Главное меню

Пример расчета усиления фундамента


Расчет основания усиленных фундаментов реконструируемых зданий и сооружений -

Цель занятия: научиться выполнять расчет основания фундаментов, усиленных уширением подошвы, для реконструируемых зданий и сооружений.

Исходные алгоритмы, рабочие формулы для расчета. Расчет основания фундаментов, усиленных уширением подошвы, производится по второй группе предельных состояний с учетом ограничения давления в подошве усиленного фундамента.

При определении расчетного сопротивления грунта под подошвой усиливаемого фундамента учитывается изменение прочностных свойств грунта, обжатого длительно действующей нагрузкой (применением повышающего коэффициента KR) и увеличение расчетного сопротивления грунта под подошвой фундамента за счет бокового пригруза от уширяемых элементов (применением коэффициента Kq).

Для ленточных фундаментов ширина наращиваемой части определяется из выражения

Ширина дополнительных частей ленточного фундамента, устраиваемых с предварительным обжатием грунтов, определяется из условия

Пример. Для исходных данных примера 9 выполнить расчет основания ленточного фундамента внутренней стены, усиленного уширением подошвы с обеспечением совместной работы с помощью стальных опорных балок.

Задаемся шириной двустороннего наращивания подошвы ленточного фундамента bad > b/2 = 0,8/2 = 0,4 м .

Тогда при коэффициенте пористости e = 0,7 по табл. 17.1 для песков повышающий коэффициент, учитывающий увеличение расчетного сопротивления грунта под подошвой фундамента за счет бокового пригруза от уширяемых элементов, Kq = 1,1. Из примера 9 расчетное сопротивление





Усиление фундаментов и оснований, 🔨 в каких случаях производится усиление фундаментов, способы усиления различных фундаментов

В ходе эксплуатации зданий нередко возникает необходимость усиления старых фундаментов, потерявших значительную часть несущей способности, а также при реконструкции зданий, когда проектная нагрузка на фундамент увеличивается.

Оглавление:

Усиление фундамента существующего дома

Среди причин, приводящих к необходимости усиления оснований и реконструкции фундаментов, основными являются:

Рис. 1:  Усиление фундамента существующего дома

Существующие технологии усиления фундаментов зданий различны и позволяют восстановить или существенно повысить показатели по несущей способности фундамента любого здания. Существенной разницы между усилением фундамента частного дома и многоэтажного административного, производственного или жилого здания нет, а вот от типа усиливаемого фундамента и характеристик грунтов методы усиления фундаментов зависят.

Способы усиления ленточных фундаментов

Перечислим основные способы усиления ленточных фундаментов, применяемые сегодня на практике строителями:

Есть и другие способы, которые скорее можно назвать разновидностью перечисленных выше.

Усиление фундаментов путём усиления подошвы

Усиление свайных фундаментов

Свайные фундаменты также можно усилить, в случае необходимости., и для этого существуют следующие способы: 

Часто усиление свайных и ленточных фундаментов сочетается с усилением грунтов основания.

Способы усиления железобетонных фундаментов

Железобетонные фундаменты могут быть монолитными (сделанные посредством заливки бетоном опалубки с арматурным каркасом) либо сборными (возведенными из блочных железобетонных конструкций).

В строительной практике применяются следующие способы усиления железобетонных оснований:

Усиление фундаментов посредством обустройства железобетонной обоймы

Совет эксперта! Выделяют два вида ЖБ обойм - с уширением опорной пяты основания, и обоймы без уширения.

Особенности технологии:

По периметру основания копается траншея, оголенный фундамент очищается от грунта и промывается цементным молоком. По всей высоте основания в шахматном порядке просверливаются отверстия, в которые забиваются арматурные прутья диаметром 15-20 мм (они должны выходить из стены как минимум на 15 сантиметров).


Рис. 1.1:  Схема железобетонной обоймы

На забитых в фундамент стержнях формируется арматурный каркас, к которому приваривается листовой металл. В пустоты кладки фундамента через инъекционные трубки нагнетается бетон до полного заполнения всех существующих трещин. После отвердевания бетона в фундаменте производится заполнение бетоном металлической опалубки и обрезка верхних частей инъекционных трубок.

Усиление фундамента железобетонной рубашкой

Метод обустройства железобетонной рубашки идентичен технологии усиления обоймой, единственное отличие - охват основания.

Рис. 1.2: Схема отличий железобетонных обойм и рубашек

Совет эксперта! Обоймы представляют собою замкнутые конструкции, которые оцепляют весь периметр фундамента, тогда как рубашки используются для усиления одной из его поврежденных частей.

Усиление фундамента посредством увеличения площади опирания на грунт

Увеличение опорной площади производится с помощью наращивания толщины основания железобетонными отливами. 

Рис. 1.3:  Схема железобетонного отлива

После откопки фундамента в нем сверлятся сквозные отверстия, в которые проводятся стальные тяжи для фиксации ЖБ отливов. По завершению крепления отливов между ними и стеной размещаются гидравлические домкраты и осуществляется разжатие опалубки. Образовавшееся пространство заполняется бетоном, выжидается время до его схватывания и домкраты убираются. Происходит уплотнение бетона, в результате чего фундамент обжимается как самим отливом, так и бетонной прослойкой.

Усиление фундамента увеличением глубины его заложения

При необходимости переноса опорной подошвы фундамента в нижерасположенный слой грунта, под основанием дома формируются бетонные блоки.

Фундамент разгружается с помощью рандбалок и гидравлических домкратов, поднимающих стены дома. После чего вокруг фундамента участками по 2-2,5 метра откапываются шурфы глубиной на 1 метр ниже глубины заложения основания. Стенки и дно шурфов укрепляется деревянной забиркой.


Рис. 1.4:  Схема углубления фундамента бетонными блоками

Под опорной пятой фундамента роется колодец, размер которого соответствует глубине увеличения основания.

Совет эксперта! Колодец бетонируется так, что бы между поверхностью бетона и нижней стенкой опорной пяты фундамента оставался зазор в 3-4 см.

После отвердевания бетона в зазоре размещаются гидравлические домкраты и производится обжатие бетона в колодце. По завершению обжатия зазор бетонируется и траншея отсыпается грунтом.

Усиление фундамента второй сваей

Усиление фундамента буронабивными сваями не требует откопки основания, что значительно сокращает сроки проведения реконструкции.

Данный метод применяется при необходимости усиления фундаментов с недостаточной несущей способностью из-за неправильно проектирования, необходимости надстройки здания либо уменьшения плотности грунтов.

Дополнительные сваи могут размещаться как вплотную к уже существующим опорам фундаментам, так и выноситься за периметр контура основания. В таком случае нагрузка на дополнительные сваи передается с помощью горизонтальных балок, которыми они объединяются с ростверком дома.

Рис. 1.5: Схема усиления фундамента дополнительными сваями

Совет эксперта! При усилении фундаментов редко используются забивные ЖБ сваи, поскольку их погружение сопровождается деструктивными динамическими нагрузками на уже существующее основание, которые могут привести к его разрушению.

Усиление посредством подводки опорных элементов под подошву основания

Данная технология позволяет усилить мелкозаглубленные фундаменты не увеличивая их глубину и ширину. В качестве подкладываемого опорного элемента используются монолитные железобетонные плиты либо столбы, с помощью которых достигается увеличение площади опоры фундамента и увеличение его несущей способности.


Рис. 1.6: Схему усиления фундамента с помощью подводки и формирования ЖБ плит

Усиление железобетонного фундамента опускным колодцем

Опускные колодцы представляют собою сборные конструкции из ЖБ плит, которыми обжимается грунт вокруг стенок фундамента. Погружение колодца выполняется в процессе последовательной выемки грунта под бетонными плитами. Образованная вокруг стенок фундамента траншея засыпается песком, который поливается водой и послойно уплотняется.


Рис. 1.7: Схема опускного колодца для усиления фундамента

Совет эксперта! Глубина заложения опускного колодца должна быть в два-три раза большей глубины заложения самого основания.

Усиление фундамента переустройством его конструкции

Нередки случаи, когда для усиления столбчатого основания из него формируют ленточный фундамент, а при необходимости усиления ленточного, из него, в свою очередь, делают плитный фундамент.
К данному методу прибегают при серьезных деформациях фундамента, когда остальные способы его усиления не способны обеспечить требуемый результат.

Усиление грунтов основания

Основным фактором, провоцирующим усадку фундаментов нередко выступает недостаточная плотность и несущие характеристики грунтов, на которых они расположены. В таком случае в комплексе с укреплением фундамента должны выполняться работы по усилению грунтов. Существует несколько способов усиления грунтов основания:

путем нагнетания специальных химических реагентов в грунт, способных изменить его структуру (смолизация и силикатизация) цементация — нагнетание в грунт цементной суспензии; обжиг — путем сжигания газа в специальных шурфах и скважинах электросиликатизация.

Цементизация выполняется посредством специального инъекционного оборудования - по периметру основания в почву погружаются полые металлические трубы диаметром от 25 до 80 миллиметров, на нижней части которых с шагом в 3 см просверлены отверстия диаметром 4-5 мм.


Рис. 1.8:  Схема усиления грунта цементизацией

В трубы с помощью компрессора нагнетается цементно-песчаный раствор под давлением в 7 атмосфер. Давление при подаче раствора контролируется с помощью манометров. В результате цементизации под опорной подошвой основания формируется бетонная прослойка, значительно увеличивающая несущую способность фундамента.

Силикатизация выполняется с помощью аналогичного инъекционного оборудования. В почву через рядом расположенные инъекторы подается два вида раствора - силикат натрия (он же жидкое стекло) и смесь хлористого кальция с водой.

Совет эксперта! При усилении лессовидного грунта применяется однорастворная силикатизация - хлористый кальций не используется, но количество нагнетаемого жидкого стекла увеличивается в три раза.

Усиление плохо проницаемых плывунов производится с помощью специальной эмульсии - силикадоля, состоящего из силиката натрия и фосфорной кислоты. Данная смесь имеет низкую вязкость и лучше проникает в поры лессового грунта.


Рис. 1.9:  Схема усиления грунта силикатизацией

Силикатизация может дополнятся электрическим воздействием на раствор силиката натрия, что способствует более равномерному распределению эмульсии внутри почвы. При электросиликатизации воздействие током на раствор производится в течении 2 суток.

Для битумизации используется расплавленный битум, который через инъекторы подается в пробуренные в скальных грунтах скважины. Заполнивший пустоты битум отвердевает и препятствует размытию трещиноватой скальной почвы грунтовыми водами.


Рис. 2.0:  Расплавленный битум

Усиление песчаной почвы проводится по методу холодной битумизации, для которой используется битумная эмульсия (смесь частиц битума с водой) с добавлением коагулянтов (катализаторов осадка битума). После нагнетания эмульсии в почву частицы битума заполняют поры грунта и создают уплотняющую почву водонепроницаемую завесу.

Через инъекторы в песчаный грунт подается смесь соляной и карбамидной кислоты. После попадания в почву эмульсия, в результате химической реакции, образует гель, заполняющий поры и склеивающий песчаный грунт между собой.

Глубинное уплотнение производится с помощью обустройства вертикальных и наклонных буронабивных свай. Бурение ведется с помощью оборудования CFA (полым шнеком) с использованием обсадной трубы, после достижения проектной глубины скважины бур поднимается вверх и заполняет скважину бетонным раствором.


Рис. 2.1:  Усиление грунтов буронабивными сваями

Совет эксперта! Чем шире диаметр формируемых свай - тем сильнее уплотняется почва.

Обжиг происходит в предварительно пробуренных вертикальных и наклонных скважинах. При усилении оснований, расположенных на склонах, практикуется горизонтальное бурение скважин под фундаментом здания. По завершению бурения в нижней части скважины размещается нихромовый электронагреватель, а оголовок скважины закрывается герметичным затвором.

Электронагреватель в процессе работы (температура от 300 до 500 градусов) поднимается с дна скважины в ее верхнюю точку, в результате чего все слои грунта подвергаются термическому воздействию.

Таким образом из арсенала средств по усилению фундаментов всегда можно выбрать наиболее приемлемый способ для вашего конкретного случая.

Наши услуги

Наша компания "Богатырь" специализируется исключительно на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Как рассчитывать фундамент, пример

Поставив перед собой задачу строительства загородного дома своими руками, индивидуальный застройщик должен быть готов к самостоятельному решению огромного количества проблем. Определившись с проектом дома, следует уделить повышенное внимание «нулевому циклу» — возведению фундамента. Но перед тем как заказывать все необходимые строительные материалы, необходимо провести тщательный расчет фундамента. В этой статье мы приводим пример расчета фундамента именно в той последовательности, которой рекомендуется придерживаться.

Работа с грунтом

Предположим, что вы стали счастливым обладателем десяти соток за городом. Участок, что называется, пустой, лишь кое-где растут деревья и кустарники. Прежде чем определиться с местом будущей стройплощадки необходимо провести оценку грунта. Для этого в разных местах участка выкапываем ямы на глубину около 2 метров. Если срезы грунта одинаковы, то вам повезло – пласты грунта залегают равномерно. Если нет, то придется выбирать меньшую из зол – делать ставку на наиболее благоприятный вариант. Идеальный случай: у вас много соседей, которые уже давно построили свои дома – тогда и расчет фундамента существенно упрощается. У них можно проконсультироваться по поводу грунта, типу основания и его «поведении», и даже спросить документацию по геологическому исследованию грунтов, если перед строительством проводилась экспертная оценка.

УГВ

Уровень грунтовых вод (УГВ) – важный показатель грунта участка, на котором планируется строительство дома. Является ничем иным, как расстоянием от поверхности земли до первого водоносного слоя. Именно он определяет, какой будет глубина заложения фундамента. УГВ меняется сезонно: зимой он минимальный, весной, когда почва впитывает огромный объем влаги, он достигает своей максимальной отметки. В нашем примере расчета фундамента мы рекомендуем проводить измерение УГВ именно весной, ведь так или иначе, основание дома будет подвержено воздействию грунтовых вод, и лучше проводить расчеты, ориентируясь на критические показатели. Считается, что если поверхностные воды залегают на глубине от 2 метров и больше, то это нормальный для строительства дома УГВ (низкий). Если вода покажется уже в вырытой для исследования грунта яме, то это будет значить, что уровень грунтовых вод высокий, исходя из чего, при возведении фундамента придется делать ставку на определенные типы оснований. Например, оказалось, что УГВ составляет всего 1 м. В этом случае в зависимости от нагрузки на грунтовое основание, отдают предпочтение либо плитному фундаменту, либо мелкозаглубленному ленточному, ведь чем выше залегают грунтовые воды, тем меньше у грунта показатель несущей способности.

Пучинистость грунта

Поверхностные слои грунта представляют собой плодородный слой. Он особой роли не играет – при возведении фундамента просто срезается по всей площади стройплощадки. А вот все, что залегает глубже, нуждается в оценке. Там может быть слой глины, суглинка, супеси, а если повезет, то крупного песка или и вовсе скальные породы. Очевидно, что каждый тип грунта характеризуется своей несущей способностью и сопротивлением внешней нагрузки (расчетным сопротивлением грунта, R). О том, как оценить характер грунта, мы писали в этой статье. Вы сможете определиться с грунтовым основанием стройплощадки и сделать вывод о пучинистости грунта. Пучинистость – не что иное, как способность влажного грунта расширяться вследствие замерзания воды зимой. Данный показатель зависит от УГВ и типа почвы, и во многом определяет выбор фундамента для дома.

ГПГ

ГПГ или глубина промерзания грунта – показатель, который характеризует воздействие пучинистых явлений на толщу грунта. Бояться его стоит, если грунт пучинистый, а УГВ высокий. Меры «борьбы» с пучинистыми явлениями:

Резюмируя вышесказанное

Пучинистость грунта, ГПГ, УГВ – все эти показатели нужно рассматривать в одном комплексе, т.к. они взаимосвязаны. Так, высокий УГВ может быть причиной чрезмерной пучинистости грунтового основания ввиду большой ГПГ. Если приводить пример расчета фундамента для стройплощадки с идеальными показателями: малой глубиной промерзания грунта, низким уровнем грунтовых вод, непучинистым основанием – можно выбирать любой тип фундамента. Но в большинстве случаев ситуация обратная, тогда застройщик:
— либо делает ставку на «плавающие» фундаменты, к которым относятся плитные или мелкозаглубленные ленточные;
— либо устраняет недостатки участка за счет замены части пучинистого основания, утепления грунта под подошвой фундамента, дренирования подфундаментной площадки

Рельеф участка

Далеко не всем может повезти с приобретением идеально ровного участка. Как известно, рельеф оказывает одно из решающих значений при выборе конкретного типа фундамента. Так, наличие на стройплощадке значительного уклона может стать причиной столь же внушительных вложений на ее выравнивание и последующего устройства ленточного или плитного фундамента. Другой вариант – оставить все как есть, но сделать ставку на столбчатый или свайный фундамент. Ниже мы приведем примеры расчетов и таких фундаментов тоже.

Расчет требуемой площади подошвы фундамента

Здесь мы приводили последовательность расчета требуемой площади подошвы фундамента – величины, от которой зависит расход материала на строительство основания дома, а также длительность мероприятия. Площадь подошвы фундамента определяется исходя из такого показателя, как расчетное сопротивление грунта (R), о котором мы упоминали выше, а также нагрузки на фундамент от дома. О том, как рассчитать нагрузку на фундамент, мы говорили в тематической статье. Ниже мы приведем пример расчета площади подошвы фундамента для двухэтажного кирпичного дома 6×9 м (одна внутренняя несущая стена, толщина стен – 300 мм) с 2 ж/б и 1 чердачным перекрытием по деревянным балкам с утеплителем (плотность до 500 кг/м3), кровлей из гончарной черепицы, который будет возводиться на участке с сухим пористым глинистым грунтом (R=2,5). Здание возводится в средней полосе России (нагрузка от снега – 100 кг/м2).

Пример расчета

Сначала рассчитываем длину всех стен: (6+9)×2+6=36 м
При высоте этажа в 2,5 м суммарная площадь стен составит: 36×2,5×2=180 м2
Площадь перекрытий: 6×9=54 м2
Площадь кровли (выпуски по 0,5 м по всем сторонам): (6+0,5×2)×(9+0,5×2)=70 м2
По таблице, представленной ниже (умножаем табличное значение для стен на 2, т.к. толщина нашей стены – 300 мм!), определяем массу всех конструктивных элементов постройки:
— масса стен: 180×270×2=97200 кг
— масса ж/б перекрытий: 2×54×500=54 000 кг
— масса чердачного перекрытия: 54×200=10 800 кг
— масса кровли и снега: (80+100)×70=12 600 кг
Общая нагрузка на фундамент составит 174 600 кг. Добавляем сюда примерную полезную нагрузку и округляем до 180 000 кг.
Рассчитываем минимальную площадь подошвы фундамента, заглубленного на 1,5…2 м:
S=1,2×180000/(1,2×2,5)=72000 см2 или 7,2 м2

Если планируется заглублять фундамент на меньшую глубину, то придется дополнительно рассчитать сопротивление грунта по формуле, представленной здесь.

Выбор типа фундамента

В зависимости от того, каким оказались значения расчетной площади подошвы фундамента (с привязкой к рельефу местности), выбирают конкретный тип основания для дома. Для приведенного выше примера расчета лучше всего подойдет заглубленный ленточный фундамент. Если же приходится строить дом чуть ли не на болоте, то надежнее заливать плиту. В целом же, выбор есть между такими основаниями, как:

Расчет параметров основания

Исходя из полученного значения площади подошвы фундамента и распределения нагрузок, рассчитывают площадь отдельных его конструкций. Так, на примере вышеописанного расчета (минимальная площадь подошвы 7,2 м2 под дом 6×9 м) можно заложить ленту шириной 0,4 м. Тогда полученная площадь фундамента составит: 9×0,4×2+(6-0,8)×0,4×3=7,2+6,72=13,44 м2
Этого с избытком хватит для строительства дома, ведь площадь фундамента превышает расчетное значение почти в 2 раза!
Можно пойти в другом направлении – установить буронабивные сваи с расширением внизу диаметром 0,5 м. В этом случае площадь подошвы каждой опоры составит: 3,14×0,5×0,5/4=0,2 м2
Таких свай потребуется 7,2/0,2=36 штук.

Расчет стройматериалов

На следующем этапе необходимо оценить объем строительных материалов, который потребуется для возведения основы дома: количество бетонной смеси, арматуры, опалубки – в отдельных случаях даже необходимо провести расчет кирпича на фундамент. Грамотный подход позволит избежать лишних транспортных расходов и существенно сэкономит время на возведение фундамента.

Арматура

Специфику расчета арматуры на фундамент мы описывали в соответствующей статье. Там же вы найдете подробное описание расчетов для разных типов железобетонных оснований. Для ленточного фундамента обычно используют каркас из двух поясов продольной арматуры по 2 прутка в каждом с шагом поперечной (горизонтальной и вертикальной) арматуры 0,3-0,5 м. В качестве примера расчета фундамента рассмотрим все то же основание дома 6×9 м с одной внутренней стеной, примем высоту ленты равной 1,5 м, ширину – 0,4 м.

Поперечное сечение ленты имеет площадь: 0,4×1,5=0,6 м2=6000 см2. Из них 0,001% должна занимать арматура, а это 6 см2. По таблице ниже определяем нужный диаметр прутков – 14 мм.
Количество метров такой арматуры примерно равно: (6×3+9×2)×4=144 м
Гладкой арматуры, которая, по сути, играет лишь роль связующего звена для продольных прутков, при шаге в 0,5 м потребуется: (36/0,5)×(0,4×2+1,5×2)=273,6 м, где (36/0,5)- количество соединений гладкой арматуры, (0,4×2+1,5×2) – периметр элемента прямоугольной формы, образованного гладкой арматурой.

Бетон

Неважно, планируете ли вы заказывать бетонную смесь на заводе-изготовителе, либо думаете над его самостоятельным приготовлением – прикинуть объем бетона просто необходимо! Сделать это очень легко, воспользовавшись простейшими математическими формулами и учитывая геометрию фундамента.

О том, как рассчитать объем бетонной смеси, мы говорили в одной из статей, но на всякий случай приведем пример расчета для нашего случая: дом 6×9 с одной внутренней стеной, ширина ленты – 0,4 м, высота – 1,5 м.
Объем нашего фундамента, он же – объем бетона, составит: (9×0,4×2+(6-0,8)×0,4×3)×1,5=20,16 м3 или 21 куб раствора.

То же самое касается ситуаций, в которых вы решили своими силами готовить бетон. В этом случае вам поможет информация по характеристикам бетонной смеси для фундамента, а также статья о том, как рассчитать количество цемента на бетон. В них просто и доступно описан порядок работ и представлены все необходимые вычисления.

Расчет опалубки для фундамента

Конечно, если вы собираетесь заливать бетон в трубы – использовать буронабивной свайный фундамент, то вопрос с опалубкой решится сам собой. А вот при возведении ленточного или плитного железобетонного фундамента без опалубки обойтись проблематично. Можно арендовать строительные комплекты опалубки, но это дорого, особенно при непонятных сроках строительства. Поэтому в ряде случаев приходится делать опалубку самостоятельно – из пиломатериалов. Причем делать нужно таким образом, чтобы доски после распалубки можно было использовать, например, для чернового пола или строительных лесов. Дешевле всего обойдется покупка обычных дюймовых досок, которые можно сбить в достаточно надежные щиты. В статье, посвященной расчетам опалубки на фундамент, мы описали несколько примеров того, как можно подобрать опалубку: исходя из толщины досок и расстояния между раскосами – так, чтобы она была устойчива к нагрузкам со стороны бетонной смеси.

Надеемся, что представленная информация поможет вам решить непростые задачи строительства!

Загрузка...

Ленточный фундамент – расчет на примере

Расчет ленточного фундамента состоит из двух основных этапов – сбора нагрузок и определения несущей способности грунта. Соотношение нагрузки на фундамент к несущей способности грунта определит требуемую ширину ленты.

Толщина стеновой части принимается в зависимости от конструктива наружных стен. Армирование обычно назначается конструктивно (от четырех стержней Ф10мм для одноэтажных газоблочных/каркасных и до шести продольных стержней Ф12мм для кирпичных зданий в два этажа с мансардой). Расчет диаметров и количества арматурных стержней выполняется только для сложных геологических условий.

Абсолютное большинство он-лайновых калькуляторов фундаментов позволяют всего лишь определить требуемое количество бетона, арматуры и опалубки при заранее известных габаритных параметрах фундамента. Немногие калькуляторы могут похвастаться сбором нагрузок и/или определением несущей способности грунта. К сожалению, алгоритмы работы таких калькуляторов не всегда известны, а интерфейсы зачастую непонятны.

Точный результат можно получить с помощью методики расчёта, изложенный в строительных нормах и правилах. Например, СП 20.13330.2011 «Нагрузки и воздействия», СП 22.13330.2011 «Основания зданий и сооружений». С помощью первого документа будем собирать нагрузки, второго – определять несущую способность грунта. Эти своды правил представляют собой актуализированные (обновленные) редакции старых советских СНиПов.

Сбор нагрузок

Сбор нагрузок осуществляется суммированием их каждого вида (постоянные, длительные, кратковременные) с умножением на грузовую площадь. При этом учитываются коэффициенты надежности по нагрузке.

Значения коэффициентов надежности по нагрузке согласно СП 20.13330.2011.

Нормативные значения полезных нагрузок в зависимости от назначения помещения согласно СП 20.13330.2011.

К постоянным нагрузкам относят собственный вес конструкций. К длительным – вес не несущих перегородок (применительно к частному строительству). Кратковременными нагрузками является мебель, люди, снег. Ветровыми нагрузками можно пренебречь, если речь не идет о строительстве высокого дома с узкими габаритами в плане. Разделение нагрузок на постоянные/временные необходимо для работы с сочетаниями, которыми для простых частных строений можно пренебречь, суммируя все нагрузки без понижающих коэффициентов сочетания.

По своей сути сбор нагрузок представляет собой ряд арифметических действий. Габариты конструкций умножаются на объемный вес (плотность), коэффициент надежности по нагрузке. Равномерно распределенные нагрузки (полезная, снеговая, вес горизонтальных конструкций) формируют опорные реакции на нижележащих конструкциях пропорционально грузовой площади.

Сбор нагрузок разберем на примере частного дома 10х10, один этаж с мансардой, стены из газоблока D400 толщиной 400мм, кровля симметричная двускатная, перекрытие из сборных железобетонных плит.

Схема грузовых площадей для несущих стен в уровне перекрытия первого этажа (в плане.

Схема грузовых площадей для несущих стен в уровне кровли (в разрезе.

Некоторую сложность представляет собой сбор снеговой нагрузки. Даже для простой кровли согласно СП 20.13330.2011 следует рассматривать три варианта загружения:

Схема снеговых нагрузок на кровлю.

Вариант 1 рассматривает равномерное выпадение снега, вариант 2 – не симметричное, вариант 3 – образование снегового мешка. Для упрощения расчёта и для формирования некоторого запаса несущей способности фундаментов (особенно он необходим для примерного расчёта) можно принять максимальный коэффициент 1,4 для всей кровли.

Конечным результатом для сбора нагрузок на ленточный фундамент должна быть линейно распределенная (погонная вдоль стен) нагрузка, действующая в уровне подошвы фундамента на грунт.

Таблица сбора равномерно распределенных нагрузок

Наименование нагрузки Нормативное значение, кг/м2 Коэффициент надежности по нагрузке Расчётное значение нагрузки, кг/м2
Собственный вес плит перекрытия 275 1,05 290
Собственный вес напольного покрытия 100 1,2 120
Собственный вес гипсокартонных перегородок 50 1,3 65
Полезная нагрузка 200 1,2 240
Собственный вес стропил и кровли 150 1,1 165
Снеговая нагрузка 100*1,4 (мешок) 1,4 196

Всего: 1076 кг/м2

Нормативное значение снеговой нагрузки зависит от региона строительства. Его можно определить по приложению «Ж» СП 20.13330.2011. Собственные веса кровли, стропил, напольного перекрытия и перегородок взяты ориентировочно, для примера. Эти значения должны определяться непосредственным вычислением веса того или иного конструктива, или приближенным определением по справочной литературе (или в любой поисковой системе по запросу «собственный вес ххх», где ххх – наименование материала/конструкции).

Рассмотрим стену по оси «Б». Ширина грузовой площади составляет 5200мм, то есть 5,2м. Умножаем 1076кг/м2*5,2м=5595кг/м.

Но это ещё не вся нагрузка. Нужно добавить собственный вес стены (надземной и подземной части), подошвы фундамента (ориентировочно можно принять её ширину 60см) и вес грунта на обрезах фундамента.

Для примера возьмем высоту подземной части стены из бетона в 1м, толщина 0,4м. Объемный вес неармированного бетона 2400кг/м3, коэффициент надежности по нагрузке 1,1: 0,4м*2400кг/м3*1м*1,1=1056кг/м.

Верхнюю часть стены примем в примере равной 2,7м из газобетона D400 (400кг/м3) той же толщины: 0,4м*400кг/м3*2,7м*1,1=475кг/м.

Ширина подошвы условно принята 600мм, за вычетом стены в 400мм получаем свесы общей суммой 200мм. Плотность грунта обратной засыпки принимается равной 1650кг/м3 при коэффициенте 1,15 (высота толща определится как 1м подземной части стены минус толщина конструкции пола первого этажа, пусть будет в итоге 0,8м): 0,2м**1650кг/м3*0,8м*1,15=304кг/м.

Осталось определить вес самой подошвы при её обычной высоте (толщине) в 300мм и весе армированного бетона 2500кг/м3: 0,3м*0,6м*2500кг/м3*1,1=495кг/м.

Суммируем все эти нагрузки: 5595+1056+475+304+495=7925кг/м.

Более подробная информация о нагрузках, коэффициентах и других тонкостях изложена в СП 20.13330.2011.

Расчёт несущей способности грунта

Для расчёта несущей способности грунта понадобятся физико-механические характеристики инженерно-геологических элементов (ИГЭ), формирующих грунтовый массив участка строительства. Эти данные берутся из отчета об инженерно-геологических изысканиях. Оплата такого отчёта зачастую окупается сторицей, особенно это касается неблагоприятных грунтовых условий.

Среднее давление под подошвой фундамента не должно превышать расчётное сопротивление основания, определяемого по формуле:

Формула определения расчетного сопротивления грунта основания.

Для этой формулы существует ряд ограничений по глубине заложения фундаментов, их размеров и т.д. Более подробная информация изложена в разделе 5 СП 22.13330.2011. Ещё раз подчеркнем, что для применения данной расчётной методики необходим отчет об инженерно-геологических изысканиях.

В остальных случаях с некоторой степенью приближенности можно воспользоваться усредненными значениями в зависимости от типов ИГЭ (супеси, суглинки, глины и т.п.), приведенными в СП 22.133330.2011:

Расчетные сопротивления крупнообломочных грунтов.

Расчетные сопротивления песчаных грунтов.

Расчетные сопротивления глинистых грунтов.

Расчетные сопротивления суглинистых грунтов.

Расчетные сопротивления заторфованных песков.

Расчетные сопротивления элювиальных крупнообломочных грунтов.

Расчетные сопротивления элювиальных песков.

Расчетные сопротивления элювиальных глинистых грунтов.

Расчетные сопротивления насыпных грунтов.

В рамках примера зададимся суглинистым грунтом с коэффициентом пористости 0,7 при значении числа пластичности 0,5 – при интерполяции это даст значение R=215кПа или 2,15кг/см2. Самостоятельно определить пористость и число пластичности очень сложно, для приблизительной оценки стоит оплатить взятие хотя бы одного образца грунта со дна траншеи специалистом лаборатории, выполняющей изыскания. В общем и целом для суглинистых грунтов (самый распространенный тип) чем выше влажность, тем выше значение числа пластичности. Чем легче грунт уплотняется, тем выше коэффициент пористости.

Определение требуемой ширины подошвы («подушки») ленточного фундамента

Требуемая ширина подошвы определяется отношением расчетного сопротивления основания к линейно распределенной нагрузке.

Ранее мы определили погонную нагрузку, действующую в уровне подошвы фундамента – 7925кг/м. Принятое сопротивление грунта у нас составило 2,15кг/см2. Приведём нагрузку в те же единицы измерения (метры в сантиметры): 7925кг/м=79,25кг/см.

Ширина подошвы ленточного фундамента составит: (79,25кг/см) / (2,15 кг/см2)=36,86см.

Ширину фундамента обычно принимают кратной 10см, то есть округляем в большую сторону до 40см. Полученная ширина фундамента характерна для легких домов, возводимых на достаточно плотных суглинистых грунтах. Однако по конструктивным соображениям в некоторых случаях фундамент делают шире. Например, стена будет облицовываться фасадным кирпичом с утеплением толщиной 50мм. Требуемая толщина цокольной части стены составит 40см газобетона + 12см облицовки + 5см утеплителя = 57см. Газобетонную кладку на 3-5см можно «свесить» по внутренней грани стены, что позволит уменьшить толщину цокольной части стены. Ширина подошвы должна быть не менее этой толщины.

Осадка фундамента

Ещё одной жестко нормируемой величиной при расчёте ленточного фундамента является его осадка. Её определяют методом элементарного суммирования, для которого вновь понадобятся данные из отчета об инженерно-геологических изысканиях.

Формула определения средней величины осадки по схеме линейно-деформируемого слоя (приложение Г СП 22.13330.2011).

Схема применения методики линейно-деформируемого слоя.

Исходя из опыта строительства и проектирования известно, что для инженерно-геологических условий, характерных отсутствием грунтов с модулем деформации менее 10МПа, слабых подстилающих слоев, макропористых ИГЭ, ряда специфичных грунтов, то есть при относительно благоприятных условиях расчёт осадки не приводит к необходимости увеличения ширины подошвы фундамента после расчёта по несущей способности. Запас по расчётной осадке по отношению к максимально допустимой обычно получается в несколько раз. Для более сложных геологических условий расчёт и проектирование фундаментов должен выполняться квалифицированным специалистом после проведения инженерных изысканий.

Заключение

Расчёт ленточного фундамента выполняется согласно действующим строительным нормам и правилам, в первую очередь СП 22.13330.2011. Точный расчёт фундамента по несущей способности и его осадки невозможен без отчета об инженерно-геологических изысканиях.

Приближенным образом требуемая ширина ленточного фундамента может быть определена на основании усредненных показателей несущей способности тех или иных видов грунтов, приведенных в СП 22.13330.2011. Расчёт осадки обычно не показателен для простых, однородных геологических условий в рамках «частного» строительства (легких строений малой этажности).

Принятие решения о самостоятельном, приближенном, неквалифицированном расчёте ширины подошвы ленточного фундамента владельцем будущего строения неоспоримым образом возлагает всю возможную ответственность на него же.

Целесообразность применения он-лайн калькуляторов вызывает обоснованные сомнения. Правильный результат можно получить, используя методики расчёта, приведенные в нормах и справочной литературе. Готовые калькуляторы лучше применять для подсчета требуемого количества материалов, а не для определения ширины подошвы фундамента.

Точный расчет ленточного фундамент не так уж прост и требует наличия данных по грунтам, на которые он опирается, в виде отчета по инженерно-геологическим изысканиям. Заказ и оплата изысканий, а также кропотливый расчет окупятся сторицей правильно рассчитанным фундаментом, на который не будут потрачены лишние деньги, но который выдержит соответствующие нагрузки и не приведет к развитию недопустимых деформаций здания.

причины разрушения и проверенные временем методы (описание работ и необходимые средства)

Основными достоинствами ленточного фундамента являются высокая несущая способность, прочность, устойчивость ко всем нагрузкам при минимальном количестве строительных материалов.

Такое сочетание качеств по праву делает ленту лидером среди всех остальных видов опорных конструкций.

При этом, лента постоянно подвергается разнонаправленным нагрузкам со стороны грунта и воздействиям от веси постройки, снеговым, ветровым нагрузкам и т.д.

Нередко возникают ситуации, когда прочность ленты оказывается на пределе, особенно при появлении сезонных подвижек грунта.

Подобные случаи вызывают необходимость усиления ленты, о котором надо говорить подробно.

Содержание статьи

Причины разрушения ленточного фундамента

Ленточный фундамент постоянно испытывает разрушающие воздействия.

В их число входят:

Кроме того, отрицательные последствия способны вызывать:

Перечисленные воздействия могут возникать как по одиночке, так и совокупно, что создает чрезвычайно сложные условия эксплуатации фундамента.

Бетон со временем начинает терять свою прочность, а дополнительные напряжения многократно ускоряют разрушительные процессы. Решением проблемы может стать усиление ленточного фундамента.

Когда требуется усиление и что это?

Необходимость усиления фундамента возникает в разных ситуациях:

Все эти случаи требуют немедленного вмешательства. Усиление — это увеличение несущей способности ленточного основания путем установки добавочных элементов, увеличения сечения ленты, инъекций специальных веществ или иных мероприятий.

Выбор конкретного метода зависит от состояния ленты, причин возникновения проблемы и размеров необходимого вмешательства. В любом случае, перед началом работ необходимо тщательное обследование конструкции и принятие решения с участием опытных специалистов.

ОБРАТИТЕ ВНИМАНИЕ!

Самодеятельность в таких делах абсолютно исключена, так как вместо ожидаемых результатов можно получить прямо противоположные последствия.

Диагностика проблемы

Диагностика — это комплекс мероприятий, направленных на получение полной информации о состоянии несущей конструкции, наличии механических повреждений, трещин или деформаций.

Производится обследование состояния подстилающего грунта, песчаной и прочих элементов, воспринимающих нагрузку от веса дома.

Процедура производится поэтапно:

Составляется дефектная ведомость, в которую включаются все обнаруженные повреждения. Составляется план основания, на котором отмечаются точки возникших повреждений, трещины, деформированные участки.

На основании составленной документации производится принятие решения о мерах решения возникших проблем.

Во время этих работ производится месячная проверка неподвижности ленты. На поверхности устанавливаются специальные контрольные маячки, фиксируется их состояние.

Через месяц производится проверка их положения. Если изменений нет, значит, оседания ленты завершились.

Для выполнения сложных работ требуется разгрузка фундамента. Ее целью является перенос веса дома на вспомогательную опорную систему, позволяющую удалить грунт под лентой для его замены или .

Как усилить ленточный фундамент

Действия, которые необходимо предпринять для усиления ленты, обусловлены размерами и причинами разрушений. В некоторых случаях бывает достаточно обновить гидроизоляцию, в других ситуациях требуется комплекс сложных технических мероприятий, производить установку дополнительных опор или расширение ленты.

Рассмотрим эти методы подробнее:

Укрепление мелкозаглубленного основания бетонной рубашкой

Бетонная рубашка — это усиливающая бетонная отливка, установленная на проблемном участке стены.

Для ее создания выполняются следующие действия:

Размеры железобетонной рубашки зависят от величины поврежденного участка, но не меньше 1 метра.

Создание бетонной обоймы

Бетонная обойма образует дополнительный слой материала с обеих сторон ленты. Технология напоминает методику установки железобетонной рубашки, но добавочный слой заливается по обе стороны проблемного участка ленты.

Все действия производятся как изнутри, так и снаружи ленты. В результате образуется значительное утолщение фундамента, способное выдерживать высокие нагрузки.

ВАЖНО!

Многие специалисты выражают недоверие к установке обойм. Они аргументируют это отсутствием качественной связи между старым бетоном и новой отливкой. Процессы, протекающие в свежем материале, не позволяют слоям качественно соединиться, поэтому методика годится только при наличии относительно малых повреждений.

С помощью использования свай

Методика усиления сваями достаточно сложна и разнообразна. Производится установка свай, создающих дополнительную опору для ленты. Они опираются на плотные слои грунта, прекращая оседания или увеличивая несущую способность фундамента для принятия повышенной нагрузки от пристроев или новых элементов конструкции дома.

Используются разные виды свай:

Каждый вид свай выполняет собственную функцию и применяется в отдельных ситуациях, где их использование является оптимальным вариантом решения проблемы. Так, винтовые сваи могут быть установлены вручную, максимально щадящими методами.

Вдавливаемые сваи нуждаются в использовании спецтехники, поэтому применение их для усиления ограничено.

Выносные сваи устанавливаются на некотором расстоянии от периметра старой ленты, затем сквозь нее пропускаются металлические балки, которые связываются со сваями. В результате дом оказывается как бы «подвешенным» на балках, получая дополнительную опору.

Вес постройки распределяется между старым и новым основаниями, что позволяет нести повышенные нагрузки.

При помощи отливов

Методика используется при усилении ленты из штучных элементов — кирпича или бутового камня. Отливы предназначены для выполнения функций армпояса.

Они устанавливаются на поверхности ленты с двух сторон, отжимаются с расчетом, чтобы верхняя часть не контактировала с поверхностью стены, а нижняя была максимально плотно прижата к ней.

После этого конструкция прочно фиксируется с помощью домкратов. Выкапывается траншея, образующая форму для бетона. В результате вокруг ленты образуется дополнительный железобетонный слой, усиливающий несущую способность и прочность основания.

Упрочнение торкретбетоном

Торкретирование — это процесс нанесения бетона специальным способом напыления. Для этого используется специальное оборудование. Суть метода заключается в подаче под давлением сжатого воздуха сухой смеси цемента и песка, называемой торкрет-смесью.

Одновременно с подачей смеси из другого резервуара подают воду, затворяющую смесь. В результате на усиливаемой поверхности появляется слой плотного и прочного бетона, обладающего повышенными характеристиками по сравнению с обычными видами материала.

ОБРАТИТЕ ВНИМАНИЕ!

Технология сложная, требует привлечения специалистов, использования сложного оборудования.

Полезное видео

В данном разделе вы можете посмотреть как происходит процесс, рассмотренный нами в статье:

Заключение

Усиление ленточного фундамента позволяет получить более устойчивую к нагрузкам и прочную опорную конструкцию, способную к принятию дополнительных нагрузок или возобновлению выполняемых функций.

Все работы с начала и до конца должны быть выполнены опытными профессионалами, никакой самостоятельной работы здесь быть не должно. Результат выполняемых работ может оказаться как положительным, так и отрицательным, поэтому все действия должны быть произведены грамотными подготовленными людьми.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Армирование монолитного фундамента: расчет

Расчет толщины плиты

Расчет выполняется по СП «Проектирование и устройство оснований и фундаментов зданий и сооружений» и по руководству «Руководство по проектированию плитных фундаментов каркасных зданий и сооружений башенного типа» в два этапа:

Сбор нагрузок включает в себя проведение работ по вычислению общей массы дома с учетом веса снегового покрова, мебели, оборудования и людей. Значения для домов из различных материалов можно взять из таблицы.

Тип нагрузки Значение Коэффициент надежности
Стены и перегородки
Кирпич 640 мм 1150 кг/м2 1,2
Кирпич 510 мм 920 кг/м2
Кирпич 380 мм с утеплением 150 мм 690 кг/м2
Брус 200 мм 160 кг/м2 1,1
Брус 150 мм 120 кг/м2
Каркасные 150 мм с утеплителем 50 кг/м2
Перегородки гипсокартонные 80 мм 30-35 кг/м2 1,2
Перегородки кирпичные 120 мм 220 кг/м2
Перекрытия
Железобетонные 220 мм с цементно-песчаной стяжкой 30 мм 625 кг/м2 1,2 — для сборных и 1,3 — для монолита
Деревянные по балкам 150 кг/м2 1,1
Крыша по деревянным стропилам
С металлическим покрытием 60 кг/м2 1,1
С керамическим покрытием 120 кг/м2
С битумным покрытием 70 кг/м2
Временные нагрузки
Полезная для жилых зданий 150 кг/м2 1,2
Снеговая В зависимости от района строительства по п. 10.1 СП «Нагрузки и воздействия». Снеговой район определяется по СП «строительная климатология». 1,4

Важно! В таблице уже учитывается толщина конструкций. Для вычисления массы остается лишь умножить на площадь

Кроме этого, каждую нагрузку необходимо умножить на коэффициент надежности. Он необходим для обеспечения запаса по несущей способности конструкции из бетона и предотвращения проблем при незначительных ошибках строителей или изменениях условий эксплуатации (например, смена назначения здания). Все коэффициенты принимаются по СП «Нагрузки и воздействия».

Для различных нагрузок, коэффициент отличается и находится в пределах 1,05-1,4. Точные значения также приведены в таблице. Для фундамента из бетона по монолитной технологии принимают коэффициент 1,3.

Важно! Если уклон кровли составляет более 60 градусов, снеговую нагрузку в расчете не учитывают, поскольку при такой крутизне ската, снег не скапливается на нем. Общую площадь всех конструкций умножают на массу, приведенную в таблице и коэффициент, после чего, складывая, получают суммарный вес дома без учета фундаментов

Общую площадь всех конструкций умножают на массу, приведенную в таблице и коэффициент, после чего, складывая, получают суммарный вес дома без учета фундаментов.

Основная формула для вычислений имеет следующий вид:

P1= M1/S,

где P1 -удельная нагрузка на грунт без учета фундамента, M1 — суммарная нагрузка от дома, полученная при сборе нагрузок, S — площадь плиты из бетона.

Далее необходимо рассчитать разницу (Δ) между полученным значением и числом, приведенным в таблице выше, в зависимости от типа грунта.

Δ=P-P1

где P — табличное значение несущей способности грунта.

M2 = Δ*S,

где М2 — требуемая масса фундамента (больше этой массы строить фундамент нельзя), S — площадь плиты из бетона.

Следующая формула:

t = (М2/2500)/S,

где t — толщина заливки бетона, а 2500 кг/м3 — плотность одного кубического метра железобетонного фундамента.

Далее толщина округляется до ближайшей большей и меньшей величины кратной 5 см. После выполняется проверка, при которой разница между расчетным и оптимальным давлением на грунт не должна превышать 25% в любую сторону.

Совет! Если при расчете получается, что толщина слоя бетона превышает 350 мм, рекомендуется рассмотреть такие типы конструкции как ленточный фундамент, столбчатый или плита с ребрами жесткости.

Помимо толщины потребуется подобрать подходящий диаметр армирования, а также выполнить расчет количества арматуры для бетона.

Важно! Если в результате расчета у вас получится толщина плиты более 35 см, это указывает на то, что плитный фундамент избыточен в данных условиях, нужно посчитать ленточный и свайный фундаменты, возможно они окажутся дешевле. Если же толщина вышла меньше 15 см, значит здание слишком тяжелое для данного грунта и нужен точный расчет и геологические исследования

Сооружение плитного фундамента своими руками.

Для начала необходимо подготовить площадку, это пожалуй самая трудоемкая операция по строительству плитного фундамента. Для этого полностью снимается верхний слой грунта на глубину, установленную расчетом. Последний слой рекомендуется снимать и выравнивать вручную, делается это для того, чтобы не допускать неровностей и ям. Сам котлован должен превышать габариты фундамента на 1-2 м. со всех сторон для удобства выполнения работ.

Подготовка подушки для плитного фундамента из песка и гравия. Такая подушка необходима для компенсации сил деформации грунта, а также для отвода грунтовых вод и исключения их капиллярного подъема к основанию фундамента. Толщина подушки зависит от типа грунта: на песчаных грунтах она может быть 15 сантиметров, на насыщенных глинистых или склонных к сильному пучению – не менее 30 сантиметров. Песок засыпается в котлован, равномерно и распределяется по всей площади фундамента, после чего тщательно уплотняется. Для болотистых или влажных типов грунтов часть подушки будет состоять из щебня, это улучшает гидроизоляцию бетона.

Сооружение опалубки для плитного фундамента. Опалубка для плитного фундамента должна состоять из струганых досок толщиной не менее 20 мм, которые соединяются их по углам с помощью саморезов. С внешней стороны опалубку укрепляется подкосами. Иногда для плитного фундамента применяют несъемную опалубку из фиброволокнистой плиты. Ее крепят на металлические уголки и стяжки, а после также устраивают подкосы. После вышеописанных работ необходимо соорудить проходки для коммуникаций, попутно устанавливать вокруг них опалубку.  Трубы также можно уложить и вывести через проходки до заливки фундамента.

Гидроизоляция плитного фундамента выполняется с помощью толстой полиэтиленовой пленки, геотекстиля или рубероида, она укладывается внахлест на дно котлована с заходом на опалубку.

Армирование плитного фундамента – очень важный этап, от него будет зависеть прочность не только самого фундамента, но и здания в целом. Для небольших сооружений можно выполнять армирование с помощью арматурной сетки с ячеей 10-15 сантиметров, а места, в которых будут установлены несущие стены, необходимо усиливать металлическим прутком. Если конструкция сооружения более массивная, для армирования необходимо применять прут с диаметром 10-12 мм, уложенный в виде сетки. Поперечные пруты вяжут между собой с помощью проволоки. Сварка арматуры применяется редко, так как в местах сварки при подвижках конструкции возникают чрезмерные напряжения. Арматурная сетка должна быть полностью погружена в бетон, для этого её устанавливают на специальные направляющие. Если толщина фундамента велика, то устанавливают несколько слоев арматуры.

Заливка бетоном плитного фундамента выполняется одномоментно, поэтому бетон придется либо заказывать, либо очень быстро смешивать своими руками. Поэтому заливку нужно выполнять бригадой из 4-5 человек. Заливка бетона производится в подготовленную опалубку с уложенной арматурой, после чего уплотняется сначала с помощью глубинного вибратора, а потом с использованием вибрационной рейки. После пробивки бетона и удаления из него пустот и воздуха его разглаживают и выравнивают поверхность.

Сушка плитного фундамента происходит в течение 4-5 недель. За это время бетон набирает необходимую прочность, после чего он готов к дальнейшей эксплуатации. Во время сушки нужно внимательно наблюдать за тем, чтобы верхний слой фундамента не пересыхал и не подвергался чрезмерному влиянию влаги, для этого можно использовать материал, с помощью которого бетон можно накрывать. После высыхания бетона для улучшения теплоизоляционных свойств, плитный фундамент можно утеплить с помощью полистирольных плит.

Расчет ленточного и столбчатого фундамента

Армирование ленточного фундамента, расчет арматуры, укладка и вязка проводятся, в принципе, точно также. Просто необходимо учитывать, что арматурные решетки в этой конструкции устанавливаются не горизонтально, а вертикально. При этом длина продольных стержней зависит от длины ленты, а поперечных от глубины заложения фундамента.

Ширина ленты определяет количество решеток и длину стержней, связывающих между собой сеток. К примеру, если ширина фундаментной ленты – 40 см, то между решетками оставляется расстояние 25 — 30 см, это и есть длина связующих прутков.

Что касается количества, то опять — таки все будет зависеть от размеров ячеек армированного пояса фундамента. К примеру, если глубина заложения равна 1 м, а каркас укладывается внутри бетонной массы, то расстояние от верхних поверхностей устанавливается по 10 см с каждой стороны. Поэтому длина поперечных стержней будет 80 см. А количество продольных направляющих будет равна 100/20=5 рядов.

Правила армирования столбчатых конструкций сильно отличается от двух предыдущих вариантов. Во — первых, это вертикально установленные стержни, обвязанные катанкой диаметром 6 мм или арматурой небольшого размера. Все зависит от размеров самих опорных столбов. Во-вторых, сечение каркаса – это или квадрат, или круг, или треугольник.

Длина основных стержней зависит от глубины заложения фундамента. При этом нет необходимости учитывать расстояние от дна скважины до арматуры, потому что готовая армирующая конструкция устанавливается прямо на подготовленную подушку. Но учитывать придется выступ прутков в размере 10 — 70 см, которые будут торчать из столбов. Они будут соединяться с армирующей сеткой ростверка.

Расчет диаметра арматуры

Расчеты, связанные с монолитной плитой, достаточно сложны и требуют особых знаний. Далеко не каждый конструктор может их правильно выполнить. Для индивидуального строительства можно руководствоваться минимальными значениями, принимаемыми по пособию «Армирование элементов монолитных железобетонных зданий».

Требования для монолитной плиты представлены в приложении 1, раздел 1. Общая площадь сечения рабочей арматуры в одном направлении принимается не менее 0,3% от общего сечения фундамента. Минимальный диаметр стержней назначается 10 мм при стороне плиты менее 3 м и 12 мм при большей длине стороны. Диаметр вертикальных стержней должен составлять не менее 6 мм, но также необходимо учитывать условия свариваемости. Максимальный размер рабочего армирования 40 мм, на практике чаще используют 12, 14 и 16 мм.

Пример расчета

В качестве исходных данных имеется железобетонная плита 6 на 6 м. Толщина для частного дома принимается 200 мм. Необходимо правильно армировать конструкцию. В примере не рассмотрено усиление железобетона на участках опирания стен.

Определение диаметров

В первую очередь определяется, что сетки будут укладываться в два ряда, поскольку толщина конструкции больше 150 мм. Далее производится расчет требуемой площади стальных прутьев.

Далее необходимо воспользоваться сортаментом арматурных стержней, который приведен в ГОСТ 5781-82*. В этом документе приведена площадь сечения одного прута. Для удобства можно найти расширенную версию сортамента. По нему определяется, что для данного сечения в одной сетке необходимо использовать один из следующих вариантов:

Выбираем вариант с двенадцатым диаметром. Чтобы правильно разложить элементы необходима схема. Чертеж поможет рассчитать шаг прутов. Для стороны длинной 6 м шаг 16-ти стержней получается примерно 400 мм. Назначаем максимальное расстояние 300 мм исходя из условия СП 63.13330.2012 п.10.3.8.

Вертикальное армирование для надежности принимается 8 мм с шагом 300 мм.

Расчет количества

Недавно у нас появился калькулятор плитного фундамента, для удобства можете воспользоваться им.

Для того, чтобы не ошибиться при закупке материалов, необходимо заранее рассчитать их количество. Если имеется схема плиты, сделать это не сложно. При вычислении длин стержней необходимо учитывать толщину защитного слоя бетона 20-30 мм с каждой стороны.

Расчет рабочего армирования.

Расчет вертикального армирования.

Все получившиеся значения удобно свести в таблицу.

Диаметр Длина Масса
12 мм 515,2 м 457,5 кг
8 мм 56 м 22,12 кг

При расчете расходов стоит учитывать стандартную длину одного прута – 11,7 м, это означает, что, например, стержней 8 диаметра понадобится 5-6 штук с небольшим запасом. А при большой длине рабочей арматуры требуется увеличить суммарную длину на 10-15% для соединения стержней внахлест.

Грамотный выбор диаметра, шага и соблюдение технологии монтажа обеспечат надежность и долговечность фундамента при минимально возможных затратах.

Рекомендуем: Технология строительства плитного фундамента.

Хорошая реклама

Расчет расхода арматуры при армировании плитного фундамента

Расчет количества арматуры для монолитного фундамента осуществляется на основе общепринятых норм и правил. Все расчеты выполняются в строгом соответствии со СНиП 51-01-2003 и СНиП 3.03.01-87. Учитываются в обязательном порядке и указания ГОСТ Р 52086-2003.

Посмотрите видео, как правильно выбрать арматуру (металлическую или композитную).

Еще до начала работ по армированию необходимо установить:

  1. Сколько потребуется стержней и качество их поверхности.
  2. Минимальный диаметр прутов, установленных вертикально. Определяется он в соответствии со СНиП.
  3. Размер ячейки арматурной сетки. Шаг соответствующий стандартному размеру не должен быть меньше 20 сантиметров.
  4. Уровень нахлеста при укладке отдельных кусков арматуры внахлест.
  5. Общая длина всей арматуры с учетом нахлеста.
  6. Длину проволоки, с помощью которой осуществляется вязка.

В качестве примера можно привести расчет арматуры монолитного основания, размер плиты которого составляет 8х8 м. Для армирования идеально подходит стержень, диаметр которого составляет 10 миллиметров. В некоторых случаях используют для продольного армирования пруты, диаметр которых 14 миллиметров, а для поперечного – 8 мм.

Монолитная арматурная сетка

Что касается правил, в соответствии с которыми выполняется укладка арматуры, то шаг между прутьями арматурной сетки составляет 20 сантиметров. Зная это расстояние и толщину прута можно точно рассчитать количество стержней, необходимых для выполнения работ. Достаточно ширину плиты разделить на ширину шага и прибавить один пруток. В данном случае получится 8:0,2 + 1= 41.

Если в нашем случае длина и ширина плиты равны, то можно для вычисления количества продольных стержней полученное число умножить на 2. В другом случае расчет провести также, воспользовавшись размером длины плиты. Следовательно, 41х2=82 прута.

Это значит, что выполнив расчет количества прутов для первого слоя, можно полученный результат умножить на 2 и получить общее число. 82х2=164 прута. Чтобы обеспечить связь между слоями сетки, потребуется надежное соединение. Для этого используют специальные крепления. Общая длина составит  164х6=984 метра, так как 164 – это общее количество прутов, а 6 – это стандартная длина одного стержня.

Вязка арматурной сетки выполняется с помощью специальной вязальной проволоки. Сварка способствует разрушению конструкции из-за воздействия коррозии. Для определения количества точек, в которых стержни пересекаются достаточно умножить количество используемых прутов на это же число.41х41=1681. На каждый узел понадобится не менее 30 сантиметров проволоки, значит 1681х30=5043 м проволоки.

Посмотрите видео, как правильно произвести вязку арматуры.

Расчет арматуры для плитного фундамента можно произвести самостоятельно. В таких вычислениях учтены и вязка, и укладка, и шаг сетки. Но специализированные организации выполнят подобный расчет с более высокой точностью благодаря ПО, разработанному для проектировщиков.

Как работать с калькулятором

Калькулятор позволяет приблизительно рассчитать количество строительных материалов для плитного фундамента — арматуры, бетона, досок для опалубки, гидроизоляции, песка и щебня для подушки, чтобы сверится со строительной сметой или быстро подсчитать сколько заказывать материалов, если строите без проекта. Не питайте иллюзий, что с помощью онлайн калькулятора можно рассчитать фундамент по нагрузкам, для этого как минимум надо сделать геологические изыскания и иметь проект дома на руках. Для подобных расчетов обращайтесь к проектировщикам.

Армирование

В параметрах:

Материал дома — выбор материала не влияет на расчет, а лишь выводит в расчетной таблице рекомендуемый шаг ячейки армирования плиты. В любом случае шаг ячейки должен вычислять проектировщик дома, данное значение приведено для справки.

Диаметр рабочей арматуры — диаметр основной рабочей арматуры (сетки) фундамента из вашего проекта.

Шаг ячейки рабочей арматуры — расстояние между рядами рабочей арматуры.

Шаг сетки

Диаметр поперечной арматуры — диаметр арматуры которая служит для разделения нижнего и верхнего слоев арматуры (паук).

Паук из арматуры

В расчете:

Рекомендуемый диаметр рабочей арматуры — зависит от большего значения длины и ширины плиты. От 0 до 3 метров, рекомендуемый диаметр = 10 мм, от 3 до 10 метров диаметр = 12 мм, от 10 до 20 метров диаметр = 14 мм. Данное значение приведено исключительно для справки.

Рекомендуемый диаметр поперечной арматуры — если высота плиты меньше 30 см, то диаметр = 8 мм, если высота плиты больше 30 см, то диаметр = 10 мм. Значение приведено исключительно для справки.

Рекомендуемый размер ячейки рабочей арматуры — зависит от выбранного материала дома. Значение приведено исключительно для справки.

Количество слоев рабочей арматуры — если высота плиты меньше или равна 15 см, то количество слоев (сеток) =1, если высота плиты больше 15 см, количество слоев рабочей арматуры = 2.

Минимальный нахлест рабочей арматуры при соединении в одном ряду = 40 умножить на диаметр рабочей арматуры.

Длина рабочей арматуры рассчитывается с учетом усиления под стенами — добавляется по одному ряду арматуры по краям фундамента (шаг ячейки в два раза меньше заданного), усиление под внутренние стены нужно учитывать самостоятельно.

Количество подставок — рассчитывается с плотностью 2 штука на м².
Под арматурой для усиления торцов понимаются П-образные хомуты для для усиления торцов (см. рисунок ниже):

Опалубка

Тут задается только высота (ширина) досок для самой опалубки и для вертикальных подпорок с шагом в 0,5 метра. Длина всех досок принимается равной 6 м. Толщина досок опалубки  принимается равной 40 мм, толщина досок для подпорок принимается 50 мм. Длина распорок не рассчитывается, т.к. не все их используют.

Подушка

Выпуск подушки за фундамент — подушка всегда делается чуть шире самой плиты, обычно на 20-30 см, иногда подушка делается сразу под отмостку — примерно на 1 метр шире плиты.

Стоимость материалов

В стоимости не рассчитывается бетон для подбетонки, геотекстиль и гидроизоляция, так как эти элементы не являются строго обязательными в конструкции плитного фундамента, и не все их делают.

Хорошая реклама

Особенности армирования фундамента

В отличие от усиления перекрытий, укладка арматуры в фундаментных плитах должна проводиться в неравномерном порядке. Для обеспечения максимального усиления зон, находящихся под повышенной нагрузкой, прутья должны быть уложены с учетом уровня продавливания в том или ином месте плиты. Исключением является тонкое фундаментное основание (не более 150 мм), закладываемое под легкие сооружения – в подобных случаях раскладка проводится в форме сетки.

В жилищном строительстве толщина фундамента, как правило, варьируется в пределах 20-30 см. и зависит от массы сооружения и свойств грунта. Чтобы обеспечить максимально возможное усиление арматуру следует заложить в два слоя, поверх которых необходимо предусмотреть защитный бетонный слой, предотвращающий коррозию.

Полезные советы

Перед тем как приступить к расчету количества материалов и самого основания, нужно изучить все особенности почвы. Пучинистая почва может подниматься и опускаться на несколько сантиметров в течение года. Если этого не учесть, то со временем фундамент начнет лопаться под нагрузками, а трещины пойдут по всему дому.

Арматура связывается между собой проволокой, что делает ее подвижной и из-за этого застывший бетон, под воздействием деформаций почв, также будет подвижен, что позволит сохранить его структуру и гарантирует отсутствие трещин.

Видео по теме:

Расчет

Разберем, как производится расчет материалов для плиты 8 на 8 метров. Армирование будем производить с шагом 20 сантиметров, пруты диаметром 14 в два слоя, для вертикальных стержней 8 миллиметров, шаг такой же. Используемые бетон для плиты берем класса В20 (по прочности соответствует марке М250) на подготовку класса B7,5. Толщину плиты возьмем 25 см.

  1. Бетон для плиты В20: 8,2 х 8,2 = 67,24 м²;
  2. Рассчитаем кубатуру, то есть объем необходимого бетона: 67,24 м² х 0,25 м = 16,81 м³;
  3. Расход количества материала для армирования с учетом обеспечения защитного слоя плиты: 8200 – 60 = 8140 миллиметров длина стержня. Из расчета шага в 20 см, рассчитаем их кол-во для 1 направления делим 8200 на 200 = 41 штука х 2 стороны = 82 штука х 2 слоя всей плиты = 164 стержня;
  4. Высчитаем общую длину: 164 х 8,14 = 1334,96 метра. Масса 1 метра арматуры 14 диаметра равняется 1,2 килограмма. Таким образом масса всего рабочего армирования: 1334,96 метра x 1,2 = 1601,252 килограмма;
  5. Перейдем к вертикальным стержням арматуры, ее длина будет равняться разнице 25 см и 6 см = 19 см. Возьмем шаг в 40 сантиметров, получаем 21 шт х 21 шт = 441 единица, массу получаем из выражения 441 х 0,19 х 0,395 = 33,1 кг;
  6. Расход бетона класса B7,5 для подготовки считаем как: 8,2 х 8,2 х 0,05 (заданная толщина) = 3,3 метра³;
  7. Геотекстиль и гидроизоляцию плиты считаем, как площадь плиты добавив немного запаса: 67,24 метра²;
  8. Песчаную подушку считаем перемножением сторон плиты и высоты подушки с учетом того, что он выходит за ее границы на 0,1 метр с каждой стороны, то есть 8,4 х 8,4 х 0,5 = 32,5 куба песка.

Отметим, что для двухэтажных домов из газобетона (газосиликата), каркасных и гаражей (из кирпича) толщина плиты будет составлять 20-25 сантиметров. Для более тяжелых построек, а так же двухэтажных домов из кирпича, бетона, бруса, толщину необходимо брать 25-30 см. Для легких сооружений, например, гаражей и беседок, достаточно брать толщину плиты фундамента в 10-15 сантиметров.

Армирование фундамента толщиной в 10-15 см производится в один слой, толщиной 20-30 см — в два слоя (объемное).

What is, Algorithms, Applications, Example