Главное меню

Рандбалка что такое


Рандбалки » Строительно-информационный портал


Конструкции, заводимые в стены здания для воспринятая изгибающих усилий без кручения, должны быть расположены симметрично по отношению к капитальным стенам. Это достигается, как указывалось выше, заводкой во все капитальные стены с обеих сторон рандбалок. Рандбалки заводятся в штрабы стен здания, с последующей заливкой раствора за их стенки. В качестве рандбалок рекомендуется применять стальные двутавровые балки или монолитный железобетон. Так, высокие монолитные железобетонные поясные балки в 1950 г. начали применять во Франции для передвижки зданий на большие расстояния.
При отсутствии двутавровых балок и наличии швеллеров последние для лучшей связи с каменной кладкой следует заводить таким образом, чтобы его стенка была с внешней стороны стены. В этом случае стенка швеллера усиливается раствором, заполняющим его корыто, и основная нагрузка от стен будет передаваться как на полки швеллера, так и на бетонное заполнение.
Как показал опыт работы по подъему каменного здания на канале Москва—Волга, установку швеллеров корытом наружу рекомендовать не следует, так как в процессе подъема такая рандбалка отделяется от цементного раствора, залитого за ее стенку, из-за недостаточного сцепления.
Этой рекомендацией можно пренебречь, если между двумя балками одной стены устанавливать через каждые 1,5—2,0 м жесткие связи.
Преимущества рандбалок из двутавров перед рандбалками из швеллеров следующие:
1) стенка двутавровой балки испытывает центральную нагрузку, стенка швеллера — внецентренную;
2) при одной и той же высоте балок динамическая нагрузка при забивке клиньев значительно меньше влияет на ослабление силы сцепления между кирпичной кладкой и двутавровыми балками;
3) двутавровая балка, заделанная в стены здания, в отличие от швеллера, при ударе кувалдой по ее стенке не отделяется от кирпичной кладки.
Длина пролетов рандбалок назначается в зависимости от сечения балок, нагрузки и прочности стены, а также расположения и размеров проемов в стене здания. Обычно исходят из принятого расстояния между опорами и в соответствии с этим определяют требуемое сечение рандбалок.
а) Расчетная схема рандбалок. Рандбалки в виде непрерывной ленты охватывают стены здания с двух сторон. Стыки балок применяются равнопрочные, но не симметричные из-за невозможности приварки накладок с их внутренней стороны. Для неизменности положения рандбалок в горизонтальной плоскости парные балки одной стены соединяются между собой по верхним и нижним полкам приваркой к ним металлических связей. Опорами рандбалок могут служить катки, ходовые балки или наддомкратные балки с расположенными под ними домкратами. Таким образом, рандбалки представляют собой систему с частыми опорами при условии расположения под ними катков, неразрезной многопролетной балкой при расположении под ними домкратов и балками с заделанными концами при расположении под ними парных ходовых балок.
б) Определение напряжений в кирпичной кладке над опорными участками рандбалок. Проведенная нами экспериментальная проверка показала, что, не имея данных модуля сжимаемости кирпичной кладки, можно для предварительного подбора сечения рандбалок пользоваться формулой Фламана — простого радиального распределения. Здесь учитывалась временная работа рандбалок, дополнительное сцепление прочного раствора, залитого за стенки балок, и заклинка над рандбалкой полусухим цементным раствором примерно марки 100.
Теоретически в точке приложения усилия P напряжение равно бесконечности, так как на бесконечно малую площадку действует определенная сила. В действительности, в этой точке из-за проявления некоторой текучести материала усилие оказывается распределенным по площадке определенных размеров.
Максимальное напряжение в кирпичной кладке ориентировочно можно определить по следующей формуле Фламана.

Давление по толщине стены при двух рандбалках из двутавров, заделанных в нее, будет распределяться по ширине верхних полок обеих балок и заходящих в стену двух (по одной от каждой балки) половинок полок балок. Силы сцепления раствора между стенкой двутавра и кладкой стены не учитываем, оставляя ее в запас прочности. Обозначив через b ширину полки одной двутавровой балки, получаем:

Эпюра распределения нормальных напряжений принимается в соответствии с формулой (I) для определения σм.
Приравнивая площадь треугольной эпюры усилию Р, находим величину l:

где а — высота балки.
В любой точке M на расстоянии от 0 до 1 величина напряжения будет равна

За пределами l величину давления можно считать равной нулю. Максимальное давление не должно превышать 0,68 от нормативного сопротивления кирпичной кладки, где 0,68 — взято из опытных данных коэффициентов однородности, полученных в ЦНИИСКе.
Для уменьшения напряжений в кладке над стальной балкой делают бетонный пояс.
Для более точного расчета (при составлении рабочего проекта) требуется определение средней величины модуля деформации Eк данной кладки.
В этом случае применяют формулы проф. Б.Н. Жемочкина:

где EI — жесткость обеих рандбалок;

где l — длина распределения нагрузки.
При определении σx значение В принимается равным не по ширине трех полок рандбалок, а по толщине стены, при условии что внутреннее расстояние между полками балок меньше высоты балки, умноженной на ctg 40° (рис. 9). Зто объясняется тем, что передача нагрузки на балку происходит не непосредственно сверху от кладки, а по большей площади: через прочный цементный раствор, залитый за стенку балки и набитый по методу чеканки сверху над балкой.
Давление через рандбалки распределяется на кирпичную кладку по длине

L =2l + В'


где В' — ширина ходовой или наддомкратной балки.
При пересечении эпюр напряжения от воздействия двух смежных ходовых балок одного пути величина фактического напряжения будет равна сумме соответствующих ординат эпюр. Этим обстоятельством и объясняется образование горизонтальных трещин на некоторой высоте над рандбалками в середине больших пролетов. Такие трещины появлялись в кирпичной кладке обычно за пределами линий распределения нагрузки от опоры из-за прогиба рандбалок и в соответствии с этим опускания кладки, располагаемой над рандбалками.
Учитывая, что заклинка над рандбалкой обычно имеет небольшую толщину (4—5 см) и в 30—50 раз меньшую длину по сравнению с длиной распределения нагрузки через рандбалку, то при определении наибольшей ординаты эпюры нагрузки можно не учитывать жесткость этой заклинки.
Для определения жесткости кладки модуль деформации следует принимать в 0,5 от Eo — начального модуля деформации или

Eк = 0,5αRн,


где α — значение упругой характеристики: для кирпичной кладки с маркой раствора более 50 кгс/см2 α = 1000; более 10 кгс/см2 α = 750; более 4 кгс/см2 α = 500; более 2 кгс/м2 α = 350 и при марке О α = 200;
Rн — нормативное сопротивление кладки на сжатие;
b — толщина стены;
E — модуль упругости стали;
Pо — наибольшее напряжение в кладке над опорой

R — расчетное сопротивление кладки на сжатие.
Расчет рандбалок на изгибающий момент следует производить на нагрузку, приходящуюся на пролетную часть балки, поскольку активной нагрузкой является ее собственный вес. Действительно, вслед за образованием прогиба в рандбалке, кирпичная кладка над средней частью пролета отрывается от вышерасположенной.
Рекомендации по расчету рандбалок на прогиб приводятся в следующих подразделах.

в) Расчетные сечения рандбалок, заведенных в «глухие» кирпичные стены. К «глухим» стенам здания следует отнести стены, не имеющие проемов, или стены с небольшими и редко расположенными проемами. При этом нижняя грань проемов должна быть расположена выше линий распределения давления в кирпичной кладке от опорной реакции (более подробно изложено в следующем подразделе).
г) Определение расчетного сечения рандбалок. Для установления расчетного сечения рандбалок нами были проведены исследования и наблюдения за стенами ряда существующих зданий.
При стенах, сложенных на цементном растворе, в жилых зданиях со сравнительно большим количеством внутренних стен осадка какой-либо одной или нескольких опор мгновенно вызывает перераспределение нагрузки от веса здания на смежные опоры. Это объясняется монолитностью сооружения. В зависимости от податливости основания смежных опор происходит осадка здания. Если здание имеет форму призмы, высота которой значительно меньше ее длины, то при неравномерности осадки часть здания осядет. Между осевшими частями здания в длинных продольных стенах возможно образование трещин на расстоянии, равном примерно полуторной высоте здания. Внутри же разделившихся частей здания трещины обычно не появляются, поскольку эти части работают как монолит.
В качестве примера приводим результаты исследования, произведенные при подъеме и передвижке двух зданий.
Так, одну секцию двухэтажного дома в районе строительства канала сначала поднимали, а затем передвигали в косом направлении. Стены дома имели высоту 9,5 м и были сложены на прочном цементном растворе. Внутри дома размером в плане 9,4х13,85 м имелась одна поперечная капитальная стена. Отношение длины здания к его высоте составляло 13,85:9,5=1,46.
После передвижки на 5,5 м передний восточный угол дома по ходу движения сел на 26 мм, а западный угол — на 3—4 мм. В здании никаких деформаций обнаружено не было. При проверке состояния капитальных стен было установлено, что в середине между передним и задним углами величина осадки была равна 16 мм, т. е. средней арифметической величине между осадкой восточного и западного углов. Величина осадки определялась по вертикальным отметкам рельсовых путей. Предел прочности кладки этого здания на сжатие составлял 30 кгс/см2.
Такие же результаты были получены при передвижке дома № 12 по Большой Пионерской ул. в Москве. Это кирпичное здание высотой 16,4 м, стены которого сложены на прочном цементном растворе, имело в плане форму, близкую к прямоугольнику, размером 12,3х24,0 м.
При передвижке было установлено, что во всех случаях неравномерностей осадки существовал линейный закон ее распределения. Во время передвижки дома никаких трещин как во внутренних, так и во внешних стенах обнаружено не было. Следовательно, величина осадки внутренних капитальных стен соответствовала среднеарифметической величине осадки и могла быть определена при условии, если размеры осадки других стен известны.
Учитывая это, для рандбалок дома № 71 по ул. Горького (Москва) применили бывшие в употреблении железнодорожные рельсы типа IIIa высотой 128 мм. Длина пролетов рандбалок составляла 4 м. Прочность балок на изгибающие моменты не проверяли, а только определили напряжения на смятие в месте примыкания кладки к рельсам. Во время передвижки никаких деформаций в рандбалках или в стенах обнаружено не было.
Во всех приведенных примерах для зданий, стены которых были сложены на прочном растворе, расчет рандбалок пролетом до 4м ограничивался проверкой распределения сосредоточенной нагрузки на необходимую длину в кирпичной кладке.
Для перемещения монолитных зданий сечения балок можно устанавливать по конструктивным соображениям, но с обязательной проверкой кирпичной кладки на смятие на участке передачи на нее нагрузки от рандбалки. Для рандбалок таких зданий рекомендуется использовать железнодорожные рельсы, поскольку ширина их подошвы весьма значительна. При передвижке в прямом направлении рельсы следует устанавливать подошвой книзу В этом случае больше длина соприкосновения рельса с катком, но уменьшается ширина передачи нагрузок от рандбалок на кирпичную кладку Последнее можно компенсировать за счет увеличения высоты подклинки полусухим раствором между рандбалкой и стеной. При увеличении высоты заклинки площадь передачи нагрузки будет не меньшей, чем при установке рандбалки из рельса подошвой вверх. При передвижке в косом направлении или с поворотом, или при подъеме здания лучше устанавливать рельсы наоборот, так как приварку верхних связей проще производить по подошвам рельсов.
Заведенные в основание здания балки наряду с распределением нагрузки служат также и стальным обручем, связывающим между собой стены здания.
При передвижке дома № 60 (секция 1) в районе строительства канала Москва—Волга после заводки в кирпичную стену рандбалок и посадки здания на подведенные опоры была обнаружена горизонтальная трещина (см. рис. 10). Трещина образовалась в пролете длиной 4 м. Стена была сложена из кирпича со средним пределом прочности при сжатии 105 кг/см2 при марке раствора 50. По расположению проемов в стене и по их размерам эту стену можно рассматривать как глухую.
Кирпичная кладка дома № 5/16 по ул. Серафимовича лабораторным исследованиям не была подвергнута, так как при пробивке штраб в стенах было установлено, что прочность кирпича и раствора кладки примерно такая же, как секции 1 дома № 60 в районе канала Москва—Волга.
Расстояние между опорами балок дворовой наружной стены составляло 4,4 м.
После разборки кладки между путями под рандбалками в кирпичной стене образовалась горизонтальная трещина длиной 1,84 м, шириной 2,5 мм, расположенная в средней части пролета (рис. 11) на расстоянии от низа балок 0,90 м.

Горизонтальные трещины, появившиеся в кирпичной кладке только над средней частью пролета балок, указывают на длину и высоту участка кладки, полностью опирающуюся на рандбалку. Кладка, расположенная за пределами трещин (выше их), испытывает сжимающие напряжения от давления домкрата. Эти трещины показывают, что за их пределами нагрузка от стены передается непосредственно на опоры.
После заводки в стены дома № 61 по ул. Горького (Москва) балок из двутавров № 45 на рандбалках и на стене дома были установлены тензометры. Деформации измерялись в период воспринятая домкратами нагрузки от стен пролетом 4,8 м. Домкраты устанавливали под двутавровыми рандбалками.
Тензометры были прикреплены с внешней стороны балок на нижних и верхних полках в середине и в четвертях пролетов. Всего на внутренней и внешней рандбалках с каждой стороны было установлено по шесть тензометров на базе в 10 см. На стене тензометры устанавливались на базе в 20 см и более и только с внутренней ее стороны в середине пролета в трех местах: над верхней полкой балки, под потолком подвала и между нижним и верхним тензометрами. Нагрузку домкратом давали с нарастанием усилий. Отсчеты брались при следующих обжатиях: 1) левым домкратом — 88 т, правым — 160 т; 2) то же, левым — 135 т, правым — 150 г; 3) то же, левым — 160 г, правым — 185 т Нагрузка, равная 172 т, соответствовала величине опорной реакции. После последнего обжатия кирпичная кладка под рандбалками была разобрана без применения отбойных молотков во избежание сотрясений.
Для установления модуля деформации кирпичной кладки стен была определена прочность кирпича и раствора. Предел прочности кирпича при сжатии составил в среднем 112 кгс/см2, а при изгибе — 32 кгс/см2. Сложный раствор кладки по своей прочности был отнесен к марке 25.
Согласно CHиП на проектирование каменных конструкций получаем, что расчетное сопротивление кладки на сжатие равно 13,5 кгс/см2 (по интерполяции), отсюда.

Eо = 1000х2х13,5 = 27000 кгс/см2.


Средняя величина модуля деформации для данной кладки составит

E = 0,5 Eо = 0,5х27000 = 13500 кгс/см2.


Из записей показаний тензометров установлено следующее:
1) нижние полки рандбалок испытывали растягивающие напряжения от 200 до 1200 кгс/см2;
2) верхние полки рандбалок испытывали сжимающие напряжения от 200 до 900 кгс/см2;
3) кирпичная кладка над серединой пролета на высоте 55 см над нижней полкой рандбалки испытывала только небольшие растягивающие деформации;
4) кирпичная кладка над серединой пролета на высоте 1,20 м от нижней полки рандбалки сначала испытывала растягивающие деформации, а затем после разборки кладки под рандбалкой — сжимающие деформации;
5) кирпичная кладка в середине пролета (под потолочным перекрытием на высоте 1,90 м над нижней полкой рандбалки) испытывала сжимающие деформации.
Во время проведения испытаний левый домкрат несколько отставал от правого. Когда на левом домкрате подъемная сила была доведена до 160 т, то на правом она была равна 185 г. Напряжения, полученные в двутавровых балках, — снизу растяжение, сверху сжатие, показывают, что рандбалки работали безотносительно к расположенной над ними кирпичной кладке. Меньшие напряжения в сжатой зоне по сравнению с напряжениями в растянутой зоне двутавровых балок объясняются воспринятием части сжимающих усилий кирпичной кладкой, расположенной между рандбалками.
Проанализируем результаты полученных напряжений в кирпичной кладке на различных высотах, учитывая, что рандбалки были установлены без начального прогиба.
На высоте 55 см над серединой пролета рандбалки действовали постепенно увеличивавшиеся растягивающие деформации. После приложения на опоры максимально приходящихся усилий от домкратов нагрузка от кирпичной кладки на исследуемом участке, стены частично уменьшилась вследствие перераспределения ее с середины пролета на опоры рандбалок.
На высоте 1,2 м над серединой пролета рандбалки до разборки под ними кирпичной кладки стена испытывала небольшие растягивающие деформации, полученные от разгружающего воздействия домкратов. После разборки кирпичной кладки под рандбалкой на этом участке появились в 4 раза большие деформации. Увеличившиеся деформации сжатия свидетельствуют, что линии распределения нагрузок от опорных реакций в стене расположены ниже тензометра.
На высоте 1,9 м над серединой пролета рандбалок тензометр показал только сжимающие деформации.
Таким образом, кирпичная кладка, расположенная на высоте 1,2 м от нижней полки балки (равной 0,25 длины пролета), оказалась выше линии распределения нагрузки от Домкратов и таким образом не передавала нагрузку на пролетную часть рандбалки.
Исследование причин деформации рандбалок дома № 69 по ул. Горького (Москва) показало, что деформации двутавровых рандбалок, заведенных в кирпичные стены, появились впервые на передвижке этого дома.
Для неразрезных рандбалок этого здания были применены двутавры № 33. Длина пролетов рандбалок была в пределах 3,7—4,2 м. Наибольшие деформации появились на третьей опоре под внешней стеной, выходящей в сторону Благовещенского пер. (рис. 12). Длина пролета между второй и третьей опорами была равна 4,2 м, а между третьей и четвертой опорами — 3,7 м.

Для безосадочного перекрепления здания на подведенные под рандбалки конструкции между этими балками и расположенными под ними опорными балками забили стальные клинья. Клинья были забиты неправильно, несимметрично и вызвали в рандбалках эксцентричную нагрузку
Необходимо отметить, что балка на кручение не работала, поскольку ее верхние полки были приварены к верхней связи, а нижние — к опорной балке.
Повреждение рандбалки свидетельствует о том, что прочность двутавра для данной эксцентричной нагрузки и образовавшегося опорного момента была недостаточной. С внутренней стороны стены к этой опоре примыкала поперечная стена, и большая часть нагрузки, приходящейся на этот узел, передавалась на одну рандбалку, заведенную с наружной стороны. На подобных участках рандбалки были заведены неправильно (рис. 13). Кроме того, не была произведена проверка на устойчивость стенки балки.

Расчетная нагрузка на опору этой балки составила 112,85 т. Фактически из-за неправильной заводки внутренней рандбалки она была больше. После образования деформаций в рандбалке предполагали увеличить устойчивость стенки двутавровой балки следующими способами.
1. К рандбалке было приварено вертикальное ребро жесткости. Однако дальнейшая деформация стенки балки не прекратилась, так как опорная нагрузка не уменьшилась и, пожалуй, главное, что ребро жесткости было неровно пригнано к полкам балки. Деформация балки была остановлена только после приварки к ней второго дополнительного ребра жесткости и опорной конструкции (косынки), распределивших нагрузку на большую длину опоры рандбалки и уменьшивших расчетный пролет балки.
2. Рандбалки были частично разгружены путем забивки стальных клиньев между нижней поддерживающей ходовой балкой и кирпичной кладкой, расположенной между рандбалками, т. е. непосредственной передачей нагрузки от кирпичной стены на ходовые балки.
В 1951 г. при подъеме дома на Набережной Горького в Москве (рис. 14 и 15) рандбалки были заведены также неправильно, в связи с этим в здании во время подъема образовались трещины.

На основании приведенных примеров можно сделать выводы:
1) все наружные стены должны быть опоясаны балками по всей их длине и с обеих сторон без разрывов;
2) рандбалки внутренних стен должны примыкать к рандбалкам внешних стен и привариваться к ним.
Кроме обычной заводки рандбалок во все стены здания в одном ярусе, иногда рандбалки в стенах продольных или поперечных заводятся один над другим — в два яруса. Рандбалки, заводимые в разных ярусах, конструктивно обеспечивают более надежную связь между пересекающимися стенами (рис. 16). При заводке рандбалок в двух ярусах, что удобно для передвижки в прямом направлении, несколько осложняются работы при последующем подъеме здания. В этом случае требуется расположение домкратов на разных вертикальных отметках, чтобы не устанавливать над ними компенсаторов высоты. Такое расположение домкратов осложняет наблюдение инженера, обслуживающего эту группу домкратов, за их работой, так как домкраты, установленные за ближайшей стеной, не просматриваются.
Исходя из изложенного, рекомендуется рандбалки всех стен, когда здание только поднимается и не передвигается, располагать в одном ярусе.

д) Определение нагрузки, приходящейся на рандбалки. Исследованиями установлено, что кладка, расположенная над рандбалками в средней части пролета, отрывалась от вышерасположенной кладки. Следовательно, эта часть кладки опиралась полностью на рандбалки и вызывала в них поперечный изгиб. Пример подобного распределения нагрузки от опорной реакции в неразрезной рандбалке из двутавров № 36 пролетом 4 м, примененной для секции I дома № 60 на канале Москва—Волга, показан на рис. 10. Длину участка распределения нагрузки, приходящейся непосредственно на опору, определяем по формуле (5).
В кирпичной кладке на высоте 0,8 м от низа рандбалки образовалась горизонтальная трещина длиной 1,8 м, расположенная симметрично по отношению к оси пролета (величина отклонения составила только 6 см). Предел прочности кирпичной кладки при сжатии составил 30 кгс/см2.
Следовательно, для кирпичных стен с пределом прочности при сжатии 30 кгс/см2 при пролетах, равных 4 м и более, часть кирпичной кладки глухих стен, расположенной над рандбалками, отделяется от вышележащей кладки. Нагрузка на рандбалки имеет форму двух трапеций, размещенных одна над другой (см. рис. 10). Размеры трапеций зависят от высоты балок, пределов прочности кирпичной кладки и длины пролета.
Основание первой (нижней) трапеции равно пролету рандбалки, а длина ее верхнего основания составит:

где L — пролет балки;
α1 — угол распределения нагрузки в балке;
h2 — высота первой трапеции, равная высоте заведенной балки на опоре.
Длина нижнего основания второй (верхней) трапеции равна длине верхнего основания первой трапеции l1.
Принимаем, что свободный пролет в свету кирпичной кладки с пределом прочности при сжатии 30 кг/см2 без усиления ее рандбалками может быть принят равным 1,80 м. Эта величина и будет представлять собой длину верхнего основания второй трапеции, т. е. l2 = 1,8 м.
Величину угла распределения нагрузки в кирпичной кладке с расчетным пределом прочности при сжатии 30 кгс/см2 принимаем равной 30°30'. Следовательно, высота второй трапеции будет составлять.

Для кирпичной кладки с пределом прочности при сжатии менее 30 кгс/см2 величина l2 будет меньшей, чем при более прочной кладке. На рис. 17 показано расположение трещины над рандбалкой в кирпичной стене, сложенной на растворе марки 0.
Приведенными выше формулами рекомендуется определять размеры трапеций нагрузок и, исходя из этого, рассчитывать рандбалки. Нагрузки, приходящиеся на опоры балок, при расчете на изгиб не учитываются, так как они воспринимаются ходовыми балками или домкратами, а вся остальная нагрузка от стены здания передается непосредственно на опоры рандбалок.
Высота обеих трапеций H составит:

е) Определение нагрузки на предварительно-изогнутую рандбалку (предварительно-напряженная балка). Для предупреждения появления трещин в кирпичной кладке над рандбалками необходимо, чтобы они не отрывались от расположенной над ними кладки. Для этого балку следует предварительно изогнуть, т. е. установить ее с «начальным прогибом» — предварительным напряжением.
Как было установлено, линия распределения нагрузки в кирпичной кладке от опор расположена под определенным углом к горизонтали.
При заводке балок без «начального прогиба» часть нагрузки в виде двух трапеций, располагающихся над средней частью пролета, передается на опору через рандбалку. Если предел прочности кирпичной кладки при сжатии равен 30 кг/см2 и пролет рандбалки менее 4 м, то эти трапеции не образуются, поскольку для кирпичной кладки такой прочности можно допустить свободный неусиленный пролет длиной 1,8 м.
В случае, когда размер пролета рандбалки превышает суммарную длину участка распределения нагрузки через балку и допускаемого свободного пролета для кирпичной кладки заданной прочности, часть ее в виде двух трапеций отрывается от всего массива кладки, расположенной выше.
Следовательно, для предотвращения появления трещины в кладке необходимо рандбалки в середине пролета предварительно изогнуть на такую величину, которая соответствовала бы величине их прогиба от нагрузки кладки.
В качестве примера рассмотрим какой-либо средний пролет многопролетной неразрезной балки. Длины пролетов при перемещении обычно отличаются друг от друга только в пределах 10—15%, поэтому с некоторым приближением расчет можно вести как для балки с защемленными концами на опорах.
Прогиб следует определять раздельно от каждой трапеции нагрузки. Величину прогиба от нижней трапеции определяем, как от воздействия равномерно распределенной нагрузки по всей длине пролета l а от верхней трапеции принимаем условно как от двух сосредоточенных сил Р, приложенных в третях пролета.
Прогиб fa в третях пролета определяется формулой

где а — расстояние от опор до сосредоточенной силы верхней трапеции нагрузки.
Усилия, необходимые для образования в балке «начального прогиба», рекомендуется прикладывать в третях пролета.
Приравнивая величину прогиба от усилий, которые необходимо приложить в третях пролета, к величине прогиба, получаемой от воздействия обеих трапеций нагрузок, определяем величину усилий Q, необходимых для предварительного прогиба балки.
Тогда

Рандбалки можно легко предварительно изогнуть на заданную величину при помощи гидравлических домкратов. Домкраты устанавливаются над рандбалкой в пробитые для них гнезда в стене; в верхней части гнезда при нагрузке, превышающей нормативное сопротивление кладки, симметрично в обе стороны от нее пробивается короткая штраба и в нее закладывается обрезок двутавровой балки (рельса), который служит для распределения нагрузки от домкрата на большую площадь в кирпичной кладке. В соответствии с ранее приведенными рекомендациями домкраты устанавливаются в третях пролета. Таким способом были заведены с начальным прогибом рандбалки в кирпичные стены здания Казанского вокзала в Москве при устройстве больших проемов под ними для обеспечения прохода пассажиров из здания вокзала на станцию метро «Комсомольская» Работы производились конторой укрепления фундаментов Метростроя под руководством автора. Нагрузка от гидравлических домкратов определялась по показаниям манометров. При небольших пролетах (4—5 м) домкраты можно заменить стальными клиньями. Клинья располагают между верхом рандбалки и кладкой в 3—5 местах пролета. Над клиньями и под ними укладываются стальные прокладки.
При изгибе балок стальными клиньями следует определить величину прогиба балки, необходимого для создания в ней предварительного напряжения. Забивка стальных клиньев ведется до тех пор, пока балка не прогнется на расчетную (заданную) величину прогиба. Образование прогиба устанавливается с помощью мессур.
Предварительный изгиб рандбалок должен быть произведен до заливки раствора за их стенки. Рандбалки должны оставаться под напряжением до получения раствором, залитым за стенку балки и верхней цементной заклинки, достаточной прочности.
Для экономии металла можно стальные балки заменить железобетонными с меньшей площадью сечения металла. Однако это не всегда целесообразно, так как прокатные стальные балки имеют вверху и внизу значительно большую прочность на смятие, распределяют нагрузку на большую длину и они лучше сопротивляются усилиям, возникающим при неравномерной осадке и при необходимости легче усиляются. Железобетонная же рандбалка при образовании трещины по существу выходит из строя.
Благодаря тому, что рандбалки опоясывают непрерывным кольцом все стены, устраняется возможность возникновения усилий сдвига между рандбалкой и кирпичной кладкой.
Для экономии металла при прочной кирпичной кладке (марки 30 и более) и больших пролетов рандбалок их сечения на опорах и в пролетах рекомендуется применять различные. Длина балки большего сечения над опорой определяется по формуле (5). Применение балок разных сечений оправдывается, если для опоры требуется непрокатная, а составная балка.

Фундаментные балки: размеры, серия, назначение

Фундаментные балки (или рандбалки) из железобетона используются в качестве основания под стены зданий с отдельно стоящими фундаментами. Чаще всего такая технология применяется для промышленных объектов, сельскохозяйственных строений и зданий общественного назначения. Основная функция балок заключается в создании опоры под стены и связывании отдельных опор в единое целое.

Содержание статьи

Область применения балок

Чаще всего такие конструкции применялись для строительства промышленных объектов и зданий общественного назначения при использовании фундаментов стаканного типа. В настоящее время такие опорные элементы используются редко. Но балки не утратили свою актуальность. Они могут быть использованы в качестве ростверка для свайного или столбчатого основания каркасных строений.

Сборная технология имеет ряд преимуществ перед монолитом. Основным плюсом становится сокращение сроков выполнения работ, поскольку отпадает необходимость выжидать время твердения бетона.

Устройство фундаментных балок при возведении жилых частных домов характеризуется некоторыми сложностями:

Перед началом работ важно учесть эти недостатки и учесть их последствия.

Виды фундаментных балок

При использовании элементов для жилых и промышленных зданий руководствуются двумя нормативными документами:

Совет! Чаще всего заводы изготавливают балки по ГОСТу 28737-90 для промышленных зданий. Не стоит этого пугаться. Такие балки можно использовать и для жилых объектов.

Типы сечений фундаментных балок.

Согласно ГОСТ 28737-90 и сериям фундаментные балки под стены могут иметь типы сечений, представленные в таблице.

Маркировка Описание сечения Высота Возможная длина
1БФ трапеция с нижней гранью 160 мм и верхней 200 мм 300 мм 1,45 м — 5,95 м
2БФ тавровое сечение с основанием шириной 160 мм, ширина верхней части составляет 300 мм 300 мм 1,45 м — 5,95 м
3БФ тавровое сечение с опорной частью шириной 200 мм, верхняя грань — 400 мм 300 мм 1,45 м — 5,95 м
4БФ тавр с основанием 200 мм и верхней частью 520 мм 300 мм 1,45 м — 5,95 м
5БФ трапеция с нижней частью 240 мм и верхней 320 мм 300 мм 10,3 м — 11,95 м
6БФ трапеция с нижней частью 240 мм и верхней 400 мм 600 мм 10,3 м — 11,95 м

По ширине отклонение может составлять до 6 мм, а по высоте до 8 мм. Такие результаты не являются браком.

Как выбрать

Рандбалки таврового сечения.

Длина балки подбирается в зависимости от расстояния между фундаментами. К размеру необходимо прибавить запас на опирание с двух сторон. Размеры сечения выбираются в зависимости от нагрузки. При использовании изделий по индивидуальному заказу выполняется расчет.

Для типовых элементов чаще всего известна максимальная нагрузка (несущая способность). Ее можно уточнить на заводе изготовителе. При необходимости пользуются таблицами из серии.  В них указаны рекомендуемые маркировки для разных конструктивных решений стен.

Материалы для изготовления

Основное сырье для фундаментных балок — тяжелый бетон. Марка подбирается в зависимости от расчетной нагрузки, длины элемента и типа арматуры. Армирование может быть с предварительным напряжением или без него. ГОСТ предписывает следующее:

Чаще всего заводы предлагают все балки с предварительно напряженной арматурой. Для таких изделий применяется бетон марок М250 — М350 (или классов В20 —В25).

Для армирования назначают стержни классов:

Маркировка

Чтобы правильно заказать элементы фундаментов на заводе, необходимо знать не только нужные размеры и тип сечения балок, но и их обозначение. В общем случае оно выглядит следующим образом:

ХБФ ХХ.

Цифра на первой позиции может равняться от 1 до 6 и обозначает тип сечения изделия. Двузначное число после буквенной части показывает округленную длину элемента в дециметрах. После такой маркировки может быть указан тип армирования. Через тире показывают класс стали. Также в конце может быть указана водопроницаемость бетона и его устойчивость к химическим средам.

Совет! Чаще всего при заказе на заводе типовых изделий не нужно определять марку стали. Достаточно лишь правильно выбрать типоразмер балки и ее длину.

Опирание фундаментных балок

Балки под несущие и ненесущие стены должны быть надежно закреплены. При использовании для фундаментов стаканного типа элементы опирали на ступени сбоку. При необходимости под элементы предусматривались кирпичные или бетонные столбики (если высота ступени и высота балки не совпадали). При возведении столбчатых фундаментов используют опирание сверху.

Опирание на фундаменты стаканного типа.

Монтаж фундаментных балок выполняется с применением грузоподъемной техники. Выполнить его самостоятельно невозможно, поскольку масса одного изделия очень велика. Крепление элемента к лебедке крана осуществляется за счет специальных монтажных петель или строповочных отверстий, которые предусмотрены при изготовлении на заводе.

Крепление фундаментных балок при монтаже не предусматривается. У изготовленных по серии элементов нет закладных деталей, с помощью которых можно было бы приварить их к опорам. Смещение балки предотвращается ее собственным весом и нагрузкой от вышележащих конструкций.

Важно соблюдать минимальную величину опирания. Рекомендуется назначать ее не меньше 250 мм — 300 мм. При недостаточном закреплении возможно смещение конструкции.

После монтажа железобетонной обвязки приступают к работам выше нуля. Для предотвращения повреждения стен необходимо предусмотреть слой гидроизоляции поверх балок. Чаще всего в этом случае используют два слоя рулонного материала:

Грамотный выбор и монтаж рандбалок сложно выполнить самостоятельно. Изначально эта технология разрабатывалась для массового строительства, где не возникало недостатка в рабочей силе и специальной технике. При невозможности привлечения профессионалов, лучше остановиться на ростверке в монолитном исполнении.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Фундаментные балки для промышленных зданий: порядок монтажа

Производство фундаментных балок

Сборные фундаментные конструкции являются широко распространённой технологией при строительстве промышленных объектов, складов и общественных зданий. Использование готовых бетонных деталей позволяют в разы сократить трудозатраты при устройстве несущих оснований. Фундаментные балки, они же рандбалки – одна из деталей сборного или комбинированного сборно-монолитного столбчатого фундамента.

Виды рандбалок

Рандбалки выпускаются на заводах железобетонных изделий в соответствии с ГОСТ №28-737-90, который регламентирует технические условия их отливки, размеры и форму. Для их отливки применяется тяжёлый армированный железобетон марки прочности от М-250 до М-400 (В-20…В-30). По своим особенностям фундаментные балки классифицируются по нескольким показателям:

В строительной документации данные ж/б детали обозначаются как БФ – «балки фундаментные железобетонные». По размеру и форме они подразделяются на 6 классов, от БФ-1 до БФ-6.

Фундаментные балки

Классификация рандбалок согласно ГОСТ № 28-737-90

МаркировкаСечениеВысота деталиДлина детали
БФ-1Трапецевидное. Ширина: низ – 16 см, верх – 20 см.30 см145 – 595 см
БФ-2Тавровое. Низ – 16 см, верх – 30 см.30 см145 – 595 см
БФ-3Тавровое. Низ – 20 см, верх – 40 см.30 см145 – 595 см
БФ-4Тавровое. Низ – 20 см, верх – 52 см.30 см145 – 595 см
БФ-5Трапецевидное. Низ – 24 см, верх – 32 см.30 см1030 – 1195 см
БФ-6Трапеция. Низ – 24 см, верх – 40 см. 60 см1030 – 1195 см

В конструкции здания фундаментная балка используется в качестве несущего основания для стен. По области применения они могут быть:

В зависимости от типа армирования фундаментные балки делятся на 2 категории.

  1. С напряжённым армированием. Напряжённое армирование позволяет увеличить сопротивление ж/б детали растягивающим и изгибающим деформациям. Таким образом, рандбалка может выдерживать большие нагрузки и использоваться в качестве несущей опоры. Предварительное напряжение арматуры производится методом растягивания или нагрева стальных прутов и обязательно выполняется при отливке несущих балок длиной более 6 м.
  2. С обычным армированием. В данном случае отливка ж/б деталей производится без предварительного напряжения арматуры. Такие детали применяются в качестве опоры для конструкций с относительно небольшой массой. Ненапряжённое армирование применяется для рандбалок длиной не более 6 м.

Применение в строительстве

Рандбалки с тавровым сечением

Рандбалки применяются при строительстве фундаментных оснований в качестве несущих деталей. Как правило, область их применения – фундаменты больших по объёму зданий. Использование готовых конструкционных деталей в данном случае позволяет сократить затраты сил и времени на монолитную заливку.

Кроме того, монтаж сборного фундамента балочного типа несёт немалые финансовые выгоды: ведь себестоимость ленточного или плитного фундамента для большого промышленного цеха, ангара или склада может превысить стоимость несущих стен и кровли.

Вместе с тем, балочные конструкции имеют ограничения по выдерживаемой нагрузке. Связано это с особенностью их установки: фундаментные балки опираются на несущие столбы только своими краями, в то время как их центральная часть находится на весу.

Рандбалки

Согласно строительным нормативам, фундамент из рандбалок может использоваться в качестве опоры для

стен из облегчённых бетонных плит, заполненных пенополистиролом или керамзитом, высотой не более 25 м, либо из кирпича высотой до 15 м при толщине стены 25 см («в кирпич»).

При монолитной заливке стен или большей толщине кирпичной кладки нагрузка на балку значительно возрастает. В результате допустимая высота стен сокращается прямо пропорционально их массе.

Согласно ГОСТу, фундаментные балки предназначаются «для возведения стен промышленных зданий и построек сельскохозяйственного назначения». Но, несмотря на это, применение рандбалок вполне допустимо и в малоэтажном жилом строительстве.

При использовании в строительстве фундамента из бетонных балок необходимо правильно рассчитать массу здания и на основе этого составить проект. Вес постройки должен быть равномерно распределён на несущее основание: это поможет избежать неравномерной осадки фундамента, и, как следствие, его возможной деформации и разрушения.

Плюсы и минусы рандбалок

Бетонные фундаментные балки имеют ряд особенностей, влияющих на их технические и эксплуатационные качества. Среди основных плюсов можно указать:

Рандбалки для устройства фундамента

Благодаря этим качествам, фундаментные основания из ж/б балок рекомендуется использовать в следующих случаях:

Самый главный минус данной технологии– монтаж фундаментных балок невозможен без привлечения подъёмного крана.       

Перевозка рандбалок

Технология монтажа

Согласно СНиП, фундаментные балки применяются в качестве составной части сборных ж/б оснований столбчатого типа. В качестве несущих опор в этом случае используются так называемые «стаканы», изготавливаемые на заводах ЖБИ или заливаемые непосредственно по месту установки.

Внешне «стакан» представляет собой ступенчатую конструкцию квадратного сечения, подошва которого значительно шире верхней части. Перед тем, как приступить к монтажу или заливке «стаканов», следует составить проект будущего фундамента. При проектировании следует учитывать вес постройки и в зависимости от этого рассчитывать необходимое количество опор.

Если частный застройщик не имеет опыта в инженерных расчетах, наилучшим выходом будет обратиться к услугам специалистов. Ведь в случае неправильно составленного проекта фундамента появляется угроза разрушения всей постройки.

Устройство фундамента с рандбалкой

Установку столбчатых опор следует производить с учётом стандартной длины рандбалок: 145, 400, 550…1105 см. В зависимости от этих показателей и следует устанавливать опоры и производить закупку балок необходимой длины. Готовые столбчаты опоры-«стаканы» можно приобрести на заводе ж/б изделий. Также можно залить их своими руками по монолитной технологии.

В этом случае заливка осуществляется поэтапно: сначала устанавливается опалубка под первую ступень – основание. Затем производится армирование и заливка бетонного раствора, после застывания которого можно приступать к заливке последующих ступеней.

Главное при установке или заливке опор – выдерживать необходимую дистанцию между «стаканами», чтобы в дальнейшем не возникло проблем с монтажом рандбалок.

Установку ж/б фундаментных балок следует производить только после того, как залитые монолитные «стаканы» наберут полную прочность. На это обычно уходит от 3-х до 4-х недель, в зависимости от температуры и влажности воздуха.

Строповка ж/б элементов производится при помощи специальных монтажных петель или отверстий. Во избежание несчастного случая при выполнении строповки следует соблюдать правила проведения работ и требования техники безопасности.

Особенностью монтажа рандбалок является отсутствие жёсткой связи между ней и опорой-«стаканом». Балка удерживается на месте исключительно своим весом и массой лежащих на ней конструкций здания. В связи с этим очень важно соблюдать рекомендуемый размер опирания балки. Он должен составлять не менее 30 см при длине рандбалки свыше 6 м, и не менее 25 см при длине до 6 м.

Используя фундаментные балки в качестве опорных элементов, можно значительно оптимизировать всю работу по устройству основания дома. Важно лишь правильно произвести проектировку и монтаж конструкции, чтобы она смогла прослужить многие годы.

 

Значение слова рандбалка - определение слова рандбалка

На других языках

  •  Русский: Привет
  •  English: Hello
  •  France: Bonjour
  •  Spanish: Hola
  •  Dautch: Guten Aben

Жемочкин Б.Н. - Расчет рандбалок и перемычек

tutanhamon

размещено: 31 Декабря 2007

Справочник по расчету рандбалок и перемычек

2.82 МБ

СКАЧАТЬ

Значение слова РАНДБАЛКА. Что такое РАНДБАЛКА?