Пример расчет плиты на упругом основании
Примеры расчета плиты упругом основании. Теории изгиба балок и плит на упругом основании и условия их применимости к расчету гибких фундаментов. а) равномерно распределенной
Скажите, пожалуйста, на каком основании назначаются жёсткости для 51 КЭ?
Зачем же так мучаться – заполнять таблицу в кроссе нужно 1 раз, задать примерные габариты площадки, скаважины и сохранить файл кросса, а уж когда создадите расчетную схему в scsd, выберете созданную вами площадку.
И шаг номер 2 вызывает сомнения – первоначально коэффициенты упругого основания можно назначить “от балды” и всем элементам плиты одинаковые, для того и нужен КРОСС, чтобы их вычислить путем нескольких итераций
На вопрос про жесткости я не смогу дать квалифицированного ответа. Это взято из опыта расчетов многих людей как лучшее решение. Такие варианты, как жестко защемить в двух или трех точках или оставить плиту вообще без опоры тоже имеют право на жизнь. В первом случае мы, возможно, в точках защемления получим пики армирования, во втором случае – большую осадку или ошибки при расчете. Все эти варианты сопоставимы друг с другом.
Анонимный ответ на анонимный комментарий. В общих чертах описал тоже самое. Да я мучился, пока не проникся тонкостями, поэтому и поделился своим опытом. Почему шаг 2 вызывает сомнение? Если потому, что “первоначально. коэффициент можно назначить от балды. “, то позволю себе заметить, что существуют множество методик приведения нагрузки на фундаментную плиты. Описанная мною во втором шаге методика распределенной нагрузки на плиту ранее до появления САПР была популярна и у неё до сих пор есть поклонники. Поэтому проанализировать результаты расчета по ней всегда полезно. За частую результаты её не отличаются от результатов бесконечных, описанных также во втором шаге, итераций.
для 51 элемента жесткость назначается от коэ постели элемента 0,7С1 х А^2
C1 коэф постели
А площадь элемента
Cпасибо за информацию.
К вопросу о жесткостях 51 КЭ см. “Расчетные модели сооружений и возможность их анализа” А.В. Перельмутер В. И. Сливкер 2011 г. стр. 449-450
Расчет фундаментной плиты в SCAD. Расчет фундаментной плиты. Расчет в КРОСС. Расчет в SCAD
Полностью расчет балок и плит на упругом основании по гипотезе упругого полупространства или сжимаемого слоя по таблицам готовых расчетных величин приведен в книге . Здесь даны только основные сведения по классификации балок и плит для выбора нужных таблиц, а также таблицы для наиболее важных случаев расчета.
Расчет балок (полос) в условиях плоской задачи. В таблицах даны реактивные давления, поперечные силы и изгибающие моменты для полос, принимаемых за абсолютно жесткие, для полос конечной длины и жесткости, бесконечных и полубесконечных. Предусмотрены случаи равномерной нагрузки и нагрузки в виде сосредоточенной силы или момента, приложенных в любом сечении.
Полоса считается абсолютно жесткой, если показатель ее гибкости t (величина безразмерная) удовлетворяет неравенству
где E и ν - модуль деформации и коэффициент Пуассона грунта, E и ν - модуль упругости и коэффициент Пуассона материала полосы, I - момент инерции сечения полосы, l - полудлина полосы, h - высота, b ‘ - ширина, равная 1 м.
Второе приближенное значение для t в формуле (6.131) относится к полосам прямоугольного сечения. Табл. 6.8 служит для расчета жестких полос для наиболее важного случая нагрузки сосредоточенной силой, приложенной в любом сечении полосы.
Таблица имеет два входа: по α , приведенным к полудлине полосы l - абсциссы точек приложения нагрузки, и по ξ , приведенным к l - абсциссы сечений, для которых устанавливается расчетная величина. Начало отсчета - середина полосы, при этом принимается, что для сечений, расположенных правее середины полосы, значения ξ положительны, а левее - отрицательны. Величины α и ξ округляются до первого знака после запятой.
В таблице приведены ординаты безразмерных величин, которые позволяют определять истинные значения реактивных давлений р , поперечных сил Q и изгибающих моментов М с помощью равенств:
(подразумевается, что сила Р дана в кН, а полудлина - в м).
В таблицах для звездочкой отмечены значения слева от силы Р . Справа значения будут. Если сила приложена в левой половине полосы в таблице для, все значения меняют знак на обратный.
Полосы считаются имеющими конечную длину и жесткость в случае, если их показатель гибкости удовлетворяет неравенству
(подробные таблицы для этого случая приведены в книге ).
Наконец, длинные полосы, когда t > 10, при расчете приближенно принимаются либо за бесконечно длинные, либо за полубесконечные. Полоса считается бесконечной, когда сила Р приложена на расстоянии a l , от левого конца полосы и на расстоянии a r от правого конца, удовлетворяющих неравенствам:
где L - упругая характеристика балки, м:
В случае если неравенство (6.134) справедливо лишь для или только для a r , полоса называется полубесконечной. В табл. 6.9 приведены значения безразмерных величин, для бесконечной полосы, а в табл. 6.10 - для полубесконечной. Правила пользования этими таблицами те же, что и табл. 6.8, с той лишь разницей, что в формулах (6.132) величина l должна быть заменена величиной L .
Если полоса загружена рядом сосредоточенных сил, то определяются эпюры от каждой силы в отдельности, а затем они суммируются.
В книге приведены также таблицы для случая нагрузки изгибающим моментом m .
Расчет балок в условиях пространственной задачи . В этом случае метод расчета также зависит от показателя гибкости балки
где а и b - полудлина и полуширина балки.
Балка принимается за жесткую, если показатель гибкости t ≤ 0,5. Балка принимается за длинную, если
где L определяется равенством (6.135),
и удовлетворяются условия:
» 0,15 ≤ β ≤ 0,3 λ > 2
Остальные балки рассчитываются как короткие, т.е. имеющие конечную длину и жесткость.
Жесткие балки рассчитываются при замене действительной нагрузки на балку эквивалентной в виде суммарной вертикальной нагрузки Р и момента m , приложенных в середине балки.
Расчет плиты на упругом основании
6.5.7. Расчет конструкций на упругом основании по таблицам (ч.1) Полностью расчет балок и плит на упругом основании по гипотезе упругого полупространства или сжимаемого слоя по таблицам готовых расчетных величин приведен в книге . Здесь даны только основные сведения по классификации балок и плит для выбора нужных таблиц, а также таблицы для наиболее важных случаев расчета.

В книге рассматриваются приближенные методы расчета балок и плит, расположенных на упругом основании, за пределом упругости. Кратко изложены основные принципы теории предельного равновесия, рассмотрена задача определения предельной несущей способности балки на упругом основании при различной нагрузке. Показано определение предельной нагрузки для рам и ростверков с учетом влияния упругого основания. Дано решение задач для предварительно напряженной ба
Жемочкин,Синицын. Практические методы расчета фундаментных балок и плит на упругом основании 1962
Ахат
размещено: 08 Марта 2010В I части книги изложены теоретические основы рас¬чета и даны выводы расчетных формул. Во II части книги приведены численные примеры расчета конструкций: балок, неразрезных ленточных фундаментов, фундаментных плит элеваторов и складов цемента на цементных заводах, днища сухого дока, плотины, замкнутой рамы, бетонных основании под железнодорожные пути и др. В примерах показано влияние различных факторов на распределение реакций упругого основания, как-то: жесткости балки, модуля деформации основания и сдвигов, происходящих в грунте.
В конце книги даны таблицы, облегчающие выполнение расчетов.
Книга предназначена для инженеров-проектировщиков.
I часть (теория) составлена проф. Б. И. ЖЕМОЧКИНЫМ; II часть (примеры) — проф. А. П. СИНИЦЫНЫМ. Табл. I—V, VIII—XII заимствованы из работ проф. Б. И. ЖЕМОЧКИНА, табл. IVa, VI и VII —из работ проф. А. П. СИНИЦЫНА
К расчету балок на упругом основании
Дело в том, что на сегодняшний день не существует идеальной модели упругого основания. Одной из наиболее распространенных является модель Фусса-Винклера, согласно которой опорная реакция упругого основания, другими словами - распределенная нагрузка q, действующая на балку, является не равномерно распределенной, а пропорциональной прогибу балки f в рассматриваемой точке:
q = - kf (393.1)
где
k = kоb (393.2)
kо - коэффициент постели, постоянный для рассматриваемого основания и характеризующий его жесткость, измеряется в кгс/см3.
b - ширина балки.
Рисунок 393.1 а) модель балки на сплошном упругом основании, б) реакция основания q на действующую сосредоточенную нагрузку.
Из этого можно сделать как минимум два вывода, неутешительных для человека, собравшегося по-быстрому рассчитать фундамент небольшого домика, к тому же даже основы теоретической механики и теории сопротивления материалов постигшего с трудом:
1. Расчет балки на упругом основании - это статически неопределимая задача, так как уравнения статики позволяют лишь определить суммарное значение нагрузки q (реакции основания). Распределение нагрузки по длине балки будет описываться достаточно сложным уравнением:
q/EI = d4f/dx4 + kf/EI (393.3)
которое мы здесь решать не будем.
2. Помимо всего прочего при расчете таких балок необходимо знать не только коэффициент постели основания, но и жесткость балки ЕI, т.е. все параметры балки - материал, ширина и высота сечения, должны быть известны заранее, между тем при расчете обычных балок определение параметров и является основной задачей.
И что в этом случае делать простому человеку, не обремененному глубокими знаниями сопромата, теорий упругости и прочих наук?
Ответ простой: заказать инженерно-геологические изыскания и проект фундамента в соответствующих организациях. Да, я понимаю, что при этом стоимость дома может увеличиться на несколько тысяч $, но все равно это оптимальное решение в таком случае.
Если же вы, не смотря ни на что, хотите сэкономить на геологоразведке и расчете, т.е. выполнить расчет самостоятельно, то будьте готовы к тому, что придется больше средств потратить на фундамент. Для такого случая я могу предложить следующие расчетные предпосылки:
1. Как правило сплошная фундаментная плита принимается в качестве фундамента в тех случаях, когда несущая способность основания очень низкая. Другими словами грунт - это песок или глина, никак не скальные породы. Для песка, глины и даже гравия коэффициент постели, определенный опытным путем в зависимости от различных факторов (влажности, крупности зерен и др.) ko = 0.5-5 кгс/см3. Для скальных пород ko = 100-1500 кг/см3. Для бетона и железобетона ko = 800-1500 кгс/см3. Как видно из формулы 393.1, чем меньше значение коэффициента постели, тем больше будет прогиб балки при той же нагрузке и параметрах балки. Таким образом мы можем для упрощения дальнейших расчетов предположить, что слабые грунты не влияют на прогиб балки, точнее этим незначительным влиянием можно пренебречь. Другими словами изгибающие моменты, поперечные силы, углы поворотов поперечных сечений и прогибы будут такими же, как и у балки, загруженной распределенной нагрузкой. Результатом такого допущения будет повышенный запас прочности и чем больше будут прочностные характеристики грунтов, тем большим будет запас прочности.
2. Если сосредоточенные нагрузки на балку будут симметричными, то для упрощения расчетов реакцию упругого основания можно принимать равномерно распределенной. Основанием для такого допущения служат следующие факторы:
2.1. Как правило фундамент, рассматриваемый как балка на упругом основании, в малоэтажном строительстве имеет относительно небольшую длину - 10-12 м. При этом нагрузка от стен, рассматриваемая как сосредоточенная, в действительности является равномерно распределенной на участке, равном ширине стен. Кроме того балка имеет некоторую высоту, на первом этапе расчета не учитываемую, а между тем даже сосредоточенная нагрузка, приложенная к верху балки, будет распределяться в теле балки и чем больше высота балки, тем больше площадь распределения. Так например для фундаментной плиты высотой 0.3 м и длиной 12 м, рассматриваемой как балка, на которую опираются три стены - две наружных и одна внутренняя, все толщиной 0.4 м, нагрузки от стен более правильно рассматривать не как сосредоточенные, а как равномерно распределенные на 3 участках длиной 0.4 + 0.3·2 = 1 м. Т.е. нагрузка от стен будет распределена на 25% длины балки, а это не мало.
2.2. Если балка лежащая на сплошном упругом основании имеет относительно небольшую длину и к ней приложено несколько сосредоточенных нагрузок, то реакция основания будет изменяться не от 0 в начале длины балки до некоего максимального значения посредине балки и опять до 0 в конце длины балки (для варианта показанного на рис. 393.1), а от некоторого минимального значения до максимального. И чем больше сосредоточенных нагрузок будет приложено к балке относительно небольшой длины, тем меньше будет разница между минимальным и максимальным значением опорной реакции упругого основания.
Результатом принятого допущения будет опять же некоторый запас прочности. Впрочем в данном случае возможный запас прочности не превысит нескольких процентов. Например, даже для однопролетной балки, на которую действует распределенная нагрузка, равномерно изменяющая от 1.5q в начале балки до 0.5q в середине балки и снова до 1.5q в конце балки (см. статью "Приведение распределенной нагрузки к эквивалентной равномерно распределенной") суммарная нагрузка составит ql, как и для балки, на которую действует равномерно распределенная нагрузка. Между тем максимальный изгибающий момент для такой балки составит
М = ql2/(8·2) + ql2/24 = 10ql2/96 = ql2/9.6
Это на 20% меньше, чем для балки, на которую действует равномерно распределенная нагрузка. Для балки, изменение опорной реакции которой описывается достаточно сложным уравнением, особенно если сосредоточенных нагрузок будет много, разница будет еще меньше. Ну и не забываем про п.2.1.
В итоге при использовании данных допущений задача расчета балки на сплошном упругом основании максимально упрощается, особенно при симметричности приложенных нагрузок, несимметричные нагрузки приведут к крену фундамента и этого в любом случае следует избегать. Более того на расчет практически не влияет количество приложенных сосредоточенных нагрузок. Если для балки на шарнирных опорах вне зависимости от их количества должно соблюдаться условие нулевого прогиба на всех опорах, что увеличивает статическую неопределимость балки на количество промежуточных опор, то при расчете балки на упругом основании достаточно рассматривать прогиб, как нулевой, в точках приложения крайних сосредоточенных нагрузок - наружных стен. При этом прогиб под сосредоточенными нагрузками - внутренними стенами определяется согласно общих уравнений. Ну а определить осадку фундамента в точках, где прогиб принят нулевым, можно, воспользовавшись существующими нормативными документами по расчету оснований и фундаментов.
А еще можно достаточно просто подобрать длину консолей балки таким образом, чтобы прогиб и под внутренними стенами был нулевым. Пример того, как можно воспользоваться данными расчетными предпосылками, рассказывается отдельно.
Расчет фундаментной плиты в SCAD.
Попробуем рассчитать фундаментную плиту под небольшое гражданское здание, нам ассистирует программа SCAD и КРОСС
Считаем что у нас все готово, а именно мы знаем что давит на нее сверху и что сопротивляется этому давлению снизу.
Шаг 1. Создаем очертание плиты. Создаем контур, отступая от габаритов колонн или стен здания. Вылет консоли плиты желательно делать не менее ширины плиты. Теперь контур необходимо разбить на определенной количество пластинчатых элементов. В SCAD существует как минимум два способа:
Первый
На вкладке "узлы и элементы" выбираем элементы(1), затем создаем элементы(2) и после разбиваем(3). Минусы - постоянно необходимо просчитывать на какое количество элементов ты хочешь разбить и в обоих направлениях, при это неусыпно следить за направлениями собственных осей. Если у вас сетка 6х6 - хорошо. А если нет, а если кривое здание и треугольные элементы? Для треугольных элементов есть своя кнопка, аналог (3), но ей лучше никогда не пользоваться, как и треугольными элементами. Это окно будет сниться, если будете делать это впервые для плиты как в этом примере.
Второй
На вкладке "схема" находим кнопку (1), затем определяем контур при помощи кнопки (2). Окончанием определения контура должно служить двукратное нажатие левой кнопки мыши. После кнопка (3) и появится окно для выбора параметров разбивки.
Я обычно в этом окне выбираю метод "В", "создание ортогональной сетки с заданным максимальным размером элемента", "шаг триангуляции" назначаю в зависимости от толщины (как правило шаг 0,3 - 0,4) и ставлю галочку "объединить 3-х узловые элементы в 4-х узловые". Можно и сразу назначит жесткости.
Эффективным, как и должно быть, является смешанный метод. Первым методом задаешь количество в том или ином направлении, а вторым затем разбиваем с тем же шагом. Так же не забываем изменить/задать тип элементов фундаментной плиты - это должен быть 44 тип КЭ (вкладка "назначение" - "назначение типов конечных элементов"). Ранее у нас колонны/стены были защемлены якобы в фундаменте. Сейчас вместо него плита и если мы уберем защемление, то все наше "добро" "провалится" и расчет не будет выполнен. Есть несколько подходов к решению этой проблемы. Некоторые защемляют несколько узлов по краям и в середине, или полосами вдоль и поперек. Некоторые используют 51 тип КЭ. Я пробовал и тот и другой вариант. При использовании защемления в этих местах получим пиковое армирование, а в случае 51 КЭ - нет. В остальном разницы не нашел, поэтому я за 51 КЭ. Все узлы фундаментной плиты выделяем и задаем "связи конечной жесткости" ("узлы и элементы" - "специальные элементы").

Шаг 2. Расчет при помощи КРОСС.
То, что будет описано ниже - воистину танец с бубном! Если нет времени лучше неуклонно следовать инструкции, но сначала дочитайте до конца.
Для первоначального расчета нам необходимо значение равномерно распределенной нагрузки на поверхность плиты. Взять ее можно из протокола решения задачи, сложив суммарные нагрузки по Z, и разделив на площадь фундаментной плиты. Площадь фундаментной плиты можно попытаться измерить инструментом "определении площади полигона" на вкладке "управления". Если даже объект смоделирован в SCAD и хотелось бы рассчитать "так как есть", то все равно придется первый раз пробежаться с равномерно распределенной, потому что во так вот. При передачи данных в КРОСС нас будут спрашивать постоянно "открыть ли существующую площадку". Первый раз все-таки "нет", а потом возможно что "да". Увлекательный процесс задания грунтов и скважин не описывается, о нем можно прочитать здесь. Задаем равномерно распределенную нагрузку и отметку фундаментной плиты. Рассчитываем и предаем данные в SCAD. В окне "назначения коэффициентов упругого основания" можно изменить количество коэффициентов, а можно и не менять. После коэффициенты применяются к плите. Результат можно увидеть нажав правой кнопкой мыши на иконку "номера типов жесткости" панели "фильтры отображения и выполнив ряд манипуляций.
Выполняем расчет. На этом можно закончить, но если есть желание посидеть еще пару часов, то после расчета опять выделяем элементы фундаментной плиты и пытаем передать данные в КРОСС. Вот оно, окно.
Соглашаемся и выбираем загружение или комбинацию
Данные передаются в КРОСС. Далее по идеи необходимо зайти в "настройки" - "нагрузки получены из SCAD" и убрать равномерно распределенную нагрузку (сделать ее равной нулю). Можно считать. После расчета (если получилось), передаем снова данный в SCAD, пересчитываем, снова передаем в КРОСС и т.д. пока не надоест. Если что-то не получилось я отметил ниже, то с чем столкнулся сам, может поможет:
- Если задать грунт, а потом редактировать номера скважин, то усилия могут пойти прахом, грунты могу исчезнуть (как у меня) и придется заполнять заново.- Менее важно, но все же - при заполнении таблицы “грунты”, если вы забыл какой-то слой ввести в порядке очереди, для порядку, то вставить его в нужное место потом уже не получиться (как у меня).
- Тоже пустяк - если грунт водонасыщенный, то надо бы задать его отдельным слоем, со своими параметрами, другого механизма нет.
- И еще, уже подсказка - при заполнении скважин лучше давать отметки как есть в геологии, абсолютные, а то запутаться можно.
- В окне "назначения коэффициентов упругого основания" лучше всего ограничивать число коэффициентов, хотя бы до 100, по двум причинам: читать результат будет легче и есть подозрение, что если ничего не трогать коэффициенты не присваиваются.
- Очень важное наблюдение - если вы, вдруг, захотели изменить геометрию плиты и засунуть в существующую площадку, то вам не повезло. Конечно можно создать новую, но экспорта ни грунтов ни скважин я не нашел, то есть геологию придется вводить по новый. Если не хочется вводить по новый, а геометрию все-таки изменили, то путь решения проблемы следующий:
- создаем новую площадку и выписываем от туда ее габариты (можно больше), чтобы в точности (можно не в точности) вставить их в существующую
- есть кнопка удалить, воспользуемся ее и удалим существующий контур фундаментной плиты (возможно, что операция и лишняя, и достаточно выполнить пункт ниже)
- этот пункт сложнее всего выполнить. из SCAD передаем в существующую площадку КРОСС новую геометрию (с измененным габаритом и уделенным контуром). теперь самое интересное. контур новой плиты отображен на площадке, а его очертание привязано к курсору мыши и перемещается по экрану вместе с ним. если нажать правую кнопку - результата не будет, все пропадет. остается один способ - левая кнопка. но(!) нужно попасть очертанием на контур (чтобы синие линии стали желтыми!), причем чуть-чуть промахнуться можно, но на сколько, только КРОСС знает. если что-то пойдет не так - он (КРОСС) остановит сообщением “ошибка импорта”
Для выполнения итераций КРОСС - SCAD пришлось своим умом пройти тернистый не логичный путь, чтобы данные из SCAD все-таки учитывались в КРОСС (потрясающая программа отняла у меня два дня жизни). Разработанный мною алгоритм не совпадает с описанным в руководстве пользователя. Там (в руководстве) предлагают просто передать нагрузку в существующую площадку, затем удалить нагрузку равномерно распределенную, затем в меню “настройки” поставить галочку “нагрузки полученные из SCAD”. Схема преобразится, но если нажать расчет выскочит сообщение о нулевых осадках. Лечится созданием схемы только с геологией и отметкой подошвы (с нулевой нагрузкой на плиту). Вставляя в эту схему и щелкая “нагрузки полученные из SCAD” действительно все работает.
Шаг 3. Расчет средствами SCAD
Как бы хорош не был КРОСС, возможности в этом направлении у SCAD еще хуже. Одно то чувство при работе с КРОСС - серьезная программа, дружественный интерфейс, почти все функции работают и почти все понятно. Когда делаешь то же самое в SCAD такие чувства не возникают. Возникает одно - а стоит ли делать это в SCAD? Я проверил - ответ между строк. Во такое диалоговое окно, после того как мы прошлись по вкладке "назначения" - "назначения коэффициентов упругого основания"
Я выбирал "расчет коэффициентов деформированности основания" руководствуясь те, что имею в качестве исходных данных именно модуль деформации, который там и требуется (если выбрать "расчет коэффициентов упругого основания" то с нас потребуют модуль упругости). На самом деле меня ввели в заблуждение или я сам заблудился. Расчет необходимо вести по упругому основанию, а так результат сопоставим с разницей в 10 раз. Появляется окно с характеристиками. Вводим данные слоя, сохраняем, вводим новый и т.д. Затем расчет и применяем к элементам. Очень утомительно, если на площадке больше одной скважины
Вывод.
Сначала по делу. При итерациях КРОСС - SCAD изменения можно увидеть и не только при смене равномерно распределенной нагрузки на результаты реакции грунта. Только на результат в итоге это не сильно повлияло, возможно у меня был такой "неудачный" пример. А вот если рассмотреть методическое пособие, на которое ссылался выше, то там различия мне найти не удалось, сколько не всматривался. Результат полученный собственно SCAD сопоставим с КРОССом.
Чтобы не быть голословным вот таблица
Давление грунта под подошвой (расположение соответственно таблице)
\Спасибо создателем КРОСС, что не бросили нас в беде вместе со SCAD, только один вопрос -
создатели SCAD и КРОСС, кто вы? Мне казалось что эти люди если не одни и те же, то хотя бы сидят рядом.
Расчетные схемы для монолитной фундаментной плиты
Между тем нашу плиту более правильно рассматривать как балку конечной длины, лежащую на упругом основании, а еще лучше, как пластину, лежащую на упругом основании. Это означает, что давление на грунт будет не равномерно распределенным и будет зависеть от прогиба плиты f в каждой конкретной точке, а также от коэффициента постели k:
q = - kf
Расчет подобной балки, а тем более пластины - занятие достаточно сложное и не является темой данной статьи. Кроме того моделей упругого основания на сегодняшний день создано уже не мало, но они потому и модели, что отражают реальную работу упругого основания не точно.
В связи с этим мы максимально упростим на данном этапе задачу, предположив, что нагрузка на грунт распределяется равномерно. Выглядит это приблизительно так (консоли балки пока не учитываются):
Рисунок 383.1. Возможная расчетная схема для фундаментной плиты - двухпролетной балки (сечения 2-2 и 3-3).
Однако подобная расчетная схема будет справедлива лишь в том случае, если нагрузка на наружные стены (опорные реакции А и С) будет одинаковой, при этом нагрузка на внутреннюю стену (опорная реакция С) будет составлять 10/3 от опорной реакции А. Т.е. нагрузка q будет равномерно распределенной. В нашем случае из-за несимметричности дома опорные реакции А и С не будут равными, да опорная реакция В также вряд ли будет составлять 10/3 от опорной реакции А или С. Проверим, так ли это.
Для начала определим опорные реакции для сечения 3-3:
Опорная реакция А (нагрузка на крайнюю левую наружную стену) составит (для погонного метра стены):
А3 = 750 + 1872 + 3240 +364.5 = 6226.5 кг
С3 = 750 + 1872 + 3240 = 5862 кг
В3 = 750 + 1872 + 6480 +364.5 = 9466.5 кг
Как видим, разница значений опорных реакций А и С незначительна (около 6%) и такой разницей для упрощения расчетов можно пренебречь, но при этом соотношение В/А = 9466.5/6226.5 = 1.52, т.е. почти в 2 раза меньше требуемого. Это значит, что для корректного расчета следует учесть дополнительно разницу между требуемыми и реальными значениями опорных реакций А и С или разницу между требуемым и реальным значением опорной реакции В. В итоге наша плита больше просядет под наружными стенами, чем под внутренней стеной, а значит и нет необходимости рассматривать нашу плиту как двухпролетную балку. Мы можем рассматривать нашу фундаментную плиту в данном направлении просто как однопролетную балку с опорами А и С и опорными реакциями ~6000 кг, на которую в том месте, где у двухпролетной балки опора В, действует сосредоточенная нагрузка равная 9466.5 кг. Тогда соотношение В/А = 9466.5/6000 = 1.58.
Да и вообще с точки зрения теоретической механики количество стен, опирающихся на фундамент, а в нашем случае опорных реакций, не имеет принципиального значения. С учетом основных положений принятых для расчета плиты, равномерно распределенная нагрузка (давление на грунт) равна сумме этих опорных реакций, деленной на общую длину балки. Вот только прогиб под внутренними и наружными стенами будет разный, что мы выше определили.
Ничего особенно сложного в таком расчете нет, но не будем спешить. Искусство проектировщика, или скажем круче - инженера-конструктора не только в том, чтобы правильно рассчитать конструкции, но и в том, чтобы подобрать оптимальные параметры самой конструкции. Например, у нашей фундаментной плиты есть консоли, которые мы пока в расчетах не учитывали. А между тем эти самые консоли - очень полезная вещь. При соответствующей длине консолей не только уберется разница между реальным и требуемым по расчету значением опорной реакции В, а значит и уменьшится значение опорного момента, что само по себе очень важно, но кроме этого при наличии консолей уменьшится угол поворота поперечных сечений на опорах А и С, а это уже уменьшение растягивающих усилий, действующих на стены, а также уменьшение разницы в просадке фундамента под внутренней и наружными стенами. Одним словом учитывать наличие консолей стоит. Более того, мы можем относительно просто подобрать такую длину консолей, при которой нашу балку можно будет опять рассматривать как двухпролетную, т.е. прогиб на средней опоре В будет условно говоря равен нулю.
Для принятого нами плана плиты (рис. 345.1.г)) длина консолей для сечения 3-3 составляет
k = (15 - 6.4·2)/2 = 1.1 м
Но для того, чтобы прогиб на опоре В был равен нулю длина консолей должна составлять (согласно графику 346.5) k3 = 0.28l = 0.28·6 = 1.68 ≈ 1.7 м. При этом длина пролета принимается равной расстоянию в свету между фундаментами под стены, то же относится и к консоли.
Примечание: Вообще-то для более точного расчета следовало бы учесть ширину фундамента под стены, представляющего собой опоры для нашей консольной балки. Однако мы стремимся не усложнить, а упростить расчет и потому делать этого не будем. Возможный дополнительный запас прочности никогда не помешает.
На данном этапе при определении нагрузки можно рассматривать пролеты l3 = 6.4 м, а длину консолей k3 = 1.7 + 0.2 = 1.9 м. Для определения распределенной нагрузки и построения эпюры изгибающих моментов в сечении 3-3 примем следующую расчетную схему:
Тогда равномерно распределенная нагрузка для такой балки от стен составит:
q3с = (A3 + B3 + C3)/(2k3 + 2l3) = (6000 + 9466.5 + 6000)/(1.9 + 6.4)2 = 1293.2 кг/м
Как мы уже говорили, по ряду вышеперечисленных причин эта нагрузка вряд ли будет равномерно распределенной. Но даже если нагрузка будет изменяться от некоторого максимального значения на опоре А до 0 на опоре В (что само по себе маловероятно, хотя по соотношению опорных реакций и допустимо), то максимальное значение распределенной нагрузки в области наружных стен будет больше в 2 раза и будет составлять
q3cmax = 1293.2·2 = 2586.4 кг/м
При этом
Для сечения 1-1 (однопролетная балка):
А1 = В1 = 750 + 1872 + 243 = 2865 кг
Для сечения 2-2:
А2 = С2 = 750 + 1872 + 243 = 2865 кг
В2 = 750 + 1872 + 729 = 3351 кг
Очевидно, что линейная распределенная нагрузка будет больше для условной балки в сечении 2-2, именно для этого сечения мы и определим значение линейной распределенной нагрузки, чтобы потом вычислить плоскую распределенную нагрузку. При соотношении В/А = 3351/2865 = 1.17 требуемая длина консолей k2 = 0.36l = 0.36·3.6 = 1.3 м
q2с = (A2 + B2 + C2)/(2k2 + 2l2) = (2865 + 3351 + 2865)/(1.5 + 4)2 = 825.5 кг/м
q1с = (A1 + B1)/(2k1 + l1) = (2865 + 2865)/(3 + 8) = 520.91 кг/м
Эти линейные нагрузки на 1 метр ширины плиты-балки можно также рассматривать как части плоской равномерно распределенной нагрузки, действующей на грунт. Тогда полная нагрузка на грунт с учетом веса самой плиты и пола 1 этажа составит
q = q3c + q2c + qф = 1293.2 + 825.5 + 1500 = 3618.7 кг/м2 или 0.362 кг/см2 < Ro = 1 кг/см2
В итоге даже для очень пористого глинистого грунта мы имеем почти 3х-кратный запас по прочности.
Это конечно хорошо, скажете вы, но что делать если планируется дом не с газосиликатными стенами, а например, кирпичными, и не в 2 этажа, а в 10?
Ответ будет простой: для кирпичных стен высотой в 2 этажа и толщиной в 2 кирпича, нагрузка от стен на грунт действительно увеличится:
Qк.стен = 1800х1.3х6х0.5 = 7020 кг
но при этом общее значение опорных реакций А и С увеличится не так сильно, например при неизменных других нагрузках для сечения 3-3
А3 = 750 + 7020 + 3240 +364.5 = 11374.5 кг
т.е. меньше чем в 2 раза, а у нас запас прочности больше, чем в 2 раза, при том, что коэффициенты надежности по нагрузке у нас не малые. Ну а если планируется строительство многоэтажного дома этажей этак в 10-20, то и на геологоразведку деньги найдутся. А там уже выяснится и состав основания, и его несущая способность и какой вид фундамента лучше выбрать и т.д. Ну а мы продолжим расчет нашей фундаментной плиты, а заодно и основания.
Методы расчета плит на грунтовом основании — Авангард

Конструктивный расчет плит на грунтовом основании достаточно сложный даже для самых простых случаев, так как для них применяется решение дифференциального уравнения плиты на упругом основании.
Величины сил
Метод конечных элементов
Метод конечных элементов хорошо подходит для расчета плит различного размера и формы. Плиту можно поделить на элементы многими способами. Для прямоугольной плиты можно использовать квадратные или прямоугольные элементы. На участках влияния сосредоточенных нагрузок разбивку следует делать более частой. Примеры этого приведены на рисунке 2.1. Упругость основания можно учесть с помощью упругих элементов. Плита рассматривается как опирающаяся на узлы, представляющие собой упругие опоры, и в таком случае коэффициент жесткости следует рассчитывать вручную.
Например, в точке i коэффициент жесткости ki = k Ai.
Модуль реакции грунта k (Винклер) может произвольно меняться на разных участках рассчитываемой плиты.
Сосредоточенную нагрузку можно прикладывать к элементам в виде равномерно распределенной поверхностной нагрузки или же ее можно поделить на сосредоточенные нагрузки в узловых точках.
Нагрузка может быть почти произвольной.
Рис. 2.1. – Примеры разбивки плиты на элементы. Сосредоточенная нагрузка в центре плиты.
В результате расчета получаются значения прогибов, напряжений и величины сил (а также изгибающие моменты).
Метод конечных разностей
По методу конечных разностей плита разбивается в обоих направлениях на стандартные участки прямоугольной сетки. Нагрузка может складываться из нескольких сосредоточенных, которые следует размещать в узлах сетки. Для точных результатов требуется более густая сетка. В качестве рекомендуемого модуля деления можно использовать эластичный радиус упругости плиты lk. Для метода конечных разностей можно использовать модуль реакции грунта (коэффициент постели основания) Власова или Винклера. Модуль реакции грунта должен быть одним и тем же для всей площади рассчитываемой плиты.
Преимуществом метода конечных разностей по сравнению с методом упругих элементов является более простое введение исходных данных. Для этого метода требуется меньше оперативной производительности, таким образом, он подходит для расчета с помощью микро-ЭВМ /4/.
Нагрузки задаются как сосредоточенные в узлах сетки.
В результате расчета получаются значения давления грунта, прогибы плиты и величины сил, а также крутящие моменты.
По методу Власова значения моментов получаются на 20% ниже, чем по методу Винклера. Соответственно, значения давления грунта и прогибов, особенно по краям плиты, по методу Власова больше, чем по методу Винклера.
Рис. 2.2. – Деление плиты на сетку разностей
Методы расчета вручную
Из методов расчета вручную следует упомянуть расчетные формулы Вестергаарда. В них примеры решений для сосредоточенных нагрузок приведены как для бесконечной плиты /1/, /15/.
С помощью этих формул рассчитываются предельные значения изгибающего момента, прогибы и значения давлений грунта для различных случаев.
Определенным недостатком формул Вестергаарда является то, что в них не учтено влияние изгибающих моментов краев и углов, а при больших сосредоточенных нагрузках это влияние по своей величине становится существенным фактором. В остальном точность расчетов по формулам Вестергаарда, например, по сравнению с методом конечных разностей, несет в себе больший запас прочности.
Величины сил в плите, лежащей на грунте, можно рассчитать также по теории линии текучести, разработанной А. Лосбергом /1/. Она дает экономичное решение в смысле количества используемой арматуры, но с точки зрения растрескиваемости плиты этот метод не рекомендуется для ремонта полов с требованием повышенной устойчивости к растрескиванию.
В расчетах следует учитывать также напряжения, возникающие вследствие усадки бетона и перепадов температур. В полах с напрягаемой арматурой следует учитывать деформации плиты с течением времени в расчете предварительного напряжения.
Детали и изоляция фундамента на основе плиты, Руководство по строительству
Плита на ровном фундаменте, рабочий проект; основы
Существует множество различных почвенных условий и соответствующих конструкций плит. На этой странице рассказывается о том, как построить бетонную плиту с утолщенными краями на основе FPSF на почве с высоким уровнем грунтовых вод, чтобы предотвратить морозное пучение, предварительно установив дренаж под плитой.
Связанная плита на фундаментном фундаменте Страницы:
Ниже приводится техническое руководство по строительству монолитного дома.Конструкция и размеры любой фундаментной плиты будут определяться размером и конструкцией здания, которое будет стоять на ней, а также условиями почвы, на которую будет залита плита. Всегда консультируйтесь с инженером перед началом строительства, так как он почти наверняка понадобится вам для штамповки ваших чертежей, чтобы ваш фундамент прошел через Код.
Детали конструкции неглубокого фундамента с защитой от замерзания или изоляции FPSF для плиты на уровнеПлита на грунте, шаг за шагом Инструкции для проблемных обширных грунтов и высоких уровней грунтовых вод
РАССТОЯНИЕ для плиты на фундаментном уровне:
- Нанять инженера, чтобы он установил, как установить опору для фундамента.Для определения дальнейших действий часто назначают испытания почвы.
- На обширной глине, неизвестных грунтах или заполнителях инженеры иногда настаивают на строительстве траншеи из уплотненного щебня, чтобы выдержать нагрузки фундамента. В этом случае по периметру будущего дома выкапывается траншея, где будут опоры. Спецификации глубины, ширины и засыпки будут предоставлены инженерами. См. Нашу страницу о плитах-плотах как альтернативе утолщенной краевой плите на фундаментном фундаменте.
Примечания по выкопке плиты на фундаментном уровне:
1) Начиная с траншеи для щебня для несущей части фундамента (согласно инструкциям инженера), гравийный грунт может быть более доступным вариантом, чем щебень.
2) Попросите вашего подрядчика защитить верхний слой почвы для будущего использования. Вынутый верхний слой почвы следует разместить в специально отведенном месте и защитить от смывания водонепроницаемым покрытием, например, брезентом.
ДРЕНАЖ под плитой на фундаментном фундаменте:
- На дне дренажной траншеи фундамента установите жесткий дренажный трубопровод французского производства (плакирующая плитка), который может дренировать до более низкого уровня.Если это невозможно, его следует подключить к отстойнику.
- Покройте французский водосток слоем щебня, затем накройте геотекстилем, чтобы предотвратить накопление осадка.
Примечания для водостоков под FPSF или плитами на уровне:
1) Некоторые опытные строители предпочитают жесткие пластиковые желоба французского типа гибким желобам для увеличения прочности.
2) Наличие доступного Т-образного соединения для очистки является хорошей дополнительной функцией, поскольку они позволяют легко обслуживать в случае накопления отложений.
3) При решении проблемы бактерий, содержащих железо, основание траншеи из щебня потенциально может быть более надежным решением, чем обычные французские водостоки. Это включает в себя включение уплотненного слоя камня под опорами.
- Если вы имеете дело с высоким содержанием железных бактерий, рекомендуется построить на поверхности яму для доступа для очистки.
- Насыпьте щебень гравия вокруг французского водостока и установите поверх него геотекстиль. Барьер предотвращает попадание отложений в канализацию, а гравий обеспечивает достаточный дренаж.
ЗАПОЛНЕНИЕ ПЛИТЫ
- Покройте траншею слоем проницаемой засыпки.
- Постепенно заполните и уплотните оставшуюся часть траншеи, а также ненарушенный грунт в центре перед тем, как насыпать по ней щебень. Компакторы с виброплитой работают лучше всего и доступны в большинстве пунктов проката строительных материалов.
- Выройте несколько небольших траншей для установки перфорированных труб, которые будут использоваться для отвода радона (см. «Отвод радонового газа» ниже).Затем трубы следует засыпать небольшим количеством щебня.
СТРОИТЕЛЬНАЯ ОПАЛУБКА для плиты по сорт:
- Определение границ бетонной плиты может быть легко выполнено с помощью деревянных кольев, вбитых в землю, и веревочной линии, проложенной под прямым углом.
- Сделайте выровненную меловую линию на внутренней стороне опалубки, чтобы обозначить высоту заливаемого бетона
- Верх опалубки можно использовать в качестве измерителя для определения высоты заливаемого бетона.
ОТВОД РАДОНОВЫХ ГАЗОВ с плитой на фундаментном фундаменте:
Радон - это радиоактивный газ природного происхождения, который образуется, когда уран, присутствующий в земной коре, начинает распадаться. Газ проникает в дома через трещины в плите. Облучение радоном является причиной примерно 16% смертей от рака легких в Канаде и является второй по значимости причиной рака легких после курения.
Министерство здравоохранения Канады рекомендует принимать меры по снижению уровней радона, когда концентрация радона превышает 200 Бк / м3.Воздействие радона в высоких концентрациях в течение длительного времени может подвергнуть вас риску рака легких. Чтобы узнать все о борьбе с радоном в домах, см. Здесь.
УСТАНОВКА МЕХАНИЧЕСКИХ СИСТЕМ УМЕНЬШЕНИЯ РАДОНА:
Детальный проект Примечания:
Если вы планируете в конечном итоге построить вторую ванную комнату, попросите вашего подрядчика выполнить черновую подготовку перед заливкой плиты на грунт или неглубокий фундамент с защитой от замерзания (FPSF), поскольку очень сложно изменить водопровод после заливки.
ИЗОЛЯЦИЯ И ВОЗДУХ / ПАРОБАРЬЕРЫ ДЛЯ ПЛИТЫ МАРКИ:
- Установите анкерные болты и боковые изоляционные панели, а затем центральные панели. Далее обрезаем водопроводную систему и механическое оборудование.
- Следить за тем, чтобы в изоляции не было разрывов даже в проблемных местах.
- Установить полиэтиленовый воздух / пароизоляцию по всей площади изоляции. В некоторых случаях на этом этапе будет добавлен слой аэрозольной пены с закрытыми порами, чтобы добавить изоляцию и создать постоянный барьер для влаги и газа.
- Закройте полиэтиленовый барьер во всех точках проникновения и отверстиях соответствующей строительной лентой.
1) Мы используем термин «воздух / пароизоляция», чтобы не путать их индивидуальные роли. Полиэтилен должен быть неповрежденным, без отверстий просто для удержания и удаления скоплений радонового газа под плитой. Если вы живете в районе с неизвестным загрязнением радоном или не собираетесь устанавливать систему отвода радона, дыры в полиуретане не являются проблемой, поскольку «пароизоляция» не должна быть герметичной или герметичной.Смотрите наши страницы пароизоляции для получения дополнительной информации.
2) Уровни изоляции в строительных нормах США и Канады различаются в зависимости от региона, но неизменно то, что они недостаточны для предотвращения потерь тепла через подвальные этажи и стоят домовладельцам больших денег. Региональные строительные нормы и правила будут требовать от 5 до 7,5 рандов, но удвоение этого показателя окупится всего за 2 года. Мы рекомендуем как минимум R15 в большинстве холодных климатов, и больше, если вы включаете лучистое тепло внутри плиты на фундаменте.
БЕТОННАЯ АРМАТИВНАЯ СЕТКА:
- Установить сварную стальную арматурную сетку и арматуру в соответствии с техническим заданием инженера. Убедитесь, что полиэтиленовый барьер не поврежден и не пробит для надлежащей защиты от радона. Использование стульев с арматурой должно держать острые концы стальной арматуры подальше от мембраны под плитой на уклоне или FPSF.
УСТАНОВКА ИЗЛУЧАЮЩЕЙ ТЕПЛОВОЙ ТРУБКИ В ПЛИТУ МАРКИ:
Именно в этот момент следует установить трубы для водяных (водяных) излучающих полов или излучающих полов с воздушным обогревом.Финансовые вложения, вложенные в комфорт теплых полов, можно, вероятно, перенаправить на изоляцию. Лучистое отопление для пола - это комфортное тепло, но с достаточной изоляцией черного пола вы можете уменьшить дискомфорт от холода, связанный с бетонными полами, поддерживая их при комнатной температуре.
Примечание. Если вы выбрали водяной лучистый пол с подогревом, сантехнический подрядчик установит сеть трубопроводов из сшитого полиэтилена (PEX).Арматурную сетку часто используют как сетку для крепления трубопроводов. Пластиковые стяжки отлично подходят для этой цели, но убедитесь, что концы обрезаны или закреплены, и не выступают над уровнем заливаемого бетона.
СОВЕТЫ ПО ЗАЛИВКЕ БЕТОНА ПЛИТЫ ПРИ КОНСТРУКЦИИ СОРТА:
Убедитесь, что подрядчик дождется подходящих погодных условий перед заливкой бетонной плиты FPSF. Согласно CMHC (Canada Mortgage and Housing Corporation), нельзя заливать бетон в замерзшую опалубку.Кроме того, бетон должен выдерживаться при температуре выше 10 ° C в течение трех дней после его укладки, чтобы обеспечить надлежащую прочность и отделку поверхности без повреждений от мороза.
Когда вы будете готовы начать заливку бетона:
- Убедитесь, что арматурная сетка и арматурный стержень находятся на высоте, указанной инженером. Чтобы предотвратить образование трещин в плите, подрядчик может использовать опорные стулья, которые удерживают сетку на правильной высоте во время заливки бетона (CMHC).
- Затем поместите анкерные болты фундамента в бетон до того, как он начнет затвердевать, но когда он будет достаточно затянут, чтобы они оставались на месте.
- Бетон должен оставаться влажным не менее трех дней, потому что он должен затвердеть, а не, как некоторые говорят, сухим. Вы можете сделать это, обмыв поверхность водой и накрыв ее полиэтиленовым покрытием или брезентом.
- Отделка бетонной плиты по уклону: наиболее доступная окончательная отделка достигается простой обработкой бетона мастерком до желаемого блеска.Высокий уровень качества затирки может занять более половины дня, в зависимости от толщины и бетонной смеси. В некоторых случаях уровень отделки минимален для подготовки поверхности к полировке. Полированный бетон - это очень прочная поверхность, на которой виден камень, использованный в смеси, но он намного дороже, чем готовый бетон.
- После затвердевания можно врезать компенсаторы в поверхность, чтобы предотвратить появление микротрещин. Швы могут дать эффект крупной плитки с добавлением эпоксидной затирки, но швы также можно скрыть под разделительными стенами.Убедитесь, что их у вас достаточно для площади фундамента.
См. Другие плиты на страницах с информацией о сортах здесь:
Пошаговая инструкция по созданию плиты перекрытия на грунте, Строительство утолщенного краевого фундамента на уровне грунта, Плотные плиты для плохих почвенных условий или заполнение во избежание выемки грунта и восстановления почвы. Все, что вам нужно знать о строительстве дома с высокими эксплуатационными характеристиками, можно найти в руководстве по экологическому строительству Ecohome, страницы
.
.
Мы не можем найти эту страницу
(* {{l10n_strings.REQUIRED_FIELD}})
{{l10n_strings.CREATE_NEW_COLLECTION}} *
{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}
{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}{{l10n_strings.DRAG_TEXT_HELP}}
{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}{{article.content_lang.display}}
{{l10n_strings.AUTHOR}}{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}
{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} .Моделирование балок на упругих основаниях с использованием пластинчатых элементов методом конечных элементов
8.2 Энергия упругой деформации
Раздел 8. 8. Энергия упругой деформации Энергия деформации, запасенная в упругом материале при деформации, вычисляется ниже для ряда различных геометрических форм и условий нагружения.Эти выражения для
Дополнительная информацияСдвиговые силы и изгибающие моменты
Глава 4 Сдвигающие силы и изгибающие моменты 4.1 Введение Рассмотрим балку, подвергающуюся поперечным нагрузкам, как показано на рисунке, прогибы происходят в той же плоскости, что и плоскость нагрузки, называется
. Дополнительная информацияБлок 6 Плоское напряжение и Плоское деформирование
Блок 6 Показания плоского напряжения и плоской деформации: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A.Лагас, доктор философии Профессор аэронавтики, космонавтики и инженерных систем Существует множество структурных конфигураций
Дополнительная информацияВведение в балки
ГЛАВА Проектирование конструкционной стали Метод LRFD ВВЕДЕНИЕ В БАЛКИ Третье издание Инженерная школа А. Дж. Кларка Департамент гражданского и экологического проектирования Часть II Проектирование и анализ конструкционной стали
Дополнительная информацияНапряжения в балке (основные темы)
Глава 5 Напряжения в балке (основные темы) 5.1 Введение Балка: нагрузки, действующие поперек продольной оси, нагрузки создают поперечные силы и изгибающие моменты, напряжения и деформации из-за V и
Дополнительная информацияНапряжение изгиба в балках
936-73-600 Напряжение изгиба в балке Вывести соотношение для напряжения изгиба в балке: Основные допущения :. Прогибы очень малы по сравнению с глубиной балки. Плоские разрезы перед гибкой
Дополнительная информацияВыбор профиля алюминиевых систем
Выбор профиля для алюминиевых систем Целью этого документа является краткое описание того, как следует выбирать алюминиевый профиль на основе требований к прочности для каждого применения.Штора
Дополнительная информацияОсновы теории упругости
G22.3033-002: Темы компьютерной графики: Лекция № 7 Геометрическое моделирование Основы теории упругости Нью-Йоркского университета Лекция № 7: 20 октября 2003 г. Лектор: Денис Зорин Скрайб: Адриан Секорд, Йотам Гинголд
Дополнительная информацияОптимизация конструкции плоских балок
Оптимизация конструкции плоской балки NSCC29 R.Abspoel 1 1 Подразделение структурной инженерии, Делфтский технологический университет, Делфт, Нидерланды РЕФЕРАТ: В проектировании стальных пластинчатых балок высокая степень
Дополнительная информацияЭлементы оболочки в ABAQUS / Explicit
ABAQUS / Explicit: расширенные темы Приложение 2 Элементы оболочки в ABAQUS / Explicit ABAQUS / Explicit: расширенные темы A2.2 Обзор ABAQUS / Explicit: расширенные темы ABAQUS / Explicit: расширенные темы A2.4 Треугольные
Дополнительная информацияСтресс-деформационные отношения
Взаимосвязь напряжений и деформаций Испытания на растяжение Одним из основных ингредиентов в изучении механики деформируемых тел являются резистивные свойства материалов. Эти свойства относятся к напряжениям
Дополнительная информацияОсновы процедуры ВЭД
ГЛАВА 2 Основы процедуры ВЭД 2.1 Введение В этой главе обсуждается пружинный элемент, особенно с целью ознакомления с различными концепциями, связанными с использованием метода FEA. Пружина
Дополнительная информация3 концепции стресс-анализа
3 Концепции анализа напряжений 3.1 Введение Здесь концепции анализа напряжений будут изложены в контексте конечных элементов. Это означает, что первичным неизвестным будут (обобщенные) смещения.
Дополнительная информацияАнализ структурной целостности
Анализ целостности конструкции 1. КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ Игорь Кокчаров 1.1 НАПРЯЖЕНИЯ И КОНЦЕНТРАТОРЫ 1.1.1 Напряжение Приложенная внешняя сила F вызывает внутренние силы в несущей конструкции. Внутренние силы
Дополнительная информацияНадежное КЭ-моделирование с ANSYS
Надежное КЭ-моделирование с помощью ANSYS Томас Нельсон, Erke Wang CADFEM GmbH, Мюнхен, Германия Аннотация ANSYS - одна из ведущих коммерческих программ конечных элементов в мире, которая может быть применена к большим
Дополнительная информацияСваи с боковой нагрузкой
Сваи с боковой нагрузкой 1 Реакция грунта, смоделированная кривыми p-y Чтобы правильно проанализировать свайный фундамент с боковой нагрузкой в грунте / скале, необходимо применить нелинейную зависимость, которая обеспечивает грунт
Дополнительная информацияСтатика и механика материалов
Статика и механика материалов Глава 4-1 Внутренняя сила, нормальная и касательная Напряжение Очертания Внутренние силы - плоскость сечения Результат взаимного притяжения (или отталкивания) между молекулами на обоих
Дополнительная информацияCAE - метод конечных элементов
16.810 Лекция по инженерному проектированию и быстрому созданию прототипов 3b CAE - Инструктор по методу конечных элементов Проф. Оливье де Век 16 января 2007 г. Численные методы Метод конечных элементов Метод граничных элементов
Дополнительная информацияОБЪЯСНЕНИЕ СОВМЕСТНЫХ ДИАГРАММ
ОБЪЯСНЕНИЕ СХЕМ СОЕДИНЕНИЙ Когда болтовые соединения подвергаются внешним растягивающим нагрузкам, какие силы и упругая деформация действительно существуют? Большинство инженеров в производстве крепежа
Дополнительная информацияВведение в пластины
Глава Введение в пластины Пластина - это плоская поверхность, имеющая значительно большие размеры по сравнению с ее толщиной.Распространенными примерами плит в гражданском строительстве являются. Плита в здании .. Плита фундаментная
Дополнительная информация .Мы не можем найти эту страницу
(* {{l10n_strings.REQUIRED_FIELD}})
{{l10n_strings.CREATE_NEW_COLLECTION}} *
{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}
{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}{{l10n_strings.DRAG_TEXT_HELP}}
{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}{{article.content_lang.display}}
{{l10n_strings.AUTHOR}}{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}
{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} .