Главное меню

Расчет буронабивной сваи пример


Расчёт буронабивных свай

Troll , 21 ноября 2007 в 14:41

#1

Спасибо.. Хорошо "разжевано".. ;)

vasiliytsar , 27 ноября 2007 в 10:56

#2

Супер!!! прикольно написано, но:
1. Для студентов лучше не придумать!!! Подходит на 100%.
2. Для прикидочных расчетов (первое приближение) тоже супер!!!
3. Для окончательного решения необходимо использовать программный комплекс, "специализирующийся" на расчетах грунтового основания.

kms , 22 января 2008 в 08:09

#3

Пробежался мельком. Вроде сделано добротно, по СНиПам.
Но вот вопрос на будущее - а стоило ли на нагрузку
5 тс делать сваи?? :)
В дальнейшем желаю только удачи на нашем конструторском поприще!

Зяблик , 07 марта 2008 в 21:13

#4

В расчёте неверно применена снеговая нагрузка. Не учтено изменение 2 СНиП 2.01.07-85 от 01.07.2003года

Комбинатор2 , 13 марта 2008 в 18:18

#5

Учтено, просто нагрузка искуственно разложена на нормативную составляющую, а именно такая нагрузка прикладывается для расчёта фундаментов по II гр. пред состояний ...

Дмитрий 287 , 26 марта 2008 в 23:36

#6

На первый взгляд неплохо сделано, добротно

issiknon , 04 декабря 2009 в 13:33

#7

в "Расчёт фундаментов по оси Д" недочет.
Момент в защемлении, высчитанный как произведение результирующей активного давление на расстояние до дна котлована в данной конструкции не максимален.
Точка с максимальным моментом находится ниже дна котлована. Тут ее нахождение не приведено.

jetis , 01 сентября 2011 в 18:49

#8

А вес самих свай учитывать нужно?

plamya , 27 июня 2014 в 05:53

#9

В расчете принят шаг свай 0,9м мин. расстояние в свету между буронабиными сваями 1м

Несущая способность буронабивной сваи: таблица и расчет

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Фундаменты от А до Я.
  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      Устройство фундамента из блоков ФБС

      Заливка фундамента под дом

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтепление

      Устранение трещин в стенах фундамента

      Как армировать ростверк

      Необходимость устройства опалубки

      Как сделать гидроизоляцию цоколя

  • Цоколь

Методика расчета свайного буронабивного фундамента с ростверком

Содержание

Расчет свайного фундамента выполняется в зависимости от его типа. Важно понимать, что расчет буронабивных свай будет отличаться от вычислений для винтовых. Но во всех случаях требуется выполнить предварительную подготовку, которая включает в себя сбор нагрузок и геологические изыскания.

Изучение характеристик грунта

Несущая способность буронабивной сваи будет во многом зависеть от прочностных характеристик основания. В первую очередь стоит выяснить прочностные показатели грунтов на участке. Для этого пользуются двумя методами: ручным бурением или отрывкой шурфов. Грунт разрабатывается на глубину на 50 см больше, чем предполагаемая отметка фундамента.

Схема буронабивного фундамента

Перед тем, как рассчитать свайный фундамент рекомендуется ознакомиться с ГОСТ «Грунты. Классификация» приложение А. Там представлены основные определения, исходя из которых, тип грунта можно определить визуально.

Далее потребуется таблица с указанием прочности грунта в зависимости от его типа и консистенции. Все необходимые для расчета характеристики приведены на картинках ниже.

Глинистая почва в области подошвы сваи

Глинистая почва по длине сваи

Песчаный грунт

Крупнообломочные породы

Сбор нагрузок

Перед расчетом буронабивного фундамента также необходимо выполнить сбор нагрузок от всех вышележащих конструкций. Потребуется два отдельных вычисления:

  • нагрузка на сваю (с учетом ростверка),
  • нагрузка на ростверк.

Это необходимо потому, что отдельно будет выполнен расчет ростверка свайного фундамента и характеристик свай.

При сборе нагрузок необходимо уесть все элементы здания, а также временные нагрузки, к которым относится масса снегового покрова на крыше, а также полезная нагрузка на перекрытие от людей, мебели и оборудования.

Для расчета свайно-ростверкового фундамента составляется таблица, в которую вносится информация о массе конструкций. Чтобы рассчитать эту таблицу, можно пользоваться следующей информацией:

КонструкцияНагрузка

Собственный вес фундаментов и ростверка определяется в зависимости от геометрических размеров. Сначала требуется вычислить объем конструкции. Плотность железобетона при этом принимается равной 2500 кг/куб.м. Чтобы получить массу элемента, нужно объем умножить на плотность.

Каждую составляющую нагрузки нужно умножить на специальный коэффициент, который повышает надежность. Его подбирают в зависимости от материала и способа изготовления. Точное значение можно найти в таблице:

Тип нагрузкиКоэффициент

Расчет сваи

На этом этапе вычислений необходимо определиться со следующими характеристиками:

  • шаг свай,
  • длина сваи до края ростверка,
  • сечение.

Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.

Расположение арматуры

Всю массу здания, полученную на предыдущем этапе, требуется разделить на общую длину ростверка. При этом учитываются как наружные, так и внутренние стены. Результатом деления станет нагрузка на каждый пог.м фундаментов.

Несущую способность одного элемента фундамента можно найти по формуле:P = (0,7 • R • S) + (u • 0,8 • fin • li), где:

  • P — нагрузка, которую без разрушения выдерживает одна свая,
  • R — прочность почвы, которую можно найти по таблицам, представленным ниже после изучения состава грунта,
  • S — площадь сечения сваи в нижней части, для круглой сваи формула выглядит следующим образом: S = 3,14*r2/2 (здесь r — это радиус окружности),
  • u — периметр элемента фундамента, можно найти по формуле периметра окружности для круглого элемента,
  • fin — сопротивление почвы по боковым сторонам элемента фундамента, см. таблицу для глинистых грунтов выше,
  • li — толщина слоя грунта, соприкасающегося с боковой поверхностью сваи (находят для каждого слоя почвы отдельно),
  • 0,7 и 0,8 — это коэффициенты.

Шаг фундаментов рассчитывается по более простой формуле: l = P/Q, где Q—это масса дома на пог.м фундамента, найденная ранее. Чтобы найти расстояние между буронабивными сваями в свету, из найденной величины просто вычитают ширину одного элемента фундамента.

При выполнении расчетов рекомендуется рассмотреть несколько вариантов с разными длинами элементов. После этого будет легко подобрать наиболее экономичный.

Армирование буронабивных свай выполняется в соответствии с нормативными документами. Арматурные каркасы состоят из рабочей арматуры и хомутов. Первая берет на себя изгибающие воздействия, а вторые обеспечивают совместную работу отдельных стержней.

Каркасы для буронабивных свай подбираются в зависимости от нагрузки и размеров сечения. Рабочая арматура устанавливается в вертикальном положении, для нее используют стальные стержни D от 10 до 16 мм. При этом выбирают материал класса А400 (с периодическим профилем). Для изготовления поперечных хомутов потребуется закупить гладкую арматуру класса А240. D = минимум 6-8 мм.

Сортамент стальной арматуры

Каркасы буронабивных свай устанавливаются так, чтобы металл не доходил за край бетона на 2-3 см. Это нужно для обеспечения защитного слоя, который предотвратить появление коррозии (ржавчины на арматуре).

Размеры ростверка и его армирование

Элемент проектируется так же, как и ленточный фундамент. Высота ростверка зависит от того, насколько нужно поднять здание, а также от его массы. Самостоятельно можно выполнить расчет элемента, который опирается вровень с землей, или немного заглублен в нее. Основа расчетов висячего варианта слишком сложна для неспециалиста, поэтому такую работу стоит доверить профессионалам.

Пример правильной вязки арматурного каркаса

Размеры ростверка вычисляются так: В = М / (L • R), где:

  • B — это минимальное расстояние для опирания ленты (ширина обвязки),
  • М — масса здания без учета веса свай,
  • L — длина обвязки,
  • R — прочность почвы у поверхности земли.

Арматурные каркасы обвязки подбираются так же, как и для здания на ленточном фундаменте. В ростверке требуется установить рабочее армирование (вдоль ленты), горизонтальное поперечное, вертикальное поперечное.

Общую площадь сечения рабочего армирования подбирают так, чтобы она была не меньше 0,1% от сечения ленты. Чтобы подобрать сечение каждого стержня и их количество (четное), пользуются сортаментом арматуры. Также необходимо учитывать указания СП по наименьшим размерам.

Пример расчета

Чтобы лучше понять принцип выполнения вычислений, стоит изучить пример расчета. Здесь рассматривается одноэтажное здание из кирпича с вальмовой крышей из металлочерепицы. В здании предполагается наличие двух перекрытий. Оба изготавливаются из железобетона толщиной 220 мм. Размеры дома в плане 6 на 9 метров. Толщина стен составляет 380 мм. Высота этажа — 3,15 м (от пола до потолка — 2,8 м), общая длина внутренних перегородок — 10 м. Внутренних стен нет. На участке найдена тугопластичная супесь, пористость которой — 0,5. Глубина залегания этой супеси — 3,1 м. Отсюда по таблицам находим: R = 46 тонн/кв.м., fin = 1,2 тонн/кв.м. (для расчетов среднюю глубину принимаем равной 1 м). Снеговая нагрузка берется по значениям Москвы.

Сбор нагрузок делаем в форме таблицы. При этом не забываем про коэффициенты надежности.

Вид нагрузкиРасчет

Предварительно назначаем ростверк шириной 40 см, высотой 50 см. Длину сваи — 3000 мм, D сечения = 500 мм. Используем примерный шаг свай 1500 мм.Чтобы рассчитать общее количество опор нужно 30 м (длину ростверка) поделить на 1,5 м (шаг свай) и прибавить 1 шт. При необходимости значение округляется до целого числа в сторону уменьшения. Получаем 21 шт.

Площадь одной сваи = 3,14 • 0,52/4 = 0,196 кв.м., периметр = 2 • 3,14 • 0,5 = 3,14 м.

Найдем массу ростверка: 0,4м • 0,5 м • 30 м • 2500 кг/куб.м.• 1,3 = 19500 кг.

Найдем массу свай: 21 • 3 м • 0,196 кв.м. • 2500 кг/куб.м. • 1,3 = 40131 кг.

Найдем массу всего здания: сумма из таблицы + масса свай + масса ростверка = 244167 кг или 244 тонн.

Для расчета потребуется нагрузка на пог.м ростверка = Q = 244 т/30 м = 8,1 т/м.

Расчет свай. Пример

Находим допустимое нагружение на каждый элемент по формуле указанной ранее:P = (0,7 • 46 тонн/кв.м. • 0,196 кв.м.) + (3,14 м • 0,8 • 1,2 тонн/кв.м. • 3 м) = 15,35 т.Шаг свай принимается равным P/Q = 15,35/8,1= 1,89 м. Округляем до 1,9 м. Если шаг получается слишком большим или маленьким, нужно проверить еще несколько вариантов, меняя при этом длину и диаметр фундаментов.

Для каркасов применяются пруты D = 14 мм и хомуты D = 8 мм.

Расчет ростверка. Пример

Нужно посчитать массу здания без учета свай. Отсюда М = 204 тонн.Ширина ленты принимается равной М / (L • R) = 204/ (30 • 75) = 0,09 м.Такой ростверк использовать нельзя. Свесы стен кирпичного здания с фундамента не должны превышать 4 см. Ширину назначаем конструктивно 400 мм. Высота остается равной 500 мм.

Армирование ростверка свайного фундамента:

  • Рабочее 0,1%*0,4*0,5 = 0,0002 кв.м. = 2 кв.см. Здесь достаточно будет 4 стержней диаметром 8 мм, но по нормативным требованиям используем минимально возможный диаметр 12 мм,
  • Горизонтальные хомуты — 6 мм,
  • Вертикальные хомуты — 6 мм.

Выполнение расчетов займет определенный промежуток времени. Но с их помощью можно сберечь деньги и время в процессе строительства.

Каркасная стена с утеплителем, толщиной 15 см30-50 кг/кв.м.
Деревянная стена толщиной 20 см100 кг/кв.м.
Деревянная стена толщиной 30 см150 кг/кв.м.
Кирпичная стена толщиной 38 см684 кг/кв.м.
Кирпичная стена толщиной 51 см918 кг/кв.м.
Гипсокартонные перегородки 80 мм без утепления27,2 кг/кв.м.
Гипсокартонные перегородки 80 мм с утеплением33,4 кг/кв.м.
Междуэтажные перекрытия по деревянным балкам с укладкой утеплителя100-150 кг/кв.м.
Междуэтажные перекрытия из железобетона толщиной 22 см500 кг/кв.м.
Пирог кровли с использованием покрытия из
листов металлической черепицы и металлических60 кг/кв.м.
керамочерепицы120 кг/кв.м.
битумной черепицы70 кг/кв.м.
Временные нагрузки
От мебели, людей и оборудования150 кг/кв.м.
от снегаопределяется по табл. 10.1 СП 'Нагрузки и воздействия' в зависимости от климатического района
Постоянная для:- дерева- металла- изоляции, засыпок, стяжек, железобетона- изготавливаемых на заводе- изготавливаемых на участке строительства1,11,051,11,21,3
От мебели, людей и оборудования1,2
От снега1,4
Рабочая арматурадлина стороны лентыот 10 мм
длина стороны ленты> 3мот 12 мм
Горизонтальные хомутыот 6 мм
Вертикальные хомуты лента высотойот 6 мм
Вертикальные хомуты при высоте ленты > 80 смот 8 мм
Стены из кирпичапериметр стен = 6+6+9+9 = 30 м,площадь стен = 30 м*3м = 90 м2,масса стен = (90 м2* 684)*1,2 = 73872 кг
Перегородки изготовленные из гипсокартона не утепленные высотой 2,8 м10м*2,8*27,2кг*1,2 = 913,92 кг
Перекрытие из ж/б плит толщиной 220 мм, 2 шт.2шт*6м*9м*500 кг/м2 *1,3 = 70200 кг
Кровля6 м*9 м*60 кг*1,2 /соs30ᵒ (уклон крыши) = 4470 кг
Нагрузка от мебели и людей на 2 перекрытия2*6м*9м*150кг*1,2 = 19440 кг
Снег6м*9м*180кг*1,4/cos30° = 15640 кг
ИТОГО:184535,92 кг ≈ 184536 кг

Пример 2.1 Определение несущей способности буронабивной сваи длиной 2,2 м

Опубликовал admin | Дата 28 Июнь, 2016

 

 


Необходимо определить допустимую нагрузку, которую может воспринять набивная висячая железобетонная свая. Свая погружена в песчаный непучинистый грунт на глубину L = 2,2 м. Песок средней крупности с коэффициентом пористости е = 0.7 Диаметр сваи: d = 0.2 м.

Решение

При определении сопротивления грунта по боковой по­верхности сваи при толщине прорезаемого слоя более 2 м этот слой следует разбивать на несколько слоем с толщиной каждого не более 2 м.

Разбиваем слой на два слоя мощностью 2 и 0,2м.

Площадь поперечного сечении сван:

А = πd2/4 = 3,14*0,22/4 = 0,0314 м2.

Периметр сечения сваи:

и = πd = 3,14*0,2 = 0,628 м.

Расчетное сопротивление грунта набивной сваи под нижним концом сваи:

R = 1,5 МПа = 1500 кПа.

Средняя глубина расположения споев (см рис. 1)

h1 = 1,0 м;

 

h2 = 2,1 м.

Расчетное сопротивление по боковой поверхности сваи при его средней глубине заложения h1 = 1,0 м  принимаем  f1 = 54 кПа.

Расчетное сопротивление по боковой поверхности сваи при его средней глубине заложения h2= 2,1 м принимаем  f2= 58.5 кПа.

Коэффициент условий работы сван в грунте γс = 1,0.

Коэффициент углов и й работы грунта под нижним концом сван γсR = 1,0.

Коэффициент условий работы грунта по боковой поверхности сваи γсf = 0.8.

Несущая способность набивной сваи :

Fd = γсf сRRA + u∑γсf f1h1) =

= 1,0(1.0* 1500*0,0314 + 0.628(0,8*54*2 + 0.8*58,5*0,2)) = 107,2 кН.

Коэф. надежности по грунту  γk = 1.4.

Допустимая расчетная нагрузка на сваю по грунту:

F = Fd / γk = 107,2 / 1,4 = 76,57 кН.

Примеры:

 

онлайн калькулятор, какое количество свай нужно, необходимая несущая способностьи подробный монтаж

Фундамент выполняет важную и ответственную функцию, не допускающую никаких сомнений в возможностях или надежности основания.

В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.

Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.

Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.

Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.

Содержание статьи

Какие параметры нужно рассчитать для правильного выбора свайного фундамента

Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы:

  • Измеряемые.
  • Расчетные.

К измеряемым могут быть причислены все свойства грунта на данном участке:

  • Состав слоев.
  • Уровень залегания грунтовых вод.
  • Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
  • Глубина залегания и состав плотных слоев.

К расчетным параметрам относятся:

  • Величина нагрузки на основание.
  • Несущая способность опоры.
  • Схема расположения стволов.
  • Параметры свай и ростверка.

Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.

ВАЖНО!

Расчет фундамента — ответственная и очень сложная задача. Ее решение можно поручить только грамотному и опытному специалисту, имеющему соответствующую профессиональную подготовку и квалификацию. Кроме того, заказ на выполнение расчета должен быть оформлен официальным порядком, чтобы проектировщик нес полную ответственность за результат своих действий. Проект, составленный неформальным порядком, может стать приговором как самой постройке, так и людям, проживающим в ней.

Расчет с помощью онлайн-калькулятора


Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.

Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.

Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.

Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.

Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.

Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.

Как найти нагрузку на основание

Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:

  • Стены дома.
  • Перекрытия.
  • Стропильная система и кровля.
  • Наружная обшивка, утеплитель.
  • Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
  • Вес людей и животных.
  • Снеговая и ветровая нагрузка.

Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.

Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.

От каких факторов зависит шаг?

Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.

Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.

Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.

Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.

На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м.

Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.

Пример вычисления необходимого количества опор

Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.

Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.

Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.

Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.

Она определяется практически, методом пробного погружения сваи или бурением скважины.

Пример расчета буронабивной основы

Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.

Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.

После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.

Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.

Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.

ОБРАТИТЕ ВНИМАНИЕ!

Необходимо помнить, что все расчеты производятся по формулам, не учитывающим реальной обстановки на участке.

Основные схемы размещения

Существует несколько разновидностей схем расположения свай:

  • Свайное поле.
  • Свайный куст.
  • Свайная полоса.

Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.

Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.

Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.

При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.

Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.

Как правильно рассчитать шаг

Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.

Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.

Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.

Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.

В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.

ВАЖНО!

В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.

Оптимальное расстояние

Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.

Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.

Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.

Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.

В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.

Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.

Пример нахождения размеров ростверка

Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.

Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.

Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.

Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.

Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.

Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.

Полезное видео

В данном разделе вы сможете ознакомиться с пособием по расчету свайно-ростверкового, плитно-свайного, а также свайно-ленточного фундамента:

Заключение

Большинство пользователей не производит расчет фундамента, так как это слишком сложная и ответственная задача.

Чаще всего для этого привлекают опытных специалистов.

Как минимум, используются онлайн-калькуляторы, позволяющие получить нужные данные быстро и совершенно бесплатно.

Кроме того, такие ресурсы позволяют найти необходимое количество всех материалов и нередко даже рассчитывают их стоимость для монтажа.

Следует учитывать, что всецело полагаться на качество подсчета при помощи неизвестного алгоритма опасно, надо хотя бы продублировать расчет на другом, подобном ресурсе.

В целом, самостоятельный расчет можно производить только для вспомогательных или хозяйственных построек, чтобы не слишком рисковать своим имуществом, здоровьем и жизнью людей.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Диаметры буровых свай при расчете нагрузки ⋆ Смело строй!

Прежде чем приступать к проектированию и тем более строительству свайного фундамента, необходимо пройти ряд подготовительных этапов, заключающих в себе изыскания и расчеты различного типа. Результатом правильно проведенных предварительных мероприятий будет прочный, экономичный, и, главное, надежный фундамент. Одной из ключевых характеристик, влияющих на рентабельность того или иного типа свай, являются геометрические параметры свайных колонн.

Верно определить размеры поперечного сечения, глубину заложения, количество скважин и другие параметры, значит построить надежное основание для будущего здания.

Типология буронабивных свайных фундаментов

Буронабивные свайные фундаменты — это одна из немногих конструкций, не поддающихся строгой классификации. Типовые размеры, представленные в различных сортаментах, сводах правил и государственных стандартах, являются лишь приблизительными рекомендациями. Тогда как серийно производимые изделия должны пройти ряд строгих проверок на соответствие стандартам качества, буронабивные сваи практически невозможно испытать, поскольку изготавливаются они в полевых условиях и закладываются прямо в грунт.

Бетонируемые непосредственно на строительном участке, буронабивные сваи отличаются высокими показателями прочности, вычислить которые можно только эмпирически. Испытания, проводимые на опытных образцах, показывают работу исключительно данных экспериментальных изделий. Поскольку условия изготовления, такие как тип грунта, уровень грунтовых вод, водонасыщенность рабочего слоя почвы, характеристики использованных арматуры и бетона, невозможно предугадать.Все имеющиеся прочностные и геометрические данные приблизительны и представлены только в качестве примера.

Конструкция буронабивных свай

Для типизации буронабивных свай используют деление по геометрическим признакам и технологическим особенностям производства и эксплуатации. СНиП 2.02.03-85 является актуализированной версий свода строительных норм и правил от 1983 года и предлагает классифицировать буронабивные сваи по способу изготовления следующим образом:

  • Буронабивные сплошного сечения:
  • с уширениями и без них;
  • без крепления стенок;
  • с укреплением боковых стенок скважин глиняным раствором или обсадными трубами (при дислокации свайной колонны ниже уровня грунтовых вод)
  • Буронабивные с применением технологии непрерывного полого шнека; Береты – буровые, изготовляемые с помощью плоского грейфера или грунтовой фрезы;
  • Буронабивные с камуфлетной пятой, устраиваемые с последующим образованием уширения с помощью взрыва (в том числе и электрохимического).

От способа изготовления свайных столбов зависит их окончательная стоимость и, главное, максимальные и минимальные размеры свайных колонн. Важно учитывать разновидность буронабивных свай до начала строительства, поскольку различные технологии производства предполагают разный набор специализированного оборудования, а также допустимые габариты скважин.

Предварительная подготовка к расчету

Геологические изыскания

Определенные геометрические характеристики свайного столба это не просто прихоть подрядчика и проектировщика, а потребность, обусловленная необходимостью подобрать наиболее рациональный объем фундамента, способный не только выдержать предполагаемую нагрузку будущего здания, но и сэкономить бюджет заказчика. В каждом отдельно взятом случае перед определением размеров и устройством фундамента необходимо проводить ряд следующих исследований и изысканий:

  • геологическая разведка местности – бурение контрольных скважин в стратегических точках участка для определения типа и величины грунтовых напластований, несущей способности грунта и прочих характеристик основания;
  • гидрогеологические изыскания – определение уровня грунтовых вод, водонасыщенности грунта;
  • расчет общей массы здания и определение предельной расчетной нагрузки на погонный метр фундаментной плиты;
  • окончательный расчет геометрических параметров буронабивной сваи и необходимого количества свай выбранного сечения.

Результатом расчета будет сводная таблица размеров свайных колонн, и схема наиболее рационального фундамента с учетом выбранного типа буронабивных свай. Расчет размеров свай можно доверить проектному отделу строительной фирмы или провести самостоятельно. Не рекомендуется использование данных геологической разведки, полученных на соседствующих земельных наделах. Информацию о глубине промерзания грунта можно найти в СП 22.13330.2011.

Расчет свайного поля

После проведения геологических изысканий можно приступать к расчету свайного поля. Учитывая тип грунта, а также расположение уровня грунтовых вод, можно составить представление о предположительной глубине заложения скважин. В расположенной ниже таблице приведены примерные рекомендации глубин заложения в слабо просадочные грунты скважин, безопасных при указанных условиях:

Рекомендация глубины заложения

Влажные, просадочные, высокопучинистые и другие ненадежные типы грунтовых оснований не рекомендуется использовать для устройства в них буронабивных свай.

Схема расположения грунтовых вод

Грунты с уровнем подземных вод выше, чем 1000 мм, считаются водонасыщенными и устройство свайных фундаментов на таких основаниях строго противопоказано технологией. Высокий уровень грунтовых вод можно понизить, проведя мероприятия по осушению, прокладке дренажных стоков и проч. Надежными слабо-пучинистыми грунтами считают те, в которых УГВ ниже глубины промерзания не менее чем на 1 метр.

Данные, приведенные в таблице, помогут составить общее представление о зависимости глубины заложения свайной колонны от характеристик грунта. Для получения более точных и надежных показателей следует провести несложный математический расчет. Принцип расчета состоит в принятии за эталон одного из показателей (например, диаметра) и расчета остальных, исходя из этих данных. Методом сравнения выбирают наиболее подходящую конфигурацию свай, из которых впоследствии формируют свайное поле.

Расчет длины висячих свай

Свайные столбы, не опирающиеся на несущий слой грунта, считают висячими. Это означает, что основную нагрузку воспринимают боковые стенки скважины,а не опорный слой грунта. Такие фундаменты предпочтительно устанавливать в районах с глубоким расположением каменистого слоя. Несущая способность таких свай не отличается от стоек аналогичного диаметра.

Если вам доступны данные геологии местности, а также тип грунта подходит для устройства буронабивных висячих свайных колонн, можно приступать к вычислению длины. Предполагаемая схема расчета выглядит следующим образом:

  • Принимаем некую среднюю ширину поперечного сечения сваи n=60 мм.
  • Рассчитываем нагрузку дома на погонный метр фундаментной плиты:
Висячие сваи различной длины

Чтобы рассчитать нагрузку на погонный метр фундамента, нужно общую нагрузку разделить на периметр. Посчитать общую нагрузку дома можно в соответствии с указаниями СНиП 2.02.01-83* или СП 22.13330.2011 – в соответствующих разделах можно найти алгоритм расчета, необходимые значения коэффициентов ветровой и снеговой нагрузки и другую необходимую информацию.

Полученное значение в кг/м и будет искомой величиной. Средняя масса одноэтажного кирпичного дома 50 тонн. Следовательно, для дома с периметром 20 метров (10×10) нагрузка на погонный метр составит 2500 кг/м.

  • Принимаем шаг колонн не менее трех диаметров и не более двух метров – для выбранного диаметра подойдет шаг 1,5 метра. Общее количество свай будет равняться 13.
  • Рассчитываем нагрузку на одну сваю: для этого разделим на величину шага свай нагрузку, воспринимаемую погонным метром фундамента. Получим значение приблизительно равное 1700 кг/м.Такой необходимый предел прочности необходимо заложить в одну сваю.
  • Для сваи площадью сечения 0,28 м2 такое значение прочности будет равняться:

F=R∙A+u∙Eycf∙fi∙hi;

Где F – несущая способность; R–сопротивление грунта, формулу расчета которого можно найти в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf,fi и hi– коэффициенты из того же СНиП; u–периметр сечения сваи, разделенный на длину.

Фундамент на буронабивных сваях

Для рассматриваемой в примере сваи двухметровой длины предельная нагрузка в глинистом грунте будет равняться 32,3 тонны, что позволяет уменьшить количество свай за счет увеличения шага свайных колонн, или уменьшить площадь сечения каждой отдельно взятой сваи, что позволит сэкономить средства, затраченные на бетонирование скважин.

Глубина таких свай будет зависеть исключительно от характеристик верхнего слоя грунта, относительного уровня расположения грунтовых вод и глубины промерзания. Следует также учитывать данные о промерзании грунтов и положении уровня грунтовых вод. Подробные примеры расчета глубины заложения висячих свай приведены в СНиП 2.02.01-83* в разделе 2 пункт 5 или в СП 50.102-2003.

Расчет длины стоек

Буронабивные сваи повышенной глубины заложения могут работать как стойки. И хотя обычно буровые типы являются висячими, встречаются конструкции с опиранием на твердый слой грунта. Расчет длины таких свай следует производить с учетом глубины расположения прочного несущего пласта.

Рекомендуем производить расчеты вручную или обратиться к специалистам.

Расчет длины буронабивных свай

В сети Интернет есть масса сервисов для автоматического расчета размеров и количества буронабивных свай. Использование таких сервисов накладывает определенный риск на пользователя, поскольку алгоритм не всегда учитывает все необходимые параметры, а владельцы программного обеспечения не несут ответственности за полученный результат.

Все сопутствующие вычисления несущей способности и геометрии сваи производятся в соответствии с технологией расчета свай-стоек и схожи с приведенным ранее примером. Дополнительную информацию о проведении расчета можно получить в вышеуказанных документах.

Зависимость диаметра сваи от типа монтажа

Площадь поперечного сечения буронабивной сваи соответствует площади скважного отверстия с поправкой на пластичность грунта. Форма замоноличиваемых свай близка к идеально цилиндрической, хотя и имеет незначительные уширения вследствие непроизвольного бокового продавливания бетонной смесью слабых мест грунта. Также в процессе заливки бетонной смеси путем увеличения подающего напора могут быть созданы умышленные уширения тела сваи для придания дополнительной прочности. Особенно актуальны такие действия для висячих свай.

Помимо всего прочего, средний диаметр буронабивной сваи определяется исходя не только из расчетных показателей, но и из возможностей оборудования, предназначенного для устройства того или иного типа свай. Примерные значения диаметров в зависимости от конструктивных особенностей установки:

Таблица диаметров в зависимости от конструктивных особенностей

Устройство баретов предполагается при наличии высокопучинистых нестабильных грунтов. Делать такой фундамент для среднестатистического основания нерационально. Конструкция бура предполагает устройство только скважин диаметром либо 300 мм, либо 400 мм.

Шаг диаметров определяется набором буров, используемых для устройства скважин того или иного типа. Конструктивные особенности каждой из разновидностей буровых установок не позволяют устраивать скважины большего или меньшего диаметра, чем те, что указаны в спецификациях на проведение работ. Ознакомиться с рабочими параметрами буровых установок можно у поставщика или арендодателя.

Дополнительные рекомендации

При устройстве свайного поля и определении размеров свайных колонн следует учитывать рекомендуемый шаг свай, от которого будет зависеть частотность скважин и распределение нагрузки. Посмотрите видео, по правильному монтажу свай:

Для равномерного распределения давления массы будущего здания на фундаментную плиту, необходимо соблюдать следующие правила:

  • максимальное расстояние между буронабивными сваями не должно превышать двух метров;
  • минимальный шаг свайных колонн должен находиться в пределах трех-четырех диаметров свай – в целях предотвращения обрушения стенок соседствующих скважин в сыпучих грунтах нужно увеличить минимальный предел;
  • компоновку свайного поля следует производить с учетом расположения свай в угловых точках фундамента;
  • по результатам расчета геометрических характеристик, после компоновки, общее количество свай должно соответствовать рекомендательным шаговым значениям – в случае превышения максимального шага свай следует увеличить количество скважин и уменьшить диаметр свай до предельно возможного;
  • максимальные и минимальные размеры диаметров скважин не должны превышать допустимые для выбранного типа монтажа.

Соблюдая данные рекомендации, можно спроектировать наиболее эффективный и рациональный фундамент, не беспокоясь о его надежности. При необходимости следует обратиться за помощью к специалистам, но все расчеты можно произвести самостоятельно, без особого труда.

Буронабивные сваи

Искусство онлайн-строительства смета

Стоимость важна для всей отрасли. Затраты можно разделить на два основных класса; абсолютные затраты и относительные затраты. Абсолютная стоимость измеряет потерю стоимости активов. Относительная стоимость включает сравнение между выбранным курсом действий и курсом действий, который был отклонен. Эту стоимость альтернативного действия - не предпринятое действие - часто называют «альтернативной стоимостью».

Бухгалтера в первую очередь интересуют абсолютные затраты.Однако лесному инженеру, планировщику, менеджеру нужно думать об альтернативной стоимости - стоимости упущенной возможности. Руководство должно иметь возможность сравнивать политику, которую следует выбрать, и политику, которую следует отклонить. Для таких сравнений требуется способность прогнозировать затраты, а не просто фиксировать затраты.

Данные о затратах, конечно, важны для метода прогнозирования затрат. Однако форма, в которой регистрируется много данных о затратах, ограничивает точный прогноз затрат только в сопоставимых ситуациях.Это ограничение точного прогнозирования затрат может быть несерьезным в отраслях, где производственная среда мало меняется из месяца в месяц или из года в год. Однако при уборке урожая идентичные производственные ситуации являются скорее исключением, чем правилом. Если данные о затратах не разбиты и не записаны как затраты на единицу продукции и не соотнесены с факторами, которые контролируют их значения, от них мало пользы при выборе альтернативных процедур. В данном случае подход к проблеме полезных данных о затратах заключается в выявлении, выделении и контроле факторов, влияющих на затраты.

Затраты делятся на два типа: переменные затраты и постоянные затраты. Переменные затраты варьируются на единицу продукции. Например, это могут быть затраты на кубический метр высаженной древесины, на кубический метр вынутой земли и т. Д. Постоянные затраты, с другой стороны, возникают только один раз, и по мере производства дополнительных единиц продукции удельные затраты падают. Примерами постоянных затрат могут быть затраты на ввоз оборудования и затраты на подъезд к дороге.

Поскольку лесозаготовительные работы становятся более сложными и требуют как постоянных, так и переменных затрат, обычно существует несколько способов выполнить данную задачу.Можно изменить количество одного или обоих видов затрат и, таким образом, получить минимальную общую стоимость. Математически взаимосвязь между объемом производства и затратами может быть выражена следующими уравнениями:

Общие затраты = фиксированные затраты + переменные затраты × выпуск

В символах с использованием первых букв элементов затрат и N для объем выпуска или количество единиц продукции, эти простые формулы:

C = F + NV

UC = F / N + V

Анализ безубыточности определяет точку, в которой один метод становится лучше другого метода выполнения какая-то задача или цель.Анализ безубыточности - распространенная и важная часть контроля затрат.

Одним из примеров анализа безубыточности может быть сравнение двух методов строительства дороги для дороги, которая включает ограниченное количество земляных работ с насыпью и выемкой. Земляные работы можно было бы провести вручную или бульдозером. Если бы был принят ручной метод, фиксированные затраты были бы низкими или вообще отсутствовали. Оплата будет производиться ежедневно и под непосредственным контролем мастера. Стоимость будет рассчитана путем оценки необходимого времени и умножения этого времени на среднюю заработную плату работающих мужчин.Мужчины также могли получать оплату на сдельной основе. В качестве альтернативы эту работу можно было бы выполнить с помощью бульдозера, который пришлось бы переместить с другого участка. Предположим, что стоимость ручного труда составит 0,60 доллара за кубический метр, а бульдозер будет стоить 0,40 доллара за кубический метр и потребует 100 долларов, чтобы переехать с другого участка. Стоимость въезда бульдозера является фиксированной и не зависит от количества обработанных земляных работ. Использование бульдозера не приведет к экономии, если количество земляных работ не будет достаточным для покрытия фиксированных затрат плюс прямые затраты на эксплуатацию бульдозера.

Рис. 1.1 Пример безубыточности для земляных работ.

Если в наборе координат стоимость в долларах отложена по вертикальной оси, а единицы продукции - по горизонтальной оси, мы можем указать фиксированные затраты для любого процесса горизонтальной линией, параллельной оси x. Если переменные затраты на единицу продукции постоянны, то общие затраты для любого количества единиц продукции будут суммой постоянных затрат и переменных затрат, умноженных на количество единиц продукции, или F + NV.Если данные о затратах для двух процессов или методов, один из которых имеет более высокие переменные затраты, но более низкие фиксированные затраты, чем другой, нанесены на тот же график, линии общих затрат в какой-то момент пересекутся. На данный момент уровень производства и общая стоимость совпадают. Эта точка известна как точка безубыточности, поскольку на этом уровне один метод столь же экономичен, как и другой. Как показано на Рисунке 1.1, точка безубыточности, при которой количество бульдозерной альтернативы и альтернативы ручного труда становится равным, составляет 500 кубических метров.Мы могли бы получить тот же результат алгебраически, написав F + NV = F '+ NV', где F и V - постоянные и переменные затраты для ручного метода, а F 'и V' - соответствующие значения для бульдозерного метода. Поскольку все значения известны, кроме N, мы можем решить для N, используя формулу N = (F '- F) / (V - V')

Аналогичная, но другая проблема - определение точки минимальной общей стоимости. Вместо того, чтобы уравновешивать два метода с разными фиксированными и переменными затратами, цель состоит в том, чтобы свести сумму двух затрат к минимуму.Предположим, что бригада из 20 человек расчищает дорогу, и имеются следующие факты:

1. Мужчины получают зарплату из расчета 0,40 доллара в час.
2. Время отсчитывается от момента выхода из лагеря до момента возвращения.
3. Общее время ходьбы на человека увеличивается со скоростью 15 минут в день.
4. Стоимость переезда лагеря - 50 долларов.

Если лагерь перемещается каждый день, время на прогулку не теряется, но стоимость лагеря составляет 50 долларов в день. Если лагерь не переносится, на второй день теряется 15 минут работы экипажа или 2 доллара.00. На третий день общее время ходьбы увеличилось на 30 минут, на четвертый день - на 45 минут и так далее. Как часто следует перемещать лагерь при прочих равных условиях? Мы могли бы получить алгебраическое выражение, используя сумму арифметических рядов, если бы мы хотели решить эту задачу несколько раз, но в демонстрационных целях мы можем просто вычислить среднюю общую стоимость лагеря. Средняя общая стоимость лагеря - это сумма средней дневной стоимости пешеходного времени плюс среднесуточная стоимость перемещения лагеря.Если бы мы перемещали лагерь каждый день, то средняя дневная стоимость времени прогулки была бы равна нулю, а стоимость перемещения лагеря составила бы 50 долларов США. Если мы переезжали в лагерь через день, время на прогулку обходилось в 2 доллара, потерянных на второй день, или в среднем 1 доллар в день. Средняя дневная стоимость переезда составляет 50 долларов, разделенных на 2, или 25 долларов. Средняя общая стоимость лагеря составляет 26 долларов США. Если мы продолжим этот процесс в течение разного количества дней, в течение которых лагерь будет оставаться на месте, мы получим результаты в таблице 1.1.

ТАБЛИЦА 1.1 Средняя дневная общая стоимость лагеря как сумма стоимости времени прогулки плюс стоимость перемещения лагеря.

8

Оставшиеся дни лагеря на месте

Средняя дневная стоимость пешеходного времени

Средняя дневная стоимость переезда

Средняя общая стоимость лагеря

1

0,00

50,00

50,00

2

1.00

25,00

26,00

3

2,00

16,67

18,67

0 4

000

0 4

000

15,50

5

4,00

10,00

14.00

6

5,00

8,33

13,33

7

6,00

9 7,14

000

7,00

6,25

13,25

9

8.00

5,56

13,56

10

9,00

5,00

14,00

Мы видим линейное увеличение средней ежедневной стоимости прогулки и средняя стоимость перемещения лагеря уменьшается по мере увеличения количества дней, в течение которых лагерь остается в одном месте. Минимальная стоимость получена за выезд из лагеря на локацию 7 дней (Рисунок 1.2). Эту минимальную стоимость следует использовать только в качестве ориентира, поскольку все остальное редко бывает равным. Важным результатом анализа является чувствительность общей стоимости к отклонениям от точки минимальной стоимости. В этом примере общая стоимость медленно меняется от 5 до 10 дней. Часто на решение влияют и другие соображения, которые трудно дать количественной оценке. В Разделе 2 мы обсуждаем балансирование дорожных расходов и затрат на занос. Иногда дороги располагаются ближе к

.

% PDF-1.5 % 2466 0 obj> endobj xref 2466 55 0000000016 00000 н. 0000013188 00000 п. 0000013424 00000 п. 0000013469 00000 п. 0000013601 00000 п. 0000013635 00000 п. 0000013876 00000 п. 0000013904 00000 п. 0000014418 00000 п. 0000014822 00000 п. 0000015228 00000 п. 0000015266 00000 п. 0000015374 00000 п. 0000018044 00000 п. 0000122480 00000 н. 0000122559 00000 н. 0000122633 00000 н. 0000122714 00000 н. 0000122798 00000 н. 0000122843 00000 н. 0000122938 00000 н. 0000122983 00000 н. 0000123101 00000 п. 0000123146 00000 н. 0000123277 00000 н. 0000123322 00000 н. 0000123446 00000 н. 0000123491 00000 н. 0000123614 00000 н. 0000123659 00000 н. 0000123816 00000 н. 0000123861 00000 н. 0000124024 00000 н. 0000124069 00000 н. 0000124201 00000 н. 0000124245 00000 н. 0000124396 00000 н. 0000124440 00000 н. 0000124563 00000 н. 0000124607 00000 н. 0000124715 00000 н. 0000124759 00000 н. 0000124886 00000 н. 0000124930 00000 н. 0000125039 00000 н. 0000125083 00000 н. 0000125192 00000 н. 0000125236 00000 п. 0000125329 00000 н. 0000125372 00000 н. 0000125466 00000 н. 0000125508 00000 н. 0000125598 00000 н. 0000125640 00000 н. 0000001396 00000 н. трейлер ] >> startxref 0 %% EOF 2520 0 obj> поток х | [S

.Эссе по расчету буронабивной сваи

- 2727 слов

АНАЛИЗ СКВАЖИН
ID участка: Tower Владелец: PT. INDOSAT, Tbk Расположение объекта: Cipayung (Mandor Hasan), Cipayung Tower Тип: SST 42M FOUR LEG GF (LIGHT DUTY) bp = 0,55

A. ДАННЫЕ РАЗМЕРОВ
Fx Fy ht =

ℓp = 0,55 0,5

htb = htbe = h = 1,1

0,4 btb = 0,15 0,2

hw = hfp = 0,4

10

Lp = 10,9

Размер входных данных1

B. ДАННЫЕ ПО БЕТОНУ
Прочность на сжатие для сваи Прочность на сжатие сваи Плотность бетона Вес каждой сваи Допустимая сила натяжения сваи Глубина водного столба от поверхности земли Толщина бетонного покрытия

f'c pilecap f'c pile γc
Wpl Qall tens hw d '

= = = = =
=

225 225 2,40 3,287 10 5

кг / см2 кг / см2 тонна / м3 тонна м см

ГВт не встречается =

C. ДАННЫЕ О РЕАКЦИИ
Реакция опоры горизонтально в направлении X Реакция опоры горизонтальна в направлении Y Опора Вертикальная сила сжатия Опора Вертикальная сила подъема Момент Реакция в направлении X Момент Реакция в направлении Y Fx Fy Fzc Fzu Mrx Mry

= = = = = =

4.215 4,272 64,246 58,870 0,096 0,094

тонна тонна тонна тонна м

D. ДАННЫЕ ПО ПОЧВЕ
Для однослойного: Плотность сухой почвы Плотность воды Угол внутреннего трения почвы для многослойного слоя -> См. Размер Входные данные Сопротивление конической точке на глубине -12,0 м Коэффициент сопротивления основания (для глубокого фундамента) Общее боковое трение до глубины -12,0 м Коэффициент сопротивления вала

γs γw θ qc
Сбр

= = = = = = =

1,50 1,00 25 30 3,0 632 5,0

т / м3 т / м3
град

кг / см2 кг / см

Tf
ССР

Е.ДАННЫЕ ПО УСИЛЕНИЮ
Предел текучести Стальной арматуры Коэффициент снижения прочности Диаметр стального стержня для свайной арматуры Диаметр стальной хомуты Диаметр стальной спирали

fy

φ
Drebar Østirrup Øspirral

= = = = =

3900 0,8 16 10 8

кг / см2 мм мм мм

II. АНАЛИЗ И ВЫХОДНЫЕ ДАННЫЕ

A. НАГРУЗКИ НА СВАЙ И ВМЕСТИМОСТЬ ПОДШИПНИКА
Ширина PileCap, Bpc = (m-1) a + 2 * 1.5D Длина PileCap, Lpc = (n-1) a + 2 * 1.5D Макс. Расстояние сваи в X от заглушки cg, Xmax (м) = a (м-1) / 2 Расстояние между сваей № (м-1) в X от заглушки cg, X (м-1) = a [{(м -1) / 2} -1] Расстояние № сваи (м-2) в X от заглушки cg, X (м-2) = a [{(м-1) / 2} -2] Расстояние № сваи . (м-3) в X от заглушки cg, X (м-3) = a [{(m-1) / 2} -3] Расстояние № сваи (м-4) в X от заглушки cg, X (m-4) = a [{(m-1) / 2} -4] Макс. Расстояние сваи в направлении Y от заглушки cg, Ymax (n) = b (n-1) / 2 Расстояние между сваей № (n-1) в Y от заглушки cg, Y (n-1) = b [{( n-1) / 2} -1] Расстояние № сваи.(n-2) по оси Y от сваи cg, Y (n-2) = b [{(n-1) / 2} -2] Расстояние между сваей № (n-3) по Y от сваи cg, Y ( n-3) = b [{(n-1) / 2} -3] Расстояние между сваей № (n-4) по оси Y от насадки сваи cg, Y (n-4) = b [{(n-1) / 2} -4] Суммирование квадрата расстояния до сваи в X dir, ∑X = Суммирование квадратов расстояния до сваи в Y dir, ∑Y = Площадь PileCap, Afp = Bpc x Lpc Объем PileCap, Vfp = Afp x hfp Объем TieBeam, Vtb = (btbxhtb) (Dtl-bp) Объем пьедестала, Vpd = (bp x ℓp) (ht + h-hfp) Объем бетона, Vc = Vfp + Vtb + Vpd Вес бетона, Wc = Vc.γc Объем засыпанного грунта, Vs = {(Bpc * Lpc) - (bp * lp)} * (h-hfp) - {(htb * btb) * (Bpc-bp)} Вес засыпанного грунта, Ws = Vs. γs Разд. Модуль сваи № м в направлении X, Zy (m) = ∑X / Xmax (m) Sect. Модуль сваи № (m-1) в направлении X, Zy (m-1) = ∑X / X (m-1) Sect. Модуль сваи № (m-2) в направлении X, Zy (m-1) = ∑X / X (m-2) Sect. Модуль сваи № (m-3) в направлении X, Zy (m-3) = ∑X / X (m-3) Sect. Модуль сваи № (m-4) в направлении X, Zy (m-4) = ∑X / X (m-4) Sect. Модуль сваи № n в направлении Y, Zx (n) = ∑Y / Ymax (n) Sect.Модуль сваи № (n-1) в направлении Y, Zx (n-1) = ∑Y2 / Y (n-1) Sect. Модуль сваи № (n-2) в направлении Y, Zx (n-2) = ∑Y / Y (n-2) Sect. Модуль сваи № (n-3) в направлении Y, Zx (n-3) = ∑Y / Y (n-3) Sect. Модуль сваи № (n-4) в направлении Y, Zx (n-4) = ∑Y2 / Y (n-4) 2 2 2 2 2 2 2 2 2 2 2

Bpc Lpc Xmax (m) X (m-1) X (m-2) X (m-3) X (m-4) Ymax (n) Y (n-1) Y (n-2) Y (n-3) Y (n-4)

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

2,4 2,4 0,6 0 0 0 0 0,6 0 0 0 0 1.44 1,44 5,76 2,304 0,276 0,363 2,943 7,063 3,672 5,51 2,40 0,00 0,00 ...

Продолжить чтение

Присоединяйтесь к StudyMode, чтобы прочитать полный документ

.

Типы свай в зависимости от передачи нагрузки, функции, материала и грунта

Типы свай для свайного фундамента по передаче нагрузки и функции

Классификация свай по передаче нагрузки и функциональному поведению:

  • Концевые несущие сваи (точечные несущие сваи)
  • Сваи фрикционные (сцепные)
  • Сваи фрикционные и сцепные

Концевые опорные сваи

Эти сваи переносят свою нагрузку на твердый слой , расположенный на значительной глубине ниже основания конструкции, и они получают большую часть своей несущей способности за счет сопротивления грунта проникновению на носке сваи (см. Рисунок 1) .

Свая ведет себя как обычная колонна и должна быть спроектирована соответствующим образом. Даже в слабом грунте свая не разрушится из-за продольного изгиба, и этот эффект необходимо учитывать только в том случае, если часть сваи не имеет опоры, то есть если она находится в воздухе или в воде.

Нагрузка на почву передается через трение или сцепление. Но иногда почва, окружающая сваю, может прилипать к ее поверхности и вызывать «отрицательное трение кожи» на свае. Иногда это существенно влияет на емкость сваи.

Отрицательное поверхностное трение вызвано дренажом грунтовых вод и уплотнением почвы. На глубину заложения сваи влияют результаты исследования площадки и испытания грунта.

Сваи фрикционные или сцепные

Несущая способность определяется главным образом за счет сцепления или трения почвы при контакте с валом сваи (см. Рис. 2).

Рисунок 1: Концевые несущие сваи

Рисунок 2: Фрикционная или когезионная свая

Эти сваи передают большую часть своей нагрузки на почву за счет поверхностного трения.Этот процесс забивания таких свай близко друг к другу группами значительно снижает пористость и сжимаемость почвы внутри и вокруг групп. Поэтому сваи этой категории иногда называют уплотняющими сваями.

В процессе забивки сваи в землю грунт формуется и в результате теряет часть своей прочности. Следовательно, свая не может передавать точную величину нагрузки, на которую она рассчитана, сразу после забивки.

Обычно почва частично восстанавливает свою прочность через три-пять месяцев после забоя. Сваи сцепные

Сваи фрикционные

Эти сваи также передают свою нагрузку на землю за счет поверхностного трения. Процесс забивки таких свай не приводит к заметному уплотнению почвы. Эти типы свайных фундаментов широко известны как плавающие свайные фундаменты.

Комбинация фрикционных и связных свай

Расширение концевой несущей сваи, когда несущий слой не твердая, например, твердая глина.Свая забивается достаточно глубоко в нижний материал, чтобы выработать соответствующее сопротивление трения.

Еще одна разновидность концевой несущей сваи - сваи с увеличенной несущей поверхностью. Это достигается путем вдавливания шарика бетона в мягкий слой непосредственно над твердым слоем, чтобы получить увеличенное основание.

Аналогичный эффект достигается при использовании буронабивных свай за счет формирования на дне большого конуса или раструба с помощью специального расширителя. Буронабивные сваи, снабженные раструбом, обладают высокой прочностью на разрыв и могут использоваться как сваи на растяжение (см. Рис.3)

Рис. 3. Расширение основания под расширенным основанием до буронабивной сваи

Классификация свай по типу материала

Сваи обычно изготавливаются из дерева, бетона или стали. Древесина может быть использована для изготовления временных свай, а также когда древесина доступна по экономичной цене.

Бетон используется для изготовления сборных железобетонных свай, монолитных и предварительно напряженных бетонных свай, а стальные сваи используются для постоянных или временных работ.

  • Древесина
  • Бетон
  • Сталь
  • Сваи композитные.

Сваи деревянные

Используется с самых ранних лет и до сих пор используется для постоянных работ в регионах, где много древесины. Древесина лучше всего подходит для длинных связных свай и свай под насыпями. Древесина должна быть в хорошем состоянии и не должна подвергаться нападению насекомых.

Для деревянных свай длиной менее 14 метров диаметр наконечника должен быть более 150 мм.Если длина превышает 18 метров, допускается наконечник диаметром 125 мм. Важно, чтобы брус двигался в правильном направлении и не попадал в твердую почву. Так как это может легко повредить ворс.

Сохранение древесины ниже уровня грунтовых вод защитит древесину от гниения и гниения. Чтобы защитить и укрепить верхушку сваи, деревянные сваи могут быть снабжены подноском. Креозирование под давлением - обычный метод защиты деревянных свай.

Преимущества и недостатки деревянных свай

+ Сваи удобные в обращении

+ Относительно недорого там, где много древесины.

+ Секции можно соединить вместе и легко удалить лишнюю длину.

- Сваи будут гнить над уровнем грунтовых вод. Имеют ограниченную несущую способность.

- Легко повреждается при движении о камни и валуны.

- Сваи трудно соединить, и в соленой воде они подвергаются нападению морских бурильщиков

Бетонные сваи

Бетонные сваи делятся на сборные и монолитные:

Сборные бетонные сваи или Сборные бетонные сваи

формируется и армируется из высококачественного контролируемого бетона. Обычно используется квадратного (см. Рис. 1-4 b), треугольного, кругового или восьмиугольного сечения, они изготавливаются короткой длины с интервалом в один метр от 3 до 13 метров.Они являются сборными, поэтому их можно легко соединить друг с другом для получения необходимой длины (рис. 1-4 a). Это не снизит расчетную нагрузочную способность.

Армирование необходимо внутри сваи, чтобы выдерживать нагрузки при перемещении и забивании. Также используются предварительно напряженные бетонные сваи, которые становятся более популярными, чем обычные сборные железобетонные конструкции, поскольку требуется меньше армирования.

Рисунок 4: а) Деталь соединения бетонной сваи. б) свая сборная прямоугольная

Свайный шов типа Hercules (рис. 5) легко и точно забивается в сваю и быстро и безопасно соединяется на месте.Они изготовлены с точными допусками по размерам из высококачественной стали.

Рисунок 5: Тип свайного соединения Hercules

Преимущества и недостатки сборных железобетонных свай

+ Устойчивый к сдавливанию грунт, например, мягкие глины, ил и торфяной материал кучи можно проверить перед укладкой.

+ Легко соединяются. Относительно недорогой.

+ Можно забивать большие длины.

+ Может увеличить относительную плотность зернистого слоя основания.

- Смещение, вспучивание и нарушение почвы во время движения.

- Возможны повреждения во время движения. Может потребоваться замена свай.

- Невозможно двигаться с очень большими диаметрами или в условиях ограниченной высоты над головой.

Забивные Бетонные сваи

Монолитные бетонные сваи являются наиболее часто используемым типом для фундаментов из-за большого разнообразия способов заливки бетона и введения сваи в грунт.Забивные и буровые сваи - это два типа монолитных бетонных свай; однако установка этих свай на месте может сопровождаться некоторыми проблемами, такими как выгибание, сдавливание и сегрегация.

Эти сваи делятся на:

Сваи засыпаются в трубы нижними пятками и оставляются при подъеме труб. некоторые из этих типов:

  • Симплексная свая : это литая труба диаметром 40 см, имеющая нижнюю пятку, она ударяется под землей автоматическим молотком до тех пор, пока не достигнет пахотной земли для предприятия, затем в нее заливается бетон и ударяется другим молоток.А пока трубу приподнимают на определенную величину, чтобы не попасть внутрь грунта. Эта свая может выдержать около 40-50 тонн.
  • Куча Фрэнки : это ряд труб, входящих друг в друга, чтобы легко получить доступ к большим глубинам земли. Каблук из железобетона можно использовать и оставить в земле, чтобы предотвратить попадание труб с холодной водой. Эта свая может нести нагрузку от 50 до 80 тонн.
  • Виброува : представляет собой стальную трубу диаметром 40 см, имеет коническую пятку с отдельным фланцем, она забивается под землей автоматическим молотком до достижения пахотной земли для установки, затем пятка снимается и помещается в труба, после чего заливается бетон.Трубка перемещается вверх и вниз (около 80 раз в минуту) для уплотнения бетона. Эта свая может выдержать около 60 тонн.
  • Крепкая свая : эта свая во многом похожа на симплексную, за исключением того, что нижняя пятка сделана из железобетона, покрытого литой пяткой. Эта свая может выдерживать нагрузку от 25 до 30 тонн.
  • Свая под рифленую : эта свая используется на черных глинистых почвах и на землях без остаточного грунта, поэтому на них очень опасно закладывать этот грунт.
  • Сваи с открытыми трубами без пятки, затем внутрь трубы заливается бетон. Диаметр трубы составляет 40 см, а средний бетонный колодец - от 12 до 15 метров, в зависимости от уровня земли, которую предстоит построить. Вот таких стопок:
  • Ворс Штрауса : очень похож на ворс Simplex, но без каблука. С помощью специальных приспособлений из трубок можно удалить грунт, а вместо грунта залить бетон. Максимальная нагрузка на эти сваи составляет от 20 до 25 тонн.
  • Куча Кимберсол : Делается колодец диаметром около 80 см до достижения пахотной земли для строительства, затем дно колодца уплотняется с помощью закругленного молотка и заполняется бетоном в соотношении 1: 5 (цемент : песок). Эта свая может выдерживать нагрузку от 80 до 120 тонн.
  • Welfchaulzer pile : труба диаметром 30-40 см протыкается до достижения пахотной земли для учреждения, и внутренняя почва удаляется, затем помещаются стальные стержни и открытое верхнее отверстие плотно закрывается, оставляя отверстия для подключения сжатый воздух, чтобы можно было удалить фильтрат, затем бетон заливается в соотношении 1: 4.
  • Куча Раймонда : Состоит из цилиндрических стружек, расположенных друг в друге, диаметром 40–60 см в верхней части ворса и 20–28 см в нижней части. Он ударяется изнутри с помощью мандрила, и цилиндрические стружки оставляются в почве и заполняются бетоном.
Преимущества и недостатки монолитных бетонных свай

+ Можно проверить перед отливкой, легко разрезать или удлинить до нужной длины.

+ Относительно недорого.

+ Сваи можно забросать перед выемкой грунта.

+ Длина ворса легко регулируется.

+ Может быть сформировано увеличенное основание, которое может увеличить относительную плотность гранулированного слоя основания, что приведет к гораздо более высокой несущей способности конца.

+ Армирование не определяется воздействием нагрузок при перемещении или движении.

- Возвышение прилегающей поверхности земли, которое может привести к повторному уплотнению и развитию отрицательных сил поверхностного трения на сваях..

- Повреждение при растяжении неармированных свай или свай, состоящих из сырого бетона, когда силы на носке были достаточными для сопротивления движению вверх.

- Поврежденные сваи из необсаженного или тонкослойного зеленого бетона из-за боковых сил, создаваемых в грунте. Бетон может быть ослаблен, если артезианская труба поднимается вверх по стволу свай при извлечении трубы.

- Легкие стальные профили или корпуса из сборного железобетона могут быть повреждены или деформированы при резком движении.

- Невозможно двигаться, если высота над головой ограничена.

- Требуется много времени; нельзя использовать сразу после установки.

- Ограниченная длина.

Буронабивные и монолитные (несмещающие сваи)

+ Длина может быть легко изменена в зависимости от условий почвы.

+ Возможна установка на очень большие диаметры.

+ В глинах возможно расширение концов до двух или трех диаметров.

+ Материал свай не зависит от условий обращения или движения.

+ Возможна установка очень большой длины.

- Бетон не находится в идеальных условиях и не подлежит последующему контролю.

- Вода под артезианским давлением может подниматься по трубопроводу ствола сваи, вымывая цемент.

- Нельзя легко поднимать над уровнем земли, особенно в речных и морских сооружениях.

- С помощью методов бурения можно разрыхлить песчаные или тяжелые почвы, требующие цементирования основания для достижения экономичного сопротивления основания.

Стальные сваи

Изготовлен из секторов H, X или из толстых трубок (см. Рис. 6). Они подходят для обработки и движения на большие расстояния. Их относительно небольшая площадь поперечного сечения в сочетании с высокой прочностью облегчает проникновение в твердую почву.

Их легко отрезать или соединять сваркой.Если сваю забить в почву с низким значением pH, то есть риск коррозии, но риск коррозии не так велик, как можно было бы подумать. Хотя гудронное покрытие или катодная защита могут применяться в постоянных работах.

Обычно допускают некоторую степень коррозии в конструкции, просто увеличивая размер поперечного сечения стальной сваи. Таким образом, процесс коррозии может быть продлен до 50 лет. Обычно скорость коррозии составляет 0,2-0,5 мм / год, и при проектировании это значение может быть принято равным 1 мм / год.

Рисунок 6: Поперечные сечения стальных свай

Преимущества и недостатки стальных свай

+ Сваи просты в обращении, их можно легко обрезать до нужной длины.

+ Может проходить через плотные слои. Боковое смещение грунта при забивке невелико (сваи стального профиля H или I) относительно легко соединяются или скрепляются болтами.

+ Подходит для жестких и очень длинных прогонов.

+ Может перевозить тяжелые грузы.

- Сваи будут разъедать,

- Относительно легко отклоняется во время движения.

- Относительно дороги.

Сваи композитные

Сочетание разных материалов в одном ворсе. Как указывалось ранее, часть деревянной сваи, установленная над грунтовыми водами, может быть уязвима для нападения насекомых и разложения. Чтобы избежать этого, бетонная или стальная свая используется выше уровня грунтовых вод, в то время как деревянная свая устанавливается под уровнем грунтовых вод (см. Рисунок 7).

Рисунок 7: Защита деревянных свай от гниения: а) верхней частью сборного железобетона над уровнем воды. б) путем выдвижения сваи ниже уровня воды

Классификация свай по воздействию на грунт

Часто используется упрощенное разделение на забивные или буронабивные сваи

Забивные сваи

Забивные сваи считаются вытеснительными. В процессе забивки сваи в землю почва перемещается радиально, так как ствол сваи входит в землю.Также может присутствовать компонент движения почвы в вертикальном направлении .

Рисунок 8: забивные сваи

Буронабивные сваи

Буронабивные сваи (сменные сваи ) обычно считаются несмещаемыми сваями, пустота образуется в результате бурения или выемки грунта до производства свай. Сваи могут быть изготовлены путем заливки бетона в пустоту.

Некоторые почвы, такие как жесткие глины, особенно подходят для образования свай таким образом, поскольку стены скважины не требуют временной опоры, за исключением ткани для поверхности земли.

В нестабильном грунте, таком как гравий, грунт требует временной опоры из обсадной трубы или бентонитовой суспензии. В качестве альтернативы обсадная труба может быть постоянной, но забиваться в скважину, которая пробивается по мере продвижения обсадной колонны.

Другой метод, который, по сути, не является вытесняющим, заключается во введении раствора или бетона из шнека, который вращается в гранулированный грунт, и, следовательно, образуется столб грунтового раствора.

Существует три метода без смещения: буронабивные сваи, в частности, предварительно сформированные сваи и сваи с заделкой из раствора или бетона.

Это сменные сваи:

  • Augered
  • Кабель ударно-ударный
  • Большой диаметр с недоразвёртыванием
  • Типы, включающие сборный бетонный блок
  • Трубы ввертные
  • Мини-сваи
.

Расчет бокового трения сваи с помощью многопараметрического статистического анализа

В этой статье используются испытание статической нагрузкой и метод многопараметрического статистического анализа для изучения величины бокового трения сваи в различных слоях почвы в лёссовой области. В настоящее время испытание на статическую нагрузку является наиболее часто используемым методом определения несущей способности свайного фундамента. Во время испытания вертикальная нагрузка прикладывается к вершине сваи, данные для каждого уровня нагрузки записываются и строится кривая Q-S для определения предельной несущей способности одиночной сваи.На разных участках тела сваи устанавливаются датчики напряжения арматуры, после чего рассчитываются осевая сила и боковое трение сваи каждой секции. В нескольких исследованиях изучается расчет бокового трения сваи в различных слоях грунта с использованием метода многопараметрического статистического анализа. Получение точных результатов с помощью этого метода станет важным дополнением к расчету бокового трения сваи, а также будет способствовать развитию теоретических расчетов бокового трения сваи.Поэтому, взяв в качестве примера проект Wuding Expressway в районе лёсса, сопротивление боковому трению шести испытательных свай изучается с помощью испытаний статической нагрузки и многопараметрического статистического анализа. Метод многопараметрического статистического анализа сравнивается с результатами испытаний на статическую нагрузку, погрешность контролируется в пределах 20%. Результаты показывают, что результаты расчетов многопараметрического статистического анализа в основном соответствуют техническим требованиям.

1. Введение

Лессовые отложения покрывают значительную часть земного шара, составляя одну десятую площади суши во всем мире.В Китае преобладает лесс со сплошными слоями и большой мощностью, занимающий площадь примерно 630 000 км 2 [1, 2]. Лесс - это желтый иловый осадок, который в четвертичный период переносился в основном ветром. Он богат карбонатом, с большими пустотами, явными вертикальными трещинами и в целом низким уровнем грунтовых вод [3, 4]. В условиях непрерывного развития экономики Китая движение в лессовых районах быстро развивается, наряду с увеличением строительства крупных автомагистралей и мостов [5–10].

В настоящее время свайный фундамент является наиболее часто используемой формой фундамента при строительстве автомобильных мостов, а также прочной и эффективной инфраструктурой [11–15]. В лессовом районе провинции Шэньси широко используются буронабивные сваи благодаря развитой технологии строительства и высокой несущей способности [16–21]. Большинство свай имеют длину 30–70 м и диаметр более 1 м. Также обычно используются сваи трения или сваи трения с торцевыми опорами. Для длинных свай сопротивление трению на стороне сваи составляет более 80% несущей способности свай, а для коротких свай сопротивление обычно составляет более 60% [22–26].Поэтому расчет бокового сопротивления в лессовых районах имеет большое значение при строительстве автомобильных мостов в таких районах Китая [27, 28].

В настоящее время метод испытания на статическую нагрузку является одним из наиболее широко используемых методов для определения бокового трения сваи [29–31]. Был проведен большой объем исследований по статическому нагрузочному тестированию. Испытание статической нагрузкой двух стальных трубных свай толщиной 0,45 м для анализа закона распределения бокового трения сваи показало, что метод эффективного напряжения может быть использован для выражения сопротивления трению вокруг свай [32].На основе испытания на статическую нагрузку двух забивных свай, была также предложена формула для расчета бокового трения сваи связного грунта и восстановленного грунта [33]. Путем испытания статической нагрузкой свай большого диаметра и сверхдлинных свай в мягком грунте вокруг озера Дунтин было обнаружено, что сваи демонстрируют очевидные характеристики фрикционных свай, и была разработана формула для расчета модели передачи поперечной нагрузки линейных упруго-полностью пластичных свай. представлены [34]. Испытания статической нагрузкой свай большого диаметра и сверхдлинных буронабивных свай на участках с мягким грунтом были проведены для анализа закона передачи нагрузки и несущих характеристик этих свай, а также относительного смещения свай и грунта, когда боковое трение свай различных слоев грунта достигло предельного значения. был представлен [35].Путем испытания статической нагрузки концевой сваи был сделан вывод, что боковое трение сваи повлияло на несущую способность концевой сваи в определенной степени, и несущая способность превысила расчетную несущую способность одиночной сваи [36]. Взаимосвязь между общим поперечным сопротивлением свай и осадкой в ​​конце свай под разными уровнями опоры была получена путем статических нагрузочных испытаний буронабивных свай, которые показали, что общее поперечное сопротивление свай может быть увеличено за счет увеличения прочность камня или грунта на конце сваи [37].Также были проведены полевые испытания под нагрузкой на сверхдлинные монолитные сваи, и были получены кривые осевого усилия испытательных свай при различных уровнях нагрузки, а также взаимосвязь между трением агрегата и относительным перемещением сваи и грунта. В ходе этого эксперимента было показано, что единичное сопротивление трению при сжимающей нагрузке можно рассчитать путем деления разницы двух непрерывных осевых сил на площадь тела сваи между тензодатчиками [38].

Метод многопараметрического статистического анализа собирает данные по множеству испытательных свай и устанавливает взаимосвязь между боковым трением сваи, сцеплением и углом внутреннего трения слоя почвы [39, 40].Однако было проведено несколько исследований для расчета бокового трения сваи методом многопараметрического статистического анализа. Поэтому, взяв в качестве примера шоссе Вудинг на Лессовом плато, в данной статье проводятся испытания на статическую нагрузку шести испытательных свай и измеряются размер и распределение бокового трения сваи. Боковое трение сваи в различных слоях грунта затем рассчитывается с использованием метода многопараметрического статистического анализа. Наконец, сравниваются два результата. Получение разумного результата с помощью этого метода станет важным дополнением к расчету бокового трения сваи, а также будет способствовать развитию теоретических расчетов бокового трения сваи.

2. Проектирование испытательного полигона

Скоростная автомагистраль Удин находится в городах Яньань и Юйлинь в провинции Шэньси, Китай (рис. 1). Он начинается на востоке округа Уци, заканчивается в Шицзинцзы, к юго-востоку от округа Динбянь, и имеет длину примерно 922,17 км. Примыкания с обеих сторон расположены в подобласти Лёсс-Лянхэ, и топография области прилегания относительно небольшая. Высота уровня земли составляет от 1629,60 м до 1644,59 м, а относительный перепад высот составляет примерно 14 метров.99 м. Испытательный полигон, показанный на рисунке 1, расположен на разделенном пересечении деревни Сункелан, города Янцзин и округа Динбянь. Топографические колебания тестового участка небольшие, поверхностные воды отсутствуют, грунтовые воды очень глубокие, и в процессе бурения грунтовые воды отсутствуют. Слои испытательного участка состоят из следующего: (1) Лессовая почва (): почва коричнево-желтого цвета, относительно однородная, содержит макропоры, червоточину, корневище растений и небольшое количество гравия и твердого пластика.(2) Старый лёсс (): почва коричнево-желтая и относительно несложная. В почве присутствует небольшое количество гиф, а также червоточины, точечные отверстия, некоторые моллюски и твердый пластик.


3. Содержание теста
3.1. Испытание в помещении

Лабораторные испытания грунтов на испытательной территории в основном состояли из испытания на содержание влаги (рис. 2 (а)), испытания на сжатие (рис. 2 (b)) и испытания на прямой сдвиг (рис. 2 (с). ). Метод сушки использовался в тесте на содержание влаги в почве, а коэффициент пустотности почвы был получен с помощью теста на сжатие.Путем анализа данных испытаний на влагосодержание и сжатие были получены характеристики пласта и основные физические свойства слоя почвы в районе испытаний, как показано в таблице 1.


Почва разделение слоя Глубина (м) Толщина слоя (м) Плотность (г / см 3 ) Содержание воды (%) Коэффициент пустотности Индекс жидкости Коэффициент сжатия (МПа −1 )

Лессовый грунт () 0∼6.5 1,8∼6,5 1,68 16,3 0,883 0,37 0,35
Старый лесс () 6,5∼50 24∼43,5 1,85 7,9 0,586 0,26 0,12

Угол сцепления и внутреннего трения являются важными параметрами, используемыми в этой статье. Таким образом, методом прямого сдвига были испытаны 34 группы образцов, в том числе восемь групп образцов лессовых почв и 26 групп старых образцов лёсса.В испытании на прямой сдвиг верхняя и нижняя коробки были выровнены, были вставлены фиксированные штифты, а проницаемые камни и фильтровальная бумага были помещены в нижние коробки. Кромки кольцевого ножа с образцами располагались вверх, задняя часть ножа - вниз, а горловина режущей коробки совмещалась. Затем помещали фильтровальную бумагу и верхние проницаемые камни, и образцы медленно вставляли в коробку для сдвига. После этого кольцевой нож был удален, и была добавлена ​​крышка для передачи усилия.Затем были установлены скользящие стальные шарики, а также коробка для сдвига и кольцо для измерения усилия. Был приложен предварительный натяг 0,01, маховик вращался, и показание шкалы кольца измерения силы было обнулено. После приложения вертикального давления фиксированный штифт был немедленно извлечен, секундомер включился, и маховик вращался с постоянной скоростью 0,8 мм / мин (смещение при сдвиге составляло 0,2 мм за цикл вращения), так что образец срезался и разрушается в течение 3–5 мин. При каждом повороте маховика показания шкалы на измерительном кольце записывались один раз до разрушения образца грунта при сдвиге.Расчетная сила сцепления и угол внутреннего трения приведены в таблице 2.


Разделение слоя грунта Количество образцов Сила сцепления (кПа) Угол внутреннего трения (°)
Максимум Минимум Среднее значение Максимум Минимум Среднее значение

Лессовый грунт () 8 8.3 5,4 6,8 29,4 25,9 28,4
Старый лёсс () 26 43,0 11,8 30,5 32,9 18,6 25,8

3.2. Испытание на статическую нагрузку

Для испытания на статическую нагрузку анкерные сваи и испытательные сваи были расположены в виде четырех анкерных свай, окружающих одну испытательную сваю.Расстояние между анкерной сваей и испытательной сваей показано на рисунке 3. Шесть испытательных свай диаметром 1,5 м и длиной 25 м были установлены в зоне испытаний, а также анкерные сваи диаметром 1,5 м и длиной 30 мес. Тело сваи было построено из бетона C30, а бетон C40 использовался для армирования части на расстоянии 1,5 м от вершины сваи. По данным предварительных полевых исследований, грунтовые воды на этом участке глубоко залегают, поверхностные воды отсутствуют. Таким образом, метод сухого роторного бурения был использован для бурения испытательных и анкерных свай.После проверки качества отверстия каркас арматурного каркаса был поднят и сваи залиты в сваю. Весь процесс тестирования состоял из трех частей: установка и размещение тестовых элементов перед тестированием, строительство тестовых свай и анкерных свай, а также тестовая нагрузка и сбор данных. Конкретный процесс для каждого соответствующего компонента подробно описан следующим образом: (1) Согласно требованиям к испытаниям, необходимо было измерить осевое усилие и поперечное сопротивление сваи при различных нагрузках во время процесса испытания.Поэтому перед сооружением анкерных свай и испытательных свай в сваю закладывали определенное количество датчиков напряжения арматуры. Учитывая целостность сбора данных испытаний, семь секций были выбраны вдоль основной арматуры в свае для размещения датчика напряжения арматуры. Поскольку при загрузке верхняя часть сваи находилась в непосредственном контакте с домкратом, деформация была большой, поэтому первый слой измерителя напряжения был расположен на 0,5 м ниже вершины сваи, а глубина укладки составила 3.5 м, 6,5 м, 11 м, 15,5 м, 20 м и 24,5 м по очереди (Рисунок 4), при этом каждая секция соединена с тремя датчиками напряжения арматуры. Измерители напряжения на дне 24,5 м были расположены в конце испытательной сваи и использовались для измерения внутренней силы в нижней части сваи и сопротивления на конце сваи. Измерители напряжения арматуры в средней части измеряли внутреннюю силу сваи в каждом слое почвы и на границе слоя почвы. В прошлом измерители напряжения арматуры приваривались последовательно к основной арматуре в свае.Однако высокие температуры, возникающие во время сварки, могут легко повредить датчик напряжения арматуры, что повлияет на результаты испытаний. Следовательно, при укладке стальных стержней необходимо избегать повреждения стальных стержней, чтобы не повлиять на датчики напряжения. В этом эксперименте арматура, соединяющая два конца датчика напряжения, была обработана, а затем гайки цилиндра из высокопрочной углеродистой стали на двух концах датчика напряжения были соединены с арматурой для защиты датчика напряжения арматуры, и он был удостоверился, что он может легко собрать соответствующие данные.(2) С развитием техники и оборудования буронабивные сваи для вращательного бурения часто используются при сооружении свайных оснований (фрикционных свай) на лессовых участках. По сравнению с ручным бурением и ударным бурением роторное бурение имеет положительные характеристики, включая высокую эффективность бурения при средней скорости бурения 10 м / ч. Если уровень грунтовых вод в области лёсса относительно низкий, можно использовать сухое бурение, чтобы предотвратить потерю лёссового слоя вокруг сваи или увеличение силы тяжести при контакте с водой.Строительство роторного бурения на лессовых участках не требует сооружения защиты стенок из бурового раствора, поскольку долото для вращательного бурения будет производить буровой раствор в процессе бурения, который будет поддерживать устойчивость стенки скважины и обеспечивать защиту стенок, образующих отверстия. По сравнению с ударным бурением роторное бурение меньше влияет на уплотнение почвы со стороны ствола скважины. При вращательном бурении долото перемещается вперед и назад по дну скважины и земле, что делает стенку скважины более шероховатой. Более высокая неровность почвы вокруг вращающейся сваи может лучше отражать взаимодействие между сваей и почвой.Согласно китайским нормам [41], при бурении роторным бурением в сухом режиме (рис. 5 (а)) толщина донных отложений фрикционных свай диаметром менее 1,5 мм должна быть менее 300 мм, а наклон сваи дырки не должны быть менее 1%; диаметр не должен быть меньше проектного значения диаметра сваи; а глубина отверстия не должна быть меньше проектной. Таким образом, после проверки качества формовки отверстий на соответствие требованиям, каркас стального каркаса был поднят (Рисунок 5 (б)) и залит в сваи (Рисунок 5 (в)).В процессе сверления отверстий роторным сверлением используется защитный ствол. Защитная бочка поднимается на 1,5 м над землей в процессе бетонирования каждой испытательной сваи. После завершения заливки бетоном защитный ствол каждой испытательной сваи не вынимается для последующего нагружения, чтобы предотвратить повреждение верхнего бетона сжатием из-за большой нагрузки в процессе нагружения. (3) Испытание статической нагрузкой выполняется с использованием устройства противодействия якорной свае, как показано на рисунке 6 (а).Сначала восемь гидравлических домкратов (рис. 6 (b)) были равномерно размещены на стальной подушке с достаточной прочностью и жесткостью, а затем были подняты основная балка и вспомогательная балка (рис. 6 (c)), соответственно, со средней главной балки расположить на гидравлическом домкрате как можно дальше. При подъеме вспомогательной балки необходимо было убедиться, что два конца вспомогательной балки находятся в соответствии с положением анкерной сваи. После того, как опорная балка была установлена ​​на место, стрелочный индикатор смещения (рис. 6 (d)) был установлен на стальном листе с рамкой магнитного измерителя, и оседание вершины сваи было измерено в реальном времени.





Погрузка производилась тихоходным способом. Для этого эксперимента одноступенчатая нагрузка составляла 1000 кН, максимальная нагрузка составляла 12000 кН, а ступень нагружения - 11. Согласно китайским нормам [42], когда изменение осадки за один час составляет менее 0,1 мм под действием различных нагрузок и происходит многократно, оседание тестовой сваи можно считать относительно устойчивым. Когда сваи находится в процессе испытания, нагружение может быть остановлено при возникновении одного из следующих условий [42]: (1) когда оседание вершины сваи под нагрузкой более чем в пять раз превышает величину при предыдущей нагрузке, общая осадка вершины сваи составляет более 40 мм и (2) когда достигается максимальное значение нагрузки, требуемое проектом, оседание вершины сваи достигает относительно стабильного стандарта.

В этом исследовании разгрузочная нагрузка испытательной сваи была вдвое больше, чем у градуированной нагрузки, когда процесс загрузки был завершен, и разгрузочная нагрузка длилась в течение одного часа на каждом этапе. В то же время были измерены осадки в верхней части сваи и толщины стержня. После завершения процесса разгрузки остаточная осадка была измерена в течение трех часов.

4. Анализ результатов испытаний статической нагрузкой
4.1. Расчет осадки верхушки сваи

Несущая способность нескольких испытательных свай одной конструкции испытательного полигона и одного размера варьировалась, и для проведения анализа результатов испытания статической нагрузкой было взято среднее значение [39, 40].Были установлены четыре измерителя смещения для измерения осадки вершины сваи при различных нагрузках в режиме реального времени, а затем средняя осадка четырех вершин сваи была принята как оседание вершины сваи при различных нагрузках.

Результаты расчетов представлены в таблице 3. Кривая Q-S построена путем расчета значения осадки верхушки сваи. Кривая Q-S является интуитивно понятным проявлением процесса нагружения при испытании сваи статической нагрузкой, как показано на Рисунке 7. Анализ Рисунка 7 показывает, что осадка испытательной сваи внезапно увеличивается во время процесса нагружения.Кривая Q-S показывает точку резкого падения, которая может иллюстрировать предельную несущую способность сваи. Предел несущей способности испытательной сваи составляет 9000 кН.


Серийный номер Нагрузка (кН) Время загрузки (мин) Осадка (мм)
Время загрузки на этом уровне (мин) Суммарное время ( мин) Расчет на этом уровне (мм) Накопленный осадок (мм)

1 2,000 120 120 0.2050 0,2050
2 3000 120 240 0,3625 0,5675
3 4000 120 360 0,3800 0,9475
4 5000 120 480 0,4375 1,3850
5 6000 120 600 0,0700 1.4550
6 7000 150 750 0,8325 2,2875
7 8,000 150 900 1,1550 3,4425
8 9,000 900 150 1050 3,7850 7,2275
9 10,000 150 1200 14,7425 21,9700
10 11000 120 1320 20.7725 42,7425
11 12,000 150 1470 30,1241 72,8666


4.2. Расчет осевой силы тела сваи

При расчете осевой силы тела сваи предполагается, что тело сваи имеет одинаковое поперечное сечение и что тело сваи выполнено из линейно упругого материала. Под действием произвольной нагрузки первого порядка напряжение каждого участка сваи может быть получено путем измерения значения частоты датчиков напряжения в основной арматуре и расчета значения напряжения [27, 43, 44] с помощью соответствующая формула.Затем значение деформации тела сваи на каждом участке можно получить по соответствующей формуле. Осевое усилие стального стержня на каждой секции тела сваи можно определить по следующей формуле:

.

PPT - НЕСУЩАЯ СПОСОБНОСТЬ РАСЧЕТА И ДЕЙСТВИЯ PowerPoint Presentation

  • НАПРАВЛЯЮЩАЯ СПОСОБНОСТЬ РАСЧЕТА И АКТУАЛЬНОСТЬ Проф. Ле Дык Тханг; M.Sc. Фам Вьет Хоа FECON Foundation Engineering and Underground Construction JSC Париж - 19 ноября 2010 г.

  • Содержание Введение • Статистические данные по результатам испытания на статическую нагрузку буронабивных свай в Ханое • Несущая способность сваи: от расчета к действительности 3.1 Формулы для расчета несущей способности сваи 3.2 Испытание на статическую нагрузку с использованием контроля датчиков 3.3 Сравнение расчетных составляющих нагрузки с фактическими результатами нагрузочных испытаний с использованием контроля датчиков • Рекомендации

  • Введение

  • В последние годы большинство Популярной технологией глубокого фундамента многоэтажных домов во Вьетнаме является буронабивная свая. • С тех пор было решено множество проблем при строительстве буронабивных свай: качество бетона в буровом растворе, неоднородность бетона сваи, дефект носка сваи… • Однако есть некоторые проблемы при проектировании буронабивных свай, которые не были должным образом решены Этот отчет призван показать одну из проблем при проектировании буронабивных свай, а именно определение несущей способности сваи, и рекомендацию

  • 1.Статистические данные о результатах испытания на статическую нагрузку для буронабивных свай в Ханое

  • Статистическая сводка Согласно вьетнамскому стандарту TCXDVN 269: 2002: сваи разрушились, когда S / D приближаются к 10%. несущая способность сваи? S200% Расчетная нагрузка / диаметр

  • 2. Несущая способность сваи: от расчета к действительности

  • Песчаная глина Глинистый песок Песок 9

  • Популярная формула для расчета несущей способности сваи Предельная несущая способность: Допустимая несущая способность: или

  • Компоненты несущей способности сваи: Подшипник носка и обшивка трение

  • Испытание нормальной статической нагрузки 12

  • Испытание статической нагрузки с использованием датчика Сайт: HH6 An Khanh - Место проекта в Ханое: проект головного офиса по иностранным делам Вьетнама

  • Сигнальный кабель Армирование тензометрического датчика Установить регистратор данных

  • 100% 200% Компонент трения кожи: Компонент подшипника пальца: Распределение нагрузки при испытательной нагрузке 200% расчетной нагрузки 18% 82%

  • 100% 200% 300% Компонент поверхностного трения: Компонент подшипника пальца: при испытательной нагрузке = 300% расчетной нагрузки 12% 88%

  • Сравнение между расчетной несущей способностью и результатами испытаний

  • 3.Рекомендации

  • Зазор самый большой Зазор самый маленький 20

  • Рекомендации До сих пор испытательная нагрузка всегда намного ниже, чем фактическая предельная несущая способность сваи, поэтому результаты испытаний под нагрузкой не были используется эффективно 2. При расчете несущей способности буронабивной сваи: расчетная составляющая сопротивления поверхностному трению всегда намного ниже действительной 3. Возникнут ли проблемы с исходными данными о свойствах грунта для проектных работ? 4.Японская формула [2] должна использоваться чаще, чем другие

  • Рекомендации 5. Коэффициент безопасности (Fs) от 2,5 до 3 для расчета несущей способности буронабивной сваи кажется слишком высоким 6. В требованиях к испытаниям свай испытательная нагрузка должна быть до предельной несущей способности, не ограничиваясь 200% расчетной нагрузкой, как обычно. 7. Мониторинг датчика должен применяться в сочетании с испытанием статической нагрузкой для измерения нагрузки распределения вдоль ствола сваи, чтобы можно было исправить сваю Расчет подшипников

  • Для обновления стандарта долгосрочного проектирования: Исследователи, проектировщики и подрядчики должны провести официальное исследование для определения несущей способности буронабивных свай при согласовании и поддержке Министерства строительства, чтобы найти ответ на следующий вопрос: 1) Как лучше всего исследовать грунт при проектировании буронабивных свай? Ключевые свойства почвы? 2) Какая наиболее подходящая формула расчета должна применяться в условиях почв Вьетнама? А ФС? 23

  • БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ!

  • .

    Смотрите также