавливания его колонной при действии расчётной нагрузки:

7.8.Высота фундамента с учетом конструктивных требований

Конструктивно принимаю высоту ступенькиh1 = 20 см, h2 = 20 см

Конструктивно принимаю высоту ступенькиh1 = 20 см, h2 = 20 см.

Расчет столбчатого фундамента под колонну
Расчет столбчатого фундамента под колонну Расчет фундамента выполняем под колонну среднего ряда, которая работает как центрально сжатый элемент. Фундамент под колонну среднего ряда считается как

Источник: helpiks.org

6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Пример 6.1. Определить размеры и площадь сеченая арматуры внецентренно нагруженного фундамента со ступенчатой плитной частью и стаканным сопряжением с колонной размером сечения lс × bс = 400 × 400 мм. Глубина заделки колонны 0,75 м. Отметки: низа колонны — 0,90 м, обреза фундамента — 0,15 м, низа подошвы — 2,65 м. Размер подошвы 3,3 × 2,7 м.

Расчетные нагрузки на уровне обреза фундамента приведены в табл. 6.1.

ТАБЛИЦА 6.1. К ПРИМЕРУ 6.1

Примечание. Индексы обозначают, х — направление вдоль большого размера подошвы, у — то же, вдоль меньшего.

Материалы: сталь класса А-III, Rs = 360 МПа ( ø 6-8 мм), Rs = 375 МПа ( ø 10 мм), бетон тяжелый класса В10 (В15).

Расчетные сопротивления приняты со следующими коэффициентами условий работы: γb1 = 1, γb2 = 0,9, γb4 = 0,85.

Решение. 1. Назначение предварительных геометрических размеров фундамента (рис. 6.12). Определим необходимую толщину стенок стакана по сочетанию 3:

е = Mx/ N = 336/2100 = 0,16 м, т.е. е 0,2 lс = 0,2 · 0,4 = 0,08 м, но не менее 0,15 м. Тогда размеры подколонника luc = buc = 2 · 0,15 + 2 ·0,075 + 0,4 = 0,85 м. Принимаем с учетом рекомендуемого модуля 0,3 м.

Высоты ступеней плитной части hi = 0,3 м. Площадь подошвы фундамента A = 3,3 · 2,7 = 8,92 м 2 . Момент сопротивления в направлении большего размера

Wx = l 2 b /6 = 3,3 2 · 2,7/6 = 4,9 м 2 .

Рабочая высота плитной части h = 0,3 · 2 – 0,05 = 0,55 м. Глубина стакана hg = 0,75 + 0,05 = 0,8 м.

2. Расчет фундамента на продавливание. Расстояние от верха плитной части до низа колонны 1,05 м, в то время как huc = (luc – 1c) /2 = 0,25 м, следовательно, проверка на продавливание плитной части производится от низа подколонника.

Максимальное краевое давление на грунт (6.9):

pmax = 2100/8,92 + (336 + 72 · 2,4)/4,9 = 0,339 МПа.

Принимаем наибольшее значение pmax = 0,339 МПа. Продавливающая сила F = Аpmax .

Тогда F = 1,64 · 0,339 = 556 кН.

Задаемся классом бетона В10 с Rbt = 0,57 МПа. С учетом γb2 = 0,9 и γb4 = 0,85 Rbt = 0,57 · 0,9 · 0,85 = 0,436 МПа.

kRbtbph = 1 · 0,436 · 1,45 · 0,55 = 305 2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,85) – 0,25[2,7 – 0,9 – 2(0,85 – 0,3)] 2 = 0,85 м 2 ,

Несущая способность фундаментов по формуле (6.26)

F = 0,436 [(0,85 – 0,3)1,45 + 0,3 · 0,9] = 465 кН > 288 кН.

Принятый фундамент удовлетворяет условию прочности на продавливание

Рассмотрим дополнительно вариант при двухступенчатом фундаменте с высотой верхней ступени 0,45 м. Тогда (при h = 0,7 м):

A = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,7) – 0,25(2,7 – 0,9 – 2 · 0,7)2 = 1,31 м 2 ,

F´ = 1,31 · 0,339 = 444,1 кН,

Несущая способность фундамента по формуле (6.1)

F = 1 · 0,436 · 1,6 · 0,7 = 488,3 кН > 444 кН,

т.е. и такой фундамент удовлетворяет прочности на продавливание.

Покажем, однако, что последний вариант менее экономичен. Действительно, объем плитной части высотой 0,9 м при трехступенчатом фундаменте

V3 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,3 + 1,5 · 0,9 · 0,3 = 4,37 м 3 , а при двухступенчатом фундаменте с учетом дополнительного объема подколонника на высоте 0,9 – 0,75 = 0,15 м

V2 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,45 + 0,9 · 0,9 · 0,15 = 4,74 м 3 > 4,37 м 3 .

Итак, принимаем трехступенчатый фундамент с высотой плитной части 0,9 м.

Проверим прочность нижней ступени при заданном ее выносе 450 мм и h01 = 0,25 м:

A = 0,5 · 2,7(3,3 – 2,4 – 2 · 0,25) – 0,25(2,7 – 1,8 – 2 · 0,25) 2 = 0,5 м 2 ,

P = 0,5 · 0,339 = 169 кН:

Несущая способность ступени F = 1 · 0,436 · 2,05 · 0,25 = 223 кН > 169,5 кН.

Размеры лежащих выше ступеней назначаются пересечением линии AB с линиями, ограничивающими высоты ступеней (рис. 6.13).

Определение площади сечений арматуры плитной части фундамента проведем на примере нижней арматуры (направленной вдоль большей стороны подошвы фундамента) класса А-II.

Расчетные усилия на уровне подошвы принимаем по сочетанию 3 без учета веса фундамента:

N = 2100 кН, M = 336 + 72 · 2,4 = 509 кН·м, еx = 509/2100 = 0,242 м.

Определим давление на грунт в расчетных сечениях (см. рис. 8.12)

Pmax = N/ A + M/ W = 2100/8,92 + 509/4,9 = 370 кН/м 2 ,

pII = 236 + 0,45 · 135 = 297 кН/м 2 .

pIII = 236 + 0,28 · 135 = 274 кН/м 2 .

Принимаем арматуру класса А-II с Rs = 285 МПа:

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Расчет фундамента под колонну
6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Источник: xn--h3aleim.xn--p1ai

4.3.3 Отдельные фундаменты под колонны ч.1

Основным типом фундаментов, устраиваемых под колонны, являются монолитные железобетонные фундаменты, включающие плитную часть ступенчатой формы и подколонник. Сопряжение сборных колонн с фундаментом осуществляется с помощью стакана (см. рис. 4.1, а), монолитных — соединением арматуры колонн с выпусками из фундамента (рис. 4.8, а), стальных — креплением башмака колонны к анкерным болтам, забетонированным в фундаменте (рис. 4.8, б).

Рис. 4.8. Соединение колонн с фундаментом

а — монолитной; б — стальной; 1 — арматурные сетки; 2 — анкерные болты

Размеры в плане подошвы (b, l), ступеней (b1, l1), подколонника (luc, buc) принимаются кратными 300 мм; высота ступеней (h1, h2) — кратной 150 мм; высота фундамента (hf) — кратной 300 мм, высота плитной части (h) — кратной 150 мм.

ТАБЛИЦА 4.22. ВЫСОТА СТУПЕНЕЙ ФУНДАМЕНТОВ, мм
Высота плитной части
фундамента h, мм
h1 h2 h3
300 300
450 450
600 300 300
750 300 450
900 300 300 300
1050 300 300 450
1200 300 450 450
1500 450 450 600
Модульные размеры фундамента следующие:
hf 1500—12000
h 300, 450, 600, 750, 900, 1050, 1200, 1500, 1800
h1, h2, h3 300, 450, 600
b 1500—6600
l 1500—8400
b1, b2 1500—6000
buc 900—2400
luc 900—3600
l1, l2 1500—7500

Высота ступеней принимается по табл. 4.22 в зависимости от высоты плитной части фундамента [1]. Вынос нижней ступени вычисляется по формуле c1 = kh1, где k — коэффициент, принимаемый по табл. 4.23.

Руководство по проектированию фундаментов на естественном основании под колонны зданий и сооружений промышленных предприятий

Форма фундамента и подколонника в плане принимается: при центральной нагрузке — квадратной, размерами b×b и buc×buc; при внецентренной нагрузке — прямоугольной, размерами b×l и buc×luc, отношение b/l составляет 0,6–0,85.

Габариты фундаментов под типовые колонны прямоугольного сечения, например по сериям КЭ-01-49 и КЭ-01-55, для одноэтажных промышленных зданий принимаются по серии 1.412-1/77. Буквы в марках фундаментов обозначают: Ф — фундамент; А, Б, В и AT, БТ и ВТ — тип подколонников для рядовых фундаментов и под температурные швы (табл. 4.24), а числа характеризуют типоразмер подошвы плитной части фундамента и его типоразмер по высоте.

ТАБЛИЦА 4.23. КОЭФФИЦИЕНТ k
Давление на грунт, МПа Значения k при классе бетона
В10 В15 В20 В10 В15 В20 В10 В15 В20 В10 В15 В20
0,15 3 3 3 3 3 3 3 3 3 3 3 3
0,2 3 3 3 3 3 3 3 3 3 2,9 3 3
3
0,25 3 3 3 3 3 3 3 3 3 2,5 2,8 3
2,6 3
0,3 3 3 3 3 3 3 2,7 3 3 2,3 2,5 3
2,8 2,4 2,6
0,35 2,8 3 3 2,7 3 3 2,4 2,7 3 2,1 2,3 2,7
3 2,9 2,6 2,9 2,2 2,4 2,9
0,4 2,6 2,9 3 2,5 2,8 3 2,3 2,5 3 2 2,1 2,5
2,7 3 2,7 3 2,4 2,7 2,2 2,6
0,45 2,4 2,7 3 2,3 2,6 3 2,1 2,3 2,8 1,9 2 2,3
2,5 2,8 2,5 2,7 2,2 2,5 3 2,1 2,5
0,5 2,3 2,5 3 2,2 2,4 3 2 2,2 2,6 1,8 1,9 2,2
2,4 2,7 2,3 2,6 2,1 2,3 2,8 2 2,3
0,55 2,2 2,4 2,8 2,1 2,3 2,7 1,9 2,1 2,5 1,7 1,8 2,1
2,3 2,5 3,8 2,2 2,4 2,9 2 2,2 2,6 1,9 2,2

Примечание. Над чертой указано значение без учета крановых и ветровых нагрузок, под чертой — с учетом этих нагрузок.

ТАБЛИЦА 4.24. РАЗМЕРЫ ПОДКОЛОННОЙ ЧАСТИ ФУНДАМЕНТОВ
Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м3
lc bc тип подколон-
ника
размеры, мм тип подколон-
ника
размеры, им hg lg bg
luc buc luc buc
400 400 А 900 300 AT 900 2100 800
900
500 500 0,22
0,25
500
600
600
500
400
600
Б 1200 1200 БТ 1200 2100 800
900
800
600
700
700
600
500
600
0,31
0,34
0,41
800
800
400
500
В 1200 1200 ВТ 1500 2100 900
900
900
900
500
600
0,44
0,52

По высоте приняты следующие размеры: тип 1 — 1,5 м; тип 2 — 1,8 м; тип 3 — 2,4 м; тип 4 — 3 м; тип 5 — 3,6 м и тип 6 — 4,2 м. В табл. 4.25 и 4.26 приводятся в качестве примера эскизы и размеры рядовых фундаментов и фундаментов под температурные швы. Эти фундаменты могут применяться при расчетном сопротивлении основания 0,15—0,6 МПа.

Все размеры фундаментов приняты кратными 300 мм. Применяется бетон класс В10 и В15. Армирование осуществляется плоскими сварными сетками из арматуры классов A-I, А-II и А-III. Защитный слой бетона принят толщиной 35 мм с одновременным устройством подготовки толщиной 100 мм из бетона В3,5.

ТАБЛИЦА 4.25. РАЗМЕРЫ РЯДОВЫХ ФУНДАМЕНТОВ
Эскиз Марка фундамента Размеры, мм Объем бетона, м3
l b l1 b1 h1 h2 hf
ФА6-1
ФА6-2
ФА6-3
ФА6-4
ФА6-5
ФА6-6
2400 2100 1500 1500 300 300 1500
1800
2400
3000
3600
4200
2,9
3,2
3,6
4,1
4,6
5,1
ФА7-1
ФА7-2
ФА7-3
ФА7-4
ФА7-5
ФА7-6
2700 2100 1800 1500 300 300 1500
1800
2400
3000
3600
4200
3,2
3,3
4,0
4,5
4,9
5,4
ФА8-1
ФА8-2
ФА8-3
ФА8-4
ФА8-5
ФА8-6
2700 2400 1800 1500 300 300 1500
1800
2400
3000
3600
4200
3,5
3,7
4,2
4,7
5,2
5,7
ФА9-1
ФА9-2
ФА9-3
ФА9-4
ФА9-5
ФА9-6
3000 2400 2100 1500 300 300 1500
1800
2400
3000
3600
4200
3,8
4,1
4,6
5,0
5,5
6,0
ТАБЛИЦА 4.26. РАЗМЕРЫ ФУНДАМЕНТОВ ПОД ТЕМПЕРАТУРНЫЕ ШВЫ
Эскиз Марка фундамента Размеры, мм Объем бетона, м3
b l b1 h1 h1 hf
ФАТ3-1
ФАТ3-2
ФАТ3-3
ФАТ3-4
ФАТ3-5
ФАТ3-6
1800 2100 300 1500
1800
2400
3000
3600
4200
3,4
4,0
5,1
6,2
7,4
8,5
ФАТ6-1
ФАТ6-2
ФАТ6-3
ФАТ6-4
ФАТ6-5
ФАТ6-6
2400 2100 1500 300 300 1500
1800
2400
3000
3600
4200
4,2
4,7
5,9
7,0
8,1
9,3
ФАТ7-1
ФАТ7-2
ФАТ7-3
ФАТ7-4
ФАТ7-5
ФАТ7-6
2700 2100 1800 300 300 1500
1800
2400
3000
3600
4200
4,5
5,1
6,2
7,4
8,5
9,6

Рис. 4.9. Фундамент с подбетонкой для опирании балок 1 — фундамент; 2 — подбетонка; 3 — колонна

Для опирания фундаментных балок предусмотрена подбетонка (рис. 4.9). Пример конструктивного решения фундамента приведен на рис. 4.10.

Габариты монолитных фундаментов под типовые колонны двухветвевого сечения, в частности для серии КЭ-01-52 одноэтажных промышленных зданий, принимаются по серии 1.412-2/77. Размеры подколонной части таких фундаментов приведены в табл. 4.27. Габариты плитной части имеют типоразмеры от 1 до 18, а также типоразмер 19, при котором размер подошвы составляет 6×5 м. По высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77.

Рис. 4.10. Фундамент стаканного типа под колонну

1—6 — арматурные сетки

Железобетонные фундаменты под типовые колонны прямоугольного сечения, например по сериям ИИ-04, ИИ-20 и 1.420-6 для многоэтажных производственных зданий, принимаются по серии 1.412-3/79.

ТАБЛИЦА 4.27. ТИПЫ И РАЗМЕРЫ ПОДКОЛОННИКОВ
Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м3
lc bc тип подколон-
ников
размеры, мм тип подколон-
ников
размеры, мм hg lg bg
luc buc luc buc
300 300 А 900 900 AT 900 2100 450
450
400 400 0,08
0,12
400 400 650
1050
500 500 0,18
0,29
600 400 Б 1200 1200 БТ 1200 2100 650
1050
700 500 0,25
0,40

Отличие в маркировке фундаментов по сравнению с другими сериями заключается в том, что после цифры, обозначающей типоразмер подошвы, приводится высота плитной части. Размеры подколонной части фундамента приведены в табл. 4.27. Габариты плитной части включают типоразмеры от 1 до 18 и типоразмер 19 (с размером подошвы 5,4×6 м). по высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77. Монолитные железобетонные фундаменты под железобетонные типовые фахверковые колонны прямоугольного сечения, в частности по шифрам 460-75, 13-74 и 1142-77, принимаются по серии 1.412.1-4. Размеры фундаментов приведены в табл. 4.28. Сопряжение колонны с фундаментом шарнирное. Фундаменты разработаны для давления 0,15- 0,6 МПа. Применяется бетон класса В10. Армирование осуществляется сварными сетками из арматуры классов A-I, А-II и А-III. Пример узла опирания колонны на фундамент дан на рис. 4.11.

Под колонны зданий применяются сборные фундаменты из одного или нескольких элементов. на рис. 4.12 приведены решения сборных фундаментов под колонны каркаса для многоэтажных общественных и производственных зданий из элементов серии 1.020-1. Элементы фундамента типа Ф применяются на естественном основании, типа ФС — для составных фундаментов (табл. 4.29). Толщина защитного слоя бетона нижней рабочей арматуры принимается 35 мм, а остальной арматуры — 30 мм. Глубина заделки колонны в фундамент должна быть не менее величин, приведенных в табл. 4.30.

Рис. 4.11. Узел опирания колонны на фундамент

1 — закладное изделие колонны; 2 — анкер; 3 — соединительный элемент

Рис. 4.12. Сборный фундамент под колонну

Размеры фундамента под колонны: типовые схемы, виды, нагрузки

Схематическое изображение геометрических размеров колонн

Фундамент под колонну промышленного здания строится с учетом механико-динамических свойств почвы. Габаритные размеры фундаментов промышленных строений проектируются так, чтобы среднее значение нагрузки на нижнюю плоскость основания была не выше расчетной нагрузки, а типовые показатели усадок отдельных элементов фундамента одного и того же строения были не выше допустимых показателей, которые регламентируются проектными нормативами.

По контуру фундамент промышленного строения в основном повторяет периметр той наземной части, которая над ним расположена. Поэтому многообразие оснований зависит от конструкционных особенностей и форм зданий и сооружений. В качестве монолитных массивов выполняются фундаменты крупных строений. Например, фундамент под памятник либо опору моста.

Фундаменты под колонны могут монтироваться как для отдельной колонны, а могут располагаться группами по несколько колонн. Такие группы имеют вид лент.

Основания для стен могут устраиваться в виде отдельно стоящих опор фундамента, которые перекрываются рандбалкой, либо подземных стен, повторяющих контур несущих стен. Это стеновые или как их еще называют ленточные фундаменты. По своей конфигурации они практически неотличимы от оснований, которые устраиваются под группу колонн.

Строительные материалы, применяемые при изготовлении фундаментов промышленных зданий и сооружений – это железобетон, камень, кирпич и бетон. В состав жестких оснований в основном входит бетон, кирпичная кладка.

Если типовые схемы указывают на присутствие в конструкции основания скалывающих либо растягивающих напряжений, то здесь необходимо применять железобетон. Из этого следует, что железобетон используется при обустройстве сборных конструкций и при обустройстве гибких основ.

Виды оснований под сборные колонны из железобетона

Чертеж сопряжения фундамента с колонной

Под сборные столбы из железобетона используют монолитные либо сборные основания из железобетона.

Цельные основания из железобетона образованы несколькими ступенями и подколонником, в котором размещается стакан для опоры. Нижняя часть стакана находится на 5 см ниже основания столба. Это необходимо для того, чтобы после снятия опалубки при заливке бетонной смеси сбалансировать возможные нагрузки и огрехи в расчетах.

Сборные железобетонные основания могут изготавливаться из одного башмака либо из блок-стакана и одной или многих плит, расположенных снизу него.

Проектирование включает в себя разметку верхней части подколонника на уровне заданной разметки поверхности грунта. Основы бывают высотой 1,2−3 м, между ними создается шаг 0,3 м. Эти показатели соответствуют максимальной глубине закладки основы. Высота основания регулируется с учетом высоты подколонника, при том же размере степеней.

Если проектирование предусматривает увеличение глубины заложения фундамента, то под ним выполняют песчаную или бетонную подушку. Благодаря увеличению размера подколонника в строениях с подвальными помещениями, фундаменты располагаются ниже напольного покрытия.

Основания заливаются бетоном марок М150 и М200. Армирование выполняется металлической сеткой с размерами ячеек 200X200 мм, которая размещается в нижней его части. Сетка сваривается, и поверх нее укладывается защитный слой толщиной 0,35−0,7 м. В качестве прутьев используют горячекатаную сталь периодического профиля класса А-П. Армирование подколонников выполняется таким же способом, что и армирование столбов.

Проектирование фундаментов промышленных зданий на рыхлых почвах выполняется с последующим устройством бетонной подготовки, толщина которой достигает 10 см.

Основания под металлические колонны

Чертеж железобетонного фундамента для металлического изделия

Под колонны из металла выполняют монолитные железобетонные основания.

Подколонники оборудуются анкерными болтами для фиксации колонного башмака. Их изготавливают сплошными, без стаканов. Верхнюю часть подколонника располагают так, чтобы металлический колонный башмак и верх анкерных болтов были скрыты.

Если проектирование предусмотрело заглубление металлических колонн более 4 м, то в этом случае применяют сборные железобетонные подколонники, которые производят так же, как и двухветвенные колонны. Эти элементы снизу фиксируются в стакане основания, а верхние их части крепятся с помощью анкерных болтов. Фундамент под смежные колонны монтируется общим даже тогда, когда они изготовлены из различного материала (железобетон и сталь).

Монтаж металлических колонн

Монтаж металлической опоры

Металлические колонны монтируются на основаниях, в которых заблаговременно встраивают анкерные болты для их крепления. После проектирования стандартное положение опор обеспечивается точным размещением анкерных болтов на местах фиксации. При этом точность установки обеспечивается серьезной подготовкой плоскости основания.

Опирание колонн выполняется так:

  1. На поверхность основания, которое смонтировано до нужной отметке опорной подошвы, без последующей доливки цементной смеси. Применяется для опор с фрезерованными башмачными подошвами.
  2. На заблаговременно выверенные места, устанавливаются и заполняются бетонной смесью металлические плиты. Основание бетонируется до уровня на 5−8 см ниже той отметки подошвы опоры, которая обозначена при проектировании.
  3. После чего выполняют установку опорных колонн, объединяя осевые отметки разбивочных осей на элементах, вмонтированных в фундамент, с их отметками. Установочные винты регулируют положение отдельной опоры по высоте с учетом того, что верхняя поверхность плиты будет располагаться на заданной отметке опорной плоскости башмака. Опорные плоскости столбов должны заблаговременно быть простроганы.
  4. Основание бетонируется до уровня на 0,25−0,3 м ниже отметки поверхности башмака, отмеченной при его проектировании.

После выполнения этих работ, монтируются закладные элементы и составляющие опор. Верхнюю часть основания цементируют до уровня на 4−5 см ниже верхней плоскости опорных элементов. Опорная поверхность башмака изготавливается под прямым углом к оси самого столба.

Какие виды фундаментов выполняются под стены

Виды возводимых фундаментов

Под несущие стены промышленных зданий монтируются свайные, столбчатые и ленточные фундаменты.

Свайные фундаменты выполняют на рыхлых почвах, которые залегают на значительную глубину. Сваи разделяют на различные виды в зависимости от их назначения. Изготавливаются из древесины, стали, бетона и железобетона. Различают сваи цельные и сборные из железобетона.

Широкое распространение в строительстве получили сборные сваи. Их выпускают двух видов: цилиндрические трубчатые и квадратные сплошные.


Бетонные сваи в основном производятся цельными с различной глубиной заложения, нагрузками и различными сечениями. Металлические сваи производятся из труб, швеллеров и двутавров. Такие сваи редко применяются при обустройстве фундамента под стены из-за подверженности их коррозии, а также из-за дефицита стали. Деревянные сваи выпускаются из лиственницы, сосны. На верхний край колонны надевают бугель (стальное кольцо), а на нижний – металлический башмак. Это необходимо для того, чтобы защитить сваю от размолачивания при забивке.

Столбчатые основания под несущие стены промышленных строений выполняют при плотных основаниях и малых нагрузках. Снизу стен оснований столбы располагаются в месте стыкования, пересечения и в углах, а также в различных промежутках на расстоянии менее 3–6 м. Отдельно установленные колонны связываются друг с другом балками, которые воспринимают нагрузку, создаваемую стенами.

Снизу балок основания выполняется подсыпка из песка либо шлака толщиной 50−60 см. Это необходимо для избегания влияния предельных нагрузок и предупреждения деформаций, которые связаны с рыхлостью грунта.

Ленточные основания монтируют под самонесущие либо несущие стены, выполненные из кирпича и блоков. Такие основания бывают цельными и сборными. Сборные основания пользуются большей популярностью. Такие основания устраивают из бетонных и железобетонных блоков.

Ленточные основания выполняют из следующих компонентов:

Блоки стен имеют следующие размеры:

Также выпускают блоки доборные марки СПД, размеры которых отличаются лишь длиной (у них она 0,8 м). Они применяются для перевязки блоков в основании.

Блоки стен изготавливаются сплошными, с несквозными отверстиями, расположенными снизу. Изготавливаются из бетона марки М150.

Применение и виды блок-подушек

Схематическое отображение составляющих фундамента

Блок-подушки применяются для увеличения размера подошвы основания. Имеют следующие размеры:

Блок-подушки толщиной 1−1,6 м помимо стандартных размеров могут изготавливаться меньшей длины, то есть доборными. Изготавливаются из бетона марок М150 и М200. В качестве рабочего материала для армирования применяют класса А-П горячекатаную сталь. Чтобы уберечь от дополнительных нагрузок, блок-подушки располагают на ровную поверхность либо подготовку, выполненную из песка.

Основания из блок-подушек бывают прерывистыми и сплошными. В отдельно стоящих основаниях такие подушки укладываются с образованием разрыва, величина которого варьирует от 20 см до 90 см. Подобная конструкция дает возможность уменьшить расход стройматериала, уменьшить нагрузку и позволяет в полнее использовать несущую способность почвы.

При строительстве промышленных строений на просадочных почвах под подушками основания устраивается армированный шов, толщина которого варьирует от 3 см до 5 см, а сверху него монтируется армированный пояс толщиной от 10 см до 15 см. Это позволяет уменьшить нагрузку, увеличить жесткость основания, предупредить возникновение трещин при неравномерной усадке строения.

Блоки стен устанавливаются на бетонную смесь сверху подушек фундамента. Из подушек возводят стены подвала. Основание  и его стены состоят из многорядных стеновых блоков, которые укладываются с шовной перевязкой.

Фундаменты крупных строений из массивных железобетонных компонентов выполняют из панелей-стенок и панелей-подушек. Панели-стенки устанавливаются сверху панелей-подушек. Они бывают со сквозными отверстиями, ребристыми и сплошными. Смонтированные панели скрепляются между соседними, методом сваривания закладных металлических компонентов. Эти подушки укладываются по форме прерывистых либо непрерывных лент. Бывают сплошными и ребристыми.

Ленточные монолитные фундаменты устраиваются в основном из железобетона. Они обустраиваются внутри опалубки, в которой вмонтирована арматура (если речь идет о железобетонных фундаментах), и укладывают бетонную смесь.

Свайные фундаменты имеют ряд плюсов: они практически не дают усадки, сокращают время на проведение земляных работ, а также снижают затраты на строительство. Любое строение с применением свай может простоять больше 100 лет.

6. Расчет монолитного столбчатого фундамента под колонну.

При выполнении расчета фундамента считается, что грунты основания не имеют пучинистых свойств. Поэтому глубина заложения фундамента не связывается с глубиной промерзания грунта. Также учитывается, что нагрузка на фундамент передается от колонны (Мmax=157,69 кНм, N=723,16 кН, Q=18,18 кН) и панелей ограждения (Nпанел.=(17,83+13,3)1,10,95+21,21,050,95=69,7+2,4=72,1 кН, М=72,10,4=28,84 кНм). Направление действия нагрузок см. рис.6.1.

Исходные данные:

Определение размеров подошвы фундамента

Площадь подошвы фундамента:

Nn=795,26/1,15=691,53 кНм

R0=0,20МПа- условное расчетное сопротивление грунта;

m=20кН/м3 – среднее значение объемного веса материала фундамента и грунта на обрезе фундамента,

Н=1м – предварительно назначенная высота фундамента.

стороны фундамента Размеры подошвы фундамента принимаютсяb=1,8 м, а=2,1м (а/b1,2). Площадь подошвы фундамента составляет А=1,82,1=3,78 м2, момент сопротивления – W=

Определение высоты фундамента

Высота фундамента назначается из условийанкеровки колонны и арматуры колонны в фундамент. Высоту фундамента составляет длина анкеровки плюс 250 мм (смотри рисунок 6.1).

Высота фундамента из условия анкеровки колонны:

Нф=hk+250=700+250=950 мм=0,95м

Высота фундамента из условия анкеровки арматуры колонны 20 А400 :

Нф=lan+250=300+250=550мм

, .

При определении расчетного сопротивления сцепления арматуры с бетоном Rbond принимаются следующие значения коэффициентов: 1=2,5 (для класса арматуры А400) и 2=1 (для 20). Подставляя в формулу базовой длины анкеровки l0,anзначения коэффициентов 1, 2, а также выражая площадь поперечного сечения арматуры и периметр арматуры через диаметр (), преобразуем формулу:

Длина анкеровки арматуры колонны при =0,75 (для сжатых стержней периодического профиля) и отношении площади поперечного сечения арматуры колонны требуемой по расчету и фактически установленной 0,68/12,56=0,054 составляет:

.

Вычисленную длину анкеровки арматуры необходимо сравнить с минимально допустимой: 0,3l0,an=0,3947=285 мм, 15d=15х20=300 мм и 200 мм.

Окончательно высота фундамента принимается - Нф=0,95 м. По высоте фундамент формируется из трех ступеней. Высота ступеней 350+300+300=950 мм. Минимальная толщина стенок неармированного стакана должна приниматься не менее 0,75 высоты верхней ступени, то есть 0,75300=225 мм (см. рис.6.1).

Проверка прочности основания под подошвой фундамента.

Нормативное значение нагрузок на уровне подошвы фундамента:

Мn=,

Gn=abНфmn=2,41,80,95200,95=77,98 кН,

Nn= 691,53+77,98=769,51 кН.

Максимальное значение давления под подошвой фундамента:

pmax=>1,2R0=

=1,2250=300 кН/м2, условие не выполняется. Требуется увеличение размеров подошвы фундамента: а=2,4 м, b=1,8 м. При этом изменяются A=4,32 м2, W=1,73 м3, Gn=77,98 кН, Nn= 691,53+77,98=769,51 кН.

Максимальное значение давления под подошвой фундамента:

pmax= - условие выполняется.

Минимальное значение давления под подошвой фундамента:

Pmin=- условие выполняется.

Определение площади рабочей арматуры.

Расчет ведется в плоской постановке: рассматривается сечение по фундаменту в плоскости рамы и в перпендикулярном плоскости рамы направлении (см. рис. 6.1).

Фундамент будет изгибаться под действием давления грунта р. Так как высота фундамента переменная, то расчет ведется в предположении изгиба как консоли нижней ступени (сечение 1-1), затем вместе нижней и средней ступеней (сечение 2-2) и, наконец, всего фундамента (сечение 3-3). На рис. 6.1 показаны ординаты эпюры давления грунта от расчетных нагрузок, необходимые для выполнения вычислений. Значения определены графически.

Момент в консоли определяется по формуле М=(нагрузка равномерно распределенная со средним значениемр в пределах длины консоли). Длина консоли l, например при расчете нижней ступени, равна . Размерностьр в формуле определения момента М - в кН/м, в то время как до этого р было определено в кН/м2. Для перехода к размерности плоской задачи: p=pb (сечение в плоскости рамы), p=pа (сечение перпендикулярное плоскости рамы)

М=.

Фундамент армируется сеткой, укладываемой с соблюдением защитного слоя 40 мм у подошвы фундамента. Для армирования фундамента диаметр арматурных стержней принимается не менее 12. Площадь рабочей арматуры определяется по формуле алгоритма расчета изгибаемых элементов по нормальному сечению:

.

Рабочая высота сечения составляет h0=h-a (a принимается 0,05 м, где а - расстояние от середины сечения продольной рабочей арматуры до нижней грани поперечного сечения фундамента).

Краевые ординат эпюры давления грунта (расчетные нагрузки):

М=,

G=abНфmnf=2,41,80,95200,951,1=85,78 кН,

Nn= 795,26+85,78=881,0 кН.

Максимальное значение давления под подошвой фундамента:

pmax=.

Минимальное значение давления под подошвой фундамента:

Pmin=.

Результаты расчета сведены в таблицу 6.1.

Таблица 6.1

сечения

Момент, кНм

h0, м

Площадь рабочей

арматуры, см2

1-1

М=

0,125307,0(2,4-1,8)1,8=41,44

0,30

2-2

М=

0,125294,7(2,4-1,3)1,8=72,94

0,60

3-3

М=

0,125275,7(2,4-0,7)1,8=105,45

0,90

4-4

М=

0,125203,9(1,8-0,4)2,4=85,64

0,89*

*-для верхних стержней сетки

Для сетки армирования фундамента принимаются стержни 10А400 с шагом S=300 мм (подбор сетки смотри в разделе 7).

Рис. 6.1. К расчету монолитного столбчатого фундамента под колонну

Расчет фундаментов. Пример расчета -...

заключается в том, что определяются размер основания фундамента, глубина его фундамента и расчетная высота.

Предварительные размеры фундамента можно определить, используя условное расчетное сопротивление грунтового основания R0. Эти значения R0 относятся к фундаментам шириной B = 1 м и глубиной заложения от уровня планирования d0 = 2 м.

Размеры подошвы фундамента определяются в следующей последовательности:

1) по результатам инженерно-геологических изысканий принимаются расчетные значения характеристик грунта: угол внутреннего трения, удельный адгезия, модуль деформации и удельный вес, а также коэффициент текучести, коэффициент пористости, плотность грунта

2) IV 1ч. IV 2 п. 162- R0 обозначает расчетное расчетное сопротивление грунтового основания R0

3) определяет ширину подошвы по формуле

где N - расчетная нагрузка, передаваемая на фундамент;

м-соотношение сторон цоколя б / у;

при центральной нагрузке m = 1, вне центра.m = 1,2É1,5

- усредненный удельный вес материала основания и грунта по его краям, принимаемый равным 20 кН / м3 = 0,02 мН / м3

d - глубина подошвы фундамента от уровня расположение.

Зная размеры фундамента, рассчитайте его объем и вес Nf, а также вес грунта на его подрезке Nq и проверьте давление на подошву:

4) P = (N + Nf + Ng) / BхL ≤ R (кПа)

5) P = P≤R (кПа)

Пример 2

Определить размер подвала под колонну производственного здания:

Исходные данные: многоэтажное здание, каркас в виде железобетонных каркасов.

Вертикальная нагрузка на фундамент N = 1390 кН

Глубина основания фундамента d = 2м. Почвенные условия следующие:

грунта - суглинки с коэффициентом пористости е = 0,9; индекс консистенции (текучести) IL = 0,5, расчетный угол внутреннего трения = 170, расчетное удельное сцепление CII = 15 кПа, удельный вес грунта 17 кН / м3 ()

Решение:

Берем форму фундаментная площадь. Для этих грунтов условное расчетное (давление) сопротивление грунта составляет 150 кПа = 0.15 мПа

ширина цоколя, определяемая по формуле (3):

Для заданной глубины кладки и полученной ширины основания фундамента по формуле (1) определяем расчетное сопротивление почва:

K = 1,1 (так как данные по почвам берем по таблице).

C = 15 кПа

С помощью этого R мы вычисляем ширину подошвы:

Наконец, возьмите b = 2.8 м

проверить давление на основание фундамента:

P = 1390 / 2,8 * 2,5 + 20 * 2 = 177,3 + 40 = 217,3 <220

тех. несущая способность основания обеспечивается шириной подошвы 2,8 м.

Пример №3.

Дано: Производственное здание, однопролетное, с железобетонными колоннами. Глубина фундамента d = 2,5м. Вертикальные нагрузки на уровне кромки фундамента N = 3500кн = 3,5 м.

Фундамент фундаментов - слой полутвердых суглинков с коэффициентом пористости е = 0.65, имеющий следующие расчетные характеристики:

угол внутреннего трения = 200, удельное сцепление CII = 20 кПа = 0,02 МПа, удельный вес грунта = 17 кН / м3 = 0,017 мн / м3

Условное расчетное сопротивление грунта R0 = 200 кПа = 0,02 МПа.

Решение:

Берем фундаментную площадь в плане.

Ширина фундамента:

Для заданной глубины кладки и предварительной ширины фундамента определяем расчетное сопротивление грунтового основания:

Конечная ширина фундамента:

Вывод: несущая способность основания при ширине подошвы 3.Предусмотрено 5 м.

Проектирование фундаментов

Расчет фундаментов с централизованной нагрузкой .

Расчет конструкций фундаментов с централизованной нагрузкой выполняется в следующей последовательности:

1) проводят проверку несущей способности фундамента на расчетные нагрузки для первой группы предельных состояний:

2) провели испытание фундамента на образование в нем трещин при нормативных нагрузках в соответствии со второй группой предельных состояний.Оба этих расчета аналогичны расчету железобетонных конструкций.

Расчет начинается с определения напряжений под основанием фундамента из расчетных нагрузок.

Рсрр = (Nр + Gгрр + Gфр) / Af (1), где Nр - расчетная нагрузка на уровне земли.

Gp и Gfr - это расчетные нагрузки от веса грунта, соответственно, на края фундамента и на сам фундамент.

Расчет фундамента основан на предположении, что внешние части фундамента под воздействием давления гр-ба работают как консоли, встроенные в массив ор-ба, и рассчитываются они по этой схеме в.... Я - Я - на краю колонны; II-II- на грани вершины ... ...

Сила сдвига в сечениях I - I и II - II равна:

QI = Pptr * b * ℓ - ℓk / 2 ( 2)

QII = Ppcp * b * ℓ - ℓ1 / 2 (3)

Расчет действия поперечных сил не производят, если выполняются следующие условия:

QI ≤ Yb3 * Rbt * b * ho ( 4)

QII ≤ Yb3 * Rbt * b * ho "(5)

Где Уb3 - коэффициент, принимаемый для тяжелого бетона, равный 0.6;

Rbt - рассчитано. прочность бетона на разрыв;

ho = ha - рабочая высота фундамента.

а = 35Е70мм - защитный слой бетона;

70 мм - для монолитных фундаментов и не <30 мм для сборных фундаментов

.

Если условия (4) и (5) не выполняются, то необходимо установить поперечную арматуру или увеличить высоту сечения выступов фундамента; в практике дизайна чаще всего прибегают к последнему методу.

В дополнение к условиям (4) и (5) должно выполняться условие, обеспечивающее прочность на наклонном участке нижней ступени фундамента из условия восприятия бетоном поперечной силы Q:

Q = Pppr [0,5 (ℓ-ℓk) -c] * b ≤ 1,5 * Rbt * b * ho ׀ 2 / c (6), где правая часть неравенства предполагается как минимум 0,6 * Rbt * b * ho и не более

2,5 руб * б * хо; c = 0,5 (ℓ-ℓk-2ho) - длина проекции рассматриваемого наклонного участка.Если c <0, то в подошве f-й ступени наклонная трещина не образуется.

Определяется высота фундамента и отдельные его ступеньки. расчет на толкание. При расчете предполагается, что фундамент продвигается по боковым граням, пирамидам, стороны которых образуют угол 45 ° с горизонтальной плоскостью. В этом случае низ пирамиды

располагается на уровне рабочей продольной арматуры, а верх - от места окончания колонны.

Расчет фундамента под толкание производится по формуле:

F ≤ Yb * Rbt * Um * ho (7), где

F - расчетное усилие прессования;

Yb - коэффициент принимаемый равным 1 для тяжелых бетонов;

Rbt - расчетное сопротивление. бетон на растяжение;

Um - среднее арифметическое между периметрами верхнего и нижнего оснований пирамиды в пределах полезной высоты фундамента ho.

Для фундаментов в квадратных футах:

Um = 2 (bk + ℓk + 2ho) (8)

F = N - Ppcp * A (9)

Где A = (ℓk + 2ho) (bk + 2ho) ( 10) - площадь основания пирамиды на толкание

Если продольная сила <0, то прочность основания на толкание обеспечивается.

Усиление фундамента проводится по результату расчета нормальных сечений на действие изгибающих моментов в сечениях I - I и II и II, определяемых по формулам:

MI = 0.125 Ppcp (ℓ - ℓk) 2 * b (11)

MII = 0,125 Ppcp (ℓ - ℓ1) 2 * b (12)

Сечение рабочей арматуры на всю ширину фундамента рассчитывается по формуле формулы:

AsI = MI (13)

0,9 * ho * Rs

AsII = MII (14)

0,9 * ho ׀ * Rs, где

Rs - расчетное сопротивление арматуры растяжению.

Процент армирования в расчетном сечении фундамента должен быть не менее минимально допустимого процента арматуры в изгибаемых элементах:

µ = (As / b * h) * 100% ≥ 0.5%

Шаг рабочей арматуры принимается 100-200 мм. Нерабочие (конструктивные) стержни поперечной арматуры берут сечение не менее 10% от сечения рабочей арматуры и устанавливают их с шагом 250 ... 300 мм. Диаметр рабочей арматуры не должен быть <10мм., Класс A-III

Далее проверяют фундамент на вторую группу предельных состояний - на трещиностойкость. Ширина раскрытия трещины, и crc, определенная по формулам, сравнивается с максимально допустимыми стандартами, в которых значение a crc принято равным 0.2 мм для фундаментов, находящихся ниже уровня грунтовых вод и на 0,3 мм выше уровня грунтовых вод.

Если выполняется условие a сrc ≤ a сrcu, то расчет завершается. Если это условие не выполняется, необходимо либо изменить конструкцию фундамента, либо повысить расчетный класс бетона и усилить арматуру фундамента с последующей корректировкой всех расчетов.

Вопросы для самопроверки.

1.Назовите основные типы фундаментов.

2. Из каких частей производится расчет фундамента?

3. Из каких условий определяют форму и размер подошвы отдельного фундамента?

4. Какие нагрузки принимаются во внимание при определении площади Footing фундамента?

5. Из каких условий определяется высота фундамента?

6. Как найти необходимое количество арматуры основания?

7.Как бывают армированные ленточные и монолитные фундаменты?

.

Гистограмма и свайный фундамент

Расчет количества материала влияет на фундамент



Выбор типа колонны Фундамент

Это могут быть стойки с круглым или прямоугольным основанием. Причем с круглой или прямоугольной основной частью.

Укажите размеры в миллиметрах

B - Ширина или диаметр.
H - Высота основной части.

A - Опора высоты основания.Если ворс без причины, то не используйте этот размер.
D - Ширина или диаметр основания.

D1 - Длина прямоугольного основания.
B1 - Ширина для прямоугольной стойки.
При круглых сечениях эти размеры не участвуют.

Размеры влияют на фундамент

X - Ширина основания.
Y - Базовая длина.

X1 - Количество стоек, включая стойки по углам.
Y1 - Количество стоек, включая стойки по длине по углам.

S - Если этот флажок установлен, будут вычисляться столбцы, равномерно распределенные по полям. Если нет, то только по периметру основания.

Размеры ростверка

E - Балочный ростверк.
F - Высота ростверка.
Если расчет монолитного ростверка не нужен, не используйте эти размеры.

Арматура

ARM1 - количество арматуры в одной стойке.
ARM2 - Количество рядов в Ленточном ростверке.
ARMD - Диаметр клапанов. Всегда в миллиметрах.
Если не требуется, установите это значение на 0.

Укажите количество цемента для изготовления одного кубометра бетона. В килограммах.
Уточняйте пропорции изготовления бетона по весу. Эти данные в каждом случае разные.
Это зависит от марки цемента, размеров щебня и технологии строительства.Спросите у их поставщиков строительных материалов.

Для расчета сметной стоимости стройматериалов укажите их цены.

Программа автоматически рассчитывает:
Расстояние между опорами основания и их количество.
Бетонный объем для одиночного столба, отдельно для верха и низа.
Количество бетонных ростверков.
Длина и вес приспособления.
Стоимость строительных материалов для монолитного свайного фундамента с надстройкой или плотного фундамента.
Чертежи дадут общее представление и помогут в оформлении свайного фундамента.

Для бань и домов без подвала, домов со светлыми стенами и домов из кирпича, где применять ленточный фундамент неэкономично, часто используется пирс для фундамента. Его расчет трудоемок, но наши расчеты не отнимут у вас много времени. Все, что вам нужно сделать, это заполнить соответствующие поля согласно инструкции, и вы получите информацию о необходимых для строительства материалах, узнаете их количество и общую стоимость.

Краткое описание

Фундамент пирса имеет вид колонн, которые объединены при помощи ростверка. Эти столбы располагаются по углам будущей конструкции, а также на пересечении стен, под несущими или просто тяжелыми стенами, балочными перекрытиями и конструкциями. В местах наибольшей нагрузки. Фундамент служит для усиления фундамента пирса и укрепляется перемычкой между стойками.

Куда не применять Pier Foundation

Использовать опорный фундамент не рекомендуется там, где есть подвижные или слабые грунты, такие как торф или водонасыщенные глинистые грунты.Не используйте этот вид фундамента и на участках, где произошел резкий перепад.

Преимущества

Фундамент для пирса имеет ряд преимуществ, которые делают его оптимальным решением при строительстве частного дома. Он дешевле, чем ленточный или плотный фундамент, экономнее расход строительных материалов и затрат на строительство, дает меньшую усадку и уменьшает общую площадь фундамента. Фундамент эффективно противостоит разрушительному воздействию морозного пучения почвы.

Материалы

В зависимости от веса и этажности дома следует подбирать и материалы для изготовления фундамента.Это камень, кирпич, бетон и железобетон. По типу материала выбирается и минимальное сечение столбов. Так, для бетонных столбов размер сечения должен быть не менее 400 мм, для кладки не менее 600 мм, для кладки 380 мм, если она находится над уровнем земли, и на 250 мм при использовании техники забирочной перевязки.

Строительство фундамента

Перед тем, как приступить к строительству, необходимо выяснить глубину промерзания грунта, тип и состав грунта, чтобы при необходимости его замены и уровень грунтовых вод выявить необходимость в дренаже и гидроизоляции.Строительство фундамента пирса в 9 последовательных этапов.
1. Подготовка к очистке строительной площадки.
2. Планировка подвала, где участок размечен согласно проекту.
3. Рытье котлованов.
4. Установка опалубки для столбов.
5. Установка фурнитуры.
6. Заполняет столбы.
7. Изготовление ростверка.
8. Строительство так называемой забирки или заграждающей стены между столбами.
9. Мероприятия по гидроизоляции фундамента.

Важные моменты

Если Дом строится на волнах, откладывать начало строительства нельзя. Если оставить на зиму пустой фундамент, он может деформироваться.
Только что залитые ноги бетона должны осесть в течение 30 дней. В этот период загружать их не рекомендуется.
Для изготовления бетона оптимально подходит цемент марки М400, а в качестве засыпки мелкий щебень и крупный песок.
.

Калькулятор бетона для полного фундамента.

С помощью этого калькулятора бетона вы сможете рассчитать объем бетона, необходимый для полного фундамента. Добавьте столько разделов, сколько вам нужно, чтобы завершить расчет. Включены варианты опор, стен, опор, колонн, опор плюс колонна и опор плюс прямоугольная стойка.

Добавьте необходимые опции с помощью следующих кнопок. Общее количество необходимого бетона будет отображаться в поле внизу страницы.

Вам нужно будет удалить из формы параметры, которые вы не использовали, прежде чем будет показана окончательная сумма.


Общее количество необходимого бетона в кубических ярдах и кубических метрах:

При заказе бетона

Этот калькулятор бетона поможет вам рассчитать количество бетона, необходимое для вашего проекта. Сумма, указанная по мере необходимости, не включает никаких отходов.Рекомендуется, в зависимости от выполняемой вами работы, добавить от 4% до 10% к вашему конкретному заказу, чтобы убедиться, что у вас достаточно бетона для завершения работы. Спрашивайте при заказе бетона. Они смогут дать вам хорошее представление о том, что вам нужно.

Посетите нас на

Если у Вас есть вопросы или комментарии, пожалуйста Свяжитесь с нами

© 1998, VmNet. .

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} .

python - расчет нового столбца в кадре данных Pandas

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
.

Глубина, ширина, расположение и выемка грунта

Порядок строительства фундамента начинается с принятия решения о его глубине, ширине и разметке раскладки выемки и осевой линии фундамента. Фундамент - это часть конструкции ниже уровня цоколя, которая находится в непосредственном контакте с почвой и передает нагрузку надстройки на землю.

Как правило, ниже уровня земли. Если какая-то часть фундамента находится выше уровня земли, ее тоже засыпают землей.Эта часть конструкции не контактирует с воздухом, светом и т. Д., Или сказать, что это скрытая часть конструкции.

Фундамент - это конструкция, построенная из кирпичной кладки, кирпичной кладки или бетона под основанием стены или колонны для распределения нагрузки по большой площади.

Глубина фундамента

Глубина фундамента зависит от следующих факторов:

  1. Наличие соответствующей несущей способности.
  2. Глубина усадки и набухания глинистых грунтов из-за сезонных изменений, которые могут вызвать значительные подвижки.
  3. Глубина промерзания мелкого песка и ила.
  4. Возможность выемки около
  5. Глубина залегания грунтовых вод
  6. Минимальная практическая глубина фундамента должна быть не менее 50 см. Для удаления верхнего слоя почвы и перепадов уровня земли.

Следовательно, наиболее рекомендуемая глубина фундамента составляет от 1,00 метра до 1,5 метра от исходного уровня земли.

Ширина фундамента / опор

Ширина опор должна быть заложена в соответствии с конструктивным решением.Для легких нагруженных зданий, таких как дома, квартиры, школьные здания и т. Д., Имеющие не более двух этажей, ширина фундамента указана ниже:

  1. Ширина подошвы не должна быть меньше 75 см на одну кирпичную стену.
  2. Ширина подошвы не должна быть меньше 1 метра для полуторной кирпичной стены.

Порядок устройства фундамента

Ниже представлены процессы, выполняемые при фундаментных работах:

  1. Земляные работы в траншеях под фундамент.
  2. Планировка цементобетонная.
  3. При строительстве плота или колонны уложить опору.
  4. Lay Анти термитное лечение.
  5. Кладка кирпичной кладки до уровня цоколя.
  6. Уложить на стены гидроизоляционный слой.
  7. Засыпка земли вокруг стен
  8. Засыпка земли в части здания до необходимой высоты в соответствии с уровнем цоколя.
Рис.1: Выемка под фундамент стены Рис.2: Бетон в фундаменте Фиг.3: Бетон и кирпичная кладка в основании стены Рис.4: Бетон и кирпичная кладка при заливке фундамента

Меры предосторожности при проектировании фундамента

  • Фундамент должен быть спроектирован так, чтобы передавать на землю комбинированную статическую нагрузку, приложенную нагрузку и ветровую нагрузку.
  • Чистая интенсивность нагрузки давления на почву не должна превышать допустимую несущую способность.
  • Фундамент должен быть спроектирован таким образом, чтобы оседание на землю было ограниченным и равномерным под всем зданием во избежание повреждения конструкции.
  • Необходимо изучить всю конструкцию фундамента, надстройки и характеристики грунта, чтобы добиться экономии на строительных работах.

Бетон и строительный раствор Соотношение для фундамента

  • Цементный бетон 1: 8: 16 обычно используется для фундамента стен при строительных работах.
  • В случае цементного бетона на опорных стойках колонн, соотношение 1: 4: 8 является наилучшим рекомендованным соотношением в фундаменте.
  • Для кирпичной кладки используется цементный раствор от 1: 4 до 1: 6 в качестве условия нагрузки.

В случае опор колонн и стропил до уровня цоколя используется цементобетон 1: 2: 4 или 1: 1,5: 3.

Сейф Несущая способность Грунт

Сухой крупнозернистый и хорошо рассортированный плотный песок обладает максимальным сопротивлением сдвигу и максимальной несущей способностью. В целом, затопленный грунт и глина имеют меньшую несущую способность.

Фундамент Меры предосторожности при выемке грунта

Глубина и ширина фундамента должны соответствовать конструктивному проекту.

  • Минимальная глубина фундамента - 1 метр при отсутствии конструкции.
  • Проверьте длину, ширину и глубину выемки с помощью осевой линии и уровня, отмеченных на маркировочных столбах.
  • Отсыпьте выкопанный материал / землю на расстоянии 1 метра от краев.
  • Начать земляные работы, когда почва высохнет.
  • Установите водяной насос для откачки дождевой воды.
  • Уплотните нижний слой фундамента.
  • В фундаменте не должно быть мягких мест из-за корней и т. Д.
  • Выкопайте все мягкие / дефектные места и заполните выкопанную область бетоном / твердым материалом
Рис.5: Раскопки под фундамент, где есть корень дерева Рис.6: Выемка стены в опоре фундамента удалена Рис.7: Ямка корня, заполненная твердым материалом Рис.8: Выемка фундамента стены с участком мягкого грунта Рис.9: Выемка фундамента стены с удаленным мягким грунтом Рис.10: Яма с мягким грунтом, заполненная твердым материалом

Процедура демаркации / макета

Для разграничения здания рекомендуется следующая процедура:

  1. Отметьте базовую линию на земле от осевой линии дороги или постоянного здания поблизости.Эта линия помогает выделить фасад здания.
  2. Используйте боковую конструкцию, дорогу, первую базовую линию или границу участка, чтобы отметить боковые базовые линии здания.
  3. Закрепите временные штифты по осевой линии стен / колонн с обеих сторон стен и колонн спереди и сзади.
  4. Закрепите колышек на средней линии стен / колонн с обеих сторон стен и колонн с левой и правой стороны фасада здания.
  5. Проверить диагонали квадрата или прямоугольника, образовавшиеся после фиксации колышков.
  6. Соорудить разметочные столбы с колышками на расстоянии от 1,5 до 2 метров и оштукатурить их верхнюю поверхность.
  7. Отметьте центральную линию на верхней части маркировочных столбов с помощью резьбы (сажи) или теодолита в больших проектах и ​​по диагонали, а также проверьте другие размеры.
  8. Выровняйте столбики на всех углах здания.
  9. Разметить фундамент стен / колонн согласно чертежу на земле с помощью средней линии, нанесенной на разметочные столбы.
  10. Используйте мел, чтобы разметить траншею под фундамент на земле.
  11. Выкопайте фундамент стен / колонн до необходимого уровня и проверьте раскопку с помощью осевых и выровненных столбов, чтобы избежать каких-либо осложнений в дальнейшем.
Рис.11: Выемка под фундамент под стеной

Преимущества Разметка столбов для разметки Здания

  • Это экономит время на повторное измерение и установку точки во время строительства.
  • Повышает эффективность работы каменщика и мастера.
  • Точность можно проверить в любой момент на любом этапе.
  • Если обнаружена ошибка, ее легко исправить на ранней стадии. Исправить ошибку потом очень сложно.
  • Перекрестная проверка может быть выполнена старшим инженером в минимальные сроки.
  • Качественная работа сохраняется.

Недостатки Выполнение строительства без планировки

На некоторых участках работ подрядчик привозит стальные детали, устанавливает их на земле и начинает земляные работы.Со временем эти стальные детали просто выбрасывают. Таким образом, при выполнении дальнейших работ нет подходящей точки отсчета.

  • Это требует дополнительного времени для измерения смещения снова и снова.
  • Точность нельзя проверить на ранней стадии, и будет очень сложно исправить то же самое на более поздних стадиях.
  • Это связано с потерей времени и денег при исправлении ошибок. Это тоже приводит к некачественной работе.

Оборудование для Схема Настройка

  1. Инструмент для выравнивания
  2. Длинные гвозди
  3. Молоток
  4. Прямоугольный
  5. Стальная лента
  6. Тонкая хлопчатобумажная нить
  7. Кирпичи
  8. Цемент
  9. Сетчатый песок
  10. Порошок извести
  11. Теодолит

Часто задаваемые вопросы по конструкциям фундамента

Какое расположение фундаментов?

Планировка - это процесс разметки на местности расположения фундамента новостроек.

Какая стандартная глубина фундамента?

Стандартная глубина простой опоры или фундамента - 1,5 м.

Какие факторы влияют на глубину фундамента?

  1. Достаточная несущая способность.
  2. Глубина промерзания.
  3. Стол грунтовых вод
  4. Глубина усадки и набухания.
  5. Рядом раскопки.

Какие материалы, инструменты и оборудование используются при планировке здания?

  1. Инструмент для выравнивания
  2. Длинные гвозди
  3. Молоток
  4. Прямоугольный
  5. Стальная лента
  6. Тонкая хлопковая нить
  7. Кирпичи
  8. Цемент
  9. Просеянный песок
  10. Порошок извести
  11. Теодолит

Каковы преимущества план фундамента?

  • Экономит время на повторное измерение и установку точки во время строительства.
  • Повышает работоспособность каменщика и мастера.
  • Проверяйте точность в любое время на любом этапе.
  • Исправляйте ошибки, если они есть, на ранней стадии.
  • Перекрестная проверка может быть выполнена старшим инженером в минимальные сроки.
  • Качественная работа сохраняется.
.

Смотрите также