Предел текучести арматуры
Стальная арматура: ГОСТ, классификация и маркировка
В строительстве широко распространена арматура стальная стержневая. Это неотъемлемый элемент конструкций из железобетона, повышающий прочность цементного камня на изгиб и сжатие. Мы расскажем, какой бывает металлическая арматура, из чего ее производят, на какие классы делятся и об особенностях ее применения.
Технологии изготовления арматуры
По способу производства арматура бывает:
- Горячекатаная стержневая;
- Холоднотянутая проволочная.
В обоих случаях используется низколегированная или углеродистая сталь разных марок, в зависимости от этого и делится на 6 классов А-I…А-VI.
Горячий способ производства предполагает формовку размягченной стальной стержневой заготовки валиками. При увеличении температуры происходит упрочнение связей структуры металла, соответственно, арматура из него способна воспринимать большие нагрузки по сравнению с холоднотянутыми изделиями, увеличивается прочность на разрыв.
Арматура холодной протяжки получается из не разогретой заготовки, проходящей через обжимные валики.
Для повышения прочности арматуры ее подвергают термической обработке или делают цинкование – процедура обеспечивает устойчивость металла к влаге и агрессивным средам.
Выпускается стержневая арматура сечением от 8 мм в отдельных прутьях, тонкая проволочная – в мотках.
Классификация и маркировка арматуры
Классификация арматуры предполагает разделение изделий по классу используемой для производства стержней стали. Деление регламентирует ГОСТ 5781-82 «Сталь горячекатаная для армирования железобетонных конструкций»:
Класс, старое обозначение | Класс, новое обозначение | Тип профиля | Цветовое обозначение стержня |
---|---|---|---|
A-I | А240 | Гладкий | — |
A-II | А300 | Периодический* | |
A-III | А400 | ||
A-IV | А600 | Красный | |
A-V | А800 | Красный и зеленый | |
A-VI | А1000 | Красный и синий |
*по согласованию с заказчиком сталь А-II…A-V может быть изготовлена с гладким профилем.
Классы, в свою очередь, делятся на подклассы, которые обозначаются дополнительными индексами:
- «С» — стержневая сталь, которая подходит для сварки;
- «Т» — термически обработанное изделие;
- «К» — коррозионностойкая сталь, т.е. обработанная цинком;
- «СК» — коррозионностойкая сталь, которую можно сваривать.
Металлическая арматура разных классов производится из различных стальных сплавов, которые определяют ее технические свойства. При этом, учитывается диаметр прутков:
Класс арматурной стали | Марка стали | Диаметр профиля, мм |
---|---|---|
А-I (A240) | СтЗкп, СтЗпс, СтЗсп | 6…40 |
A-II (A300) | Ст5сп, Ст5пс 18Г2С | 10…40 40…80 |
Aс-II (Aс300) | 10ГТ | 10…32 (36…40) |
A-III (A400) | 35ГС, 25Г2С 32Г2Рпс | 6…40 6…22 |
A-IV (A600) | 80С | 10…18 (6…8) |
20ХГ2Ц | 10…32 (36…40) | |
A-V (A800) | 23Х2Г2Т | (6-8) 10…32 (36…40) |
A-VI (A1000) | 22Х2Г2АЮ, 22Х2Г2Р, 20Х2Г2СР | 10…22 |
Таблица составлена по данным ГОСТ 5781-82.
Механические свойства арматурной стали
Стержневая арматура разных марок обладает индивидуальными механическими свойствами, которые учитывают при выборе изделия для армирования конструкций из бетона. Основные приведены в таблице №8 ГОСТ 5781-82:
Класс арматурной стали | Предел текучести sт | Временное сопротивление разрыву sв | Относит. удлинение d5,% | Равномерное удлинение dr, % | Ударная вязкость при температуре -60 °С | Испытание на изгиб и в холодном состоянии, где с — толщина отправки, d — диаметр прутка | |||
---|---|---|---|---|---|---|---|---|---|
Н/мм2 | кгс/мм2 | Н/мм2 | кгс/мм2 | МДж/м2 | кгс×м/см2 | ||||
A-I (А240) | 235 | 24 | 373 | 38 | 25 | — | — | — | 180°; c = d |
A-II (А300) | 295 | 30 | 490 | 50 | 19 | — | — | — | 180°; с = 3d |
Ас-II(Ас300) | 295 | 30 | 441 | 45 | 25 | — | 0,5 | 5 | 180°; c = d |
A-III(А400) | 390 | 40 | 590 | 60 | 14 | — | — | — | 90°; с = 3d |
A-IV(А600) | 590 | 60 | 883 | 90 | 6 | 2 | — | — | 45°; с = 5d |
A-V (A800) | 785 | 80 | 1030 | 105 | 7 | 2 | — | — | 45°; с = 5d |
A-VI (А1000) | 980 | 100 | 1230 | 125 | 6 | 2 | — | — | 45°; с = 5d |
Свойства стержневой арматуры определяются лабораторными испытаниями, по результату которых составляется протокол. Допускается уклонение от правил ГОСТ по согласованию с заказчиком.
Таблица площади поперечного сечения арматуры
При расчете армирующих стержней, кроме диаметра, также учитывают массу изделий. Она приведена в сортаменте ГОСТ 5781-82:
Номинальный диаметр стержня, мм | Площадь поперечного сечения, см2 | Средняя* масса 1 м профиля |
---|---|---|
6 | 0,283 | 0,222 |
8 | 0,503 | 0,395 |
10 | 0,785 | 0,617 |
12 | 1,131 | 0,888 |
14 | 1,54 | 1,21 |
16 | 2,01 | 1,58 |
18 | 2,54 | 2 |
20 | 3,14 | 2,47 |
22 | 3,8 | 2,98 |
25 | 4,91 | 3,85 |
28 | 6,16 | 4,83 |
32 | 8,01 | 6,31 |
36 | 10,18 | 7,99 |
40 | 12,57 | 9,87 |
45 | 15,00 | 12,48 |
50 | 19,63 | 15,41 |
55 | 23,76 | 18,65 |
60 | 28,27 | 22,19 |
70 | 38,48 | 30,21 |
80 | 50,27 | 39,46 |
*масса приведена в среднем значении – более точный параметр зависит от конкретной марки, используемой для производства стержневого проката стали.
Сферы применения стальной арматуры
Характеристики стальной арматуры определяют сферу ее применения. Стержни гладкого профиля используют:
- Для перевязки рабочих стержней каркаса;
- Вязка декоративных изделий для дизайна;
- Монтаж отдельных элементов сложных механизмов.
Прутки периодического профиля более востребованы:
- Усиление бетонных конструкций в участках наибольшего растяжения и сжатия;
- Установка опорных элементов и конструкций;
- Армирование штукатурных слоев, напольных стяжек;
- Обустройство дорожного покрытия и тротуарных зон;
- Монтаж армирующих поясов для кладки блоков и кирпичей.
Основное назначение стержневой арматуры периодического профиля – усиление конструкций из бетона. Их стержней вяжут плоские или пространственные каркасы. Арматура в них выполняет разные функции:
- Компенсация излома бетона созданием напряжения на растяжение стержня. Максимальные нагрузки концентрируются в нижней части конструкций типа балки на двух опорах или с жестким защемлением;
- Компенсация сжатия, которое концентрируется в верхней части той же балки.
Недостатки
У стержневой арматуры есть несколько недостатков, которые необходимо учитывать:
- При отсутствии антикоррозийного покрытия прутки подвергаются окислению при контакте с водой. Процессы могут начаться даже от воздействия воды в составе цемента во время его затвердевания.
- Невозможность выполнять функции стержневыми изделиями при неправильном выборе класса прутка и его диаметра.
- Чрезмерно напряженная арматура способна дать обратный эффект и образовать трещины в бетонной конструкции.
- Требуется соблюдение защитного слоя бетона – не менее 2 диаметров размера сечения для предотвращения попадания воды к стержням.
Упаковка, транспортирование и хранение
Стальные стрежни для удобства окрашивают в разные цвета:
- А-IV – красный;
- А-V – красный и зеленый;
- А-VI – красный и синий.
Допускается нанесение краски на концы 0,5 метров.
Стержневую арматуру компонуют в партии по 15 тонн и перевязывают из проволокой, вязанкой. Также упаковывают тонкую проволоку в бухты. При необходимости для заказчика делают перевязки другой массы – 3 или 5 тонн, а также индивидуальный тоннаж. Укомплектованные связки обязательно маркируют классом стержней.
Перевозка металлических изделий допускается только в горизонтальном положении для избегания перегибов и деформаций.
Хранить стержневую арматуру рекомендуется в закрытых сухих помещениях, исключив контакт с водой.
Арматурная сталь в производстве железобетонных конструкций.
Арматурная сталь
СНиП 52-01-2003 «Бетонные и железобетонные конструкции. Основные положения» регламентирует применение для железобетонных конструкций следующих видов стальной арматуры, установленных соответствующими стандартами:
горячекатаную гладкую и периодического профиля диаметром 3-80 мм;
термо-механически упрочненную периодического профиля диаметром 6-40 мм;
механически упрочненную в холодном состоянии (холоднодеформированная) периодического профиля или гладкая, диаметром 3-12 мм;
арматурные канаты диаметром 6-15 мм.
Кроме того, в большепролетных конструкциях могут быть применены стальные канаты (спиральные, двойной связки, закрытые).
Для сталежелезобетонных конструкций (конструкций, состоящих из стальных и железобетонных элементов) применяют листовую и профильную сталь по соответствующим нормам и стандартам (СНиП II-23)
Основным нормируемым и контролируемым показателем качества стальной арматуры является класс арматуры по прочности на растяжение класс арматуры по прочности на растяжение, обозначаемый: А — для горячекатаной и термо-механически упрочненной арматуры; В — для холоднодеформированной арматуры; К — для арматурных канатов
Класс арматуры соответствует гарантированному значению предела текучести (физического или условного) в МПа, устанавливаемому в соответствии с требованиями стандартов и технических условий, и принимается в пределах от А240 до А1500, от В500 до В2000 и от К1400 до К2500
Горячекатаную стержневую арматуру поставляют по ГОСТ 5781, термо-механически упрочненную стержневую арматуру – по ГОСТ 10884.
Сталь горячекатаную для армирования железобетонных конструкций подразделяют на классы в зависимости от механических свойств — класса прочности (установленного стандартом нормируемого значения условного или физического предела текучести, Н/мм2):
А240 (A-I), А300 (А-И), А400 (A-III), А600 (A-IV), А800 (A-V), А1000 (А-VI)
Арматурная сталь выпускается в стержнях или мотках: сталь класса А240 (A-I) изготавливают гладкой, сталь классов А300 (А-И), А400 (A-III), А600 (A-IV), А800 (A-V), А1000 (А-VI) – периодического профиля.
Арматурная сталь периодического профиля представляет собой круглые профили с двумя продольными ребрами и поперечными выступами, идущими по трехзаходной винтовой линии. Для профилей диаметром 6 мм допускаются выступы, идущие по однозаходной винтовой линии, диаметром 8 мм — по двухзаходной винтовой линии.
Арматурная сталь класса А300 (A-II), изготовленная в обычном исполнении и специального назначения АсЗОО (Ас-II) профилем должна иметь выступы, идущие по винтовым линиям с одинаковым заходом на обеих сторонах профиля
Сталь класса А400 (A-III), изготовленная профилем, приведенным на черт. 1, 6, и классов А600 (A-IV), А800 (A-V), А1000 (А-VI) профилем, приведенным на черт. 2, б, должна иметь выступы по винтовым линиям, имеющим с одной стороны профиля правый, а с другой — левый заходы.
Арматурная сталь специального назначения класса АсЗОО (Ас-II) имеет профили, приведенные на черт. 1, а или 2, а.
Профиль специального назначения изготовляется (черт. 2, а) по согласованию изготовителя с потребителем. Форма и размеры профилей, приведенных на черт. 2, а и б, могут уточняться.
По требованию потребителя сталь классов А300 (А-И), А400 (A-III), А600 (A-IV), А800 (A-V) изготавливают гладкой
Принятые обозначения классов дополняются индексами для указания при необходимости способа изготовления, особых свойств или назначения арматуры: термо-механически упрочненную стержневую арматурную сталь обозначают символом Ат, сталь специального назначения (северного исполнения) — Ас, термо-механически упрочненную сталь свариваемую обозначают буквой С (например,. Ат600С), а такую же сталь с повышенной стойкостью против коррозионного растрескивания под напряжением — буквой К (например, Ат1000К).
Арматурную термо-механически упрочненную сталь изготавливают с периодическим профилем по ГОСТ 10884 или по ГОСТ 5781. По согласованию с потребителем арматурную сталь класса прочности Ат800 и выше допускается изготовлять гладкой.
Номинальные диаметры стержней периодического профиля соответствуют номинальным диаметрам равновеликих по площади поперечного сечения круглых гладких стержней.
Арматурную горячекатаную сталь классов А240 (A-I) и А300 (A-II) диаметром до 12 мм и класса А400 (A-III) диаметром до 10 мм включительно изготовляют в мотках или стержнях, больших диаметров — в стержнях. Арматурную сталь классов А600 (AIV), А800 (A-V) и А1000 (А-VI) всех размеров изготовляют в стержнях, диаметром 6 и 8 мм — по согласованию с потребителем в мотках.
Стержни имеют стандартную длину от 6 до 12 м, по согласованию изготовителя с потребителем допускается изготовление стержней от 5 до 25 м
Характеристика арматурной стали
Номер профиля (номинальный диаметр стержня dн), мм | Площадь поперечного сечения стержня, см2 | Теоретическая масса 1 м профиля, кг | Предельные отклонения (ГОСТ 5781), % |
---|---|---|---|
6 | 0,283 | 0,222 | +9,0 …-7,0 |
8 | 0,503 | 0,395 | +9,0 …-7,0 |
10 | 0,785 | 0,617 | +5,0…-6,0 |
12 | 1,131 | 0,888 | +5,0…-6,0 |
14 | 1,540 | 1,210 | +5,0…-6,0 |
16 | 2,010 | 1,580 | +3,0 …-5,0 |
18 | 2,540 | 2,000 | +3,0 …-5,0 |
20 | 3,140 | 2,470 | +3,0 …-5,0 |
22 | 3,800 | 2,980 | +3,0 …-5,0 |
25 | 4,190 | 3,850 | +3,0 …-5,0 |
28 | 6,160 | 4,830 | +3,0 …-5,0 |
32 | 8,040 | 6,310 | +3,0 …-4,0 |
36 | 10,180 | 7,990 | +3,0 …-4,0 |
40 | 12,570 | 9,870 | +3,0 …-4,0 |
45 | 15,000 | 12,480 | +3,0 …-4,0 |
50 | 19,630 | 15,410 | +2,0…-4,0 |
55 | 23,760 | 18,650 | +2,0…-4,0 |
60 | 28,270 | 22,190 | +2,0…-4,0 |
70 | 38,480 | 30,210 | +2,0…-4,0 |
80 | 50,270 | 39,460 | +2,0…-4,0 |
Механические свойства арматурной стали
Класс арматурной стали | Предел текучести, Н/мм2 | Временное сопротивление разрыву, Н/мм2 | Относительное удлинение, % | Равномерное удлинение, % | Ударная вязкость, МДж/м2 | Испытание на изгиб в холодном состоянии (с-толщина оправки, d-диаметр стержня) |
---|---|---|---|---|---|---|
А240 (A-I) | 235 | 373 | 25 | - | - | 180°; с = d |
A300 (А-II) | 295 | 490 | 19 | - | - | 180°; с = 3d |
АсЗ00 (Ас-II) | 295 | 441 | 25 | - | 0,5 | 180°; с = d |
А400 (A-III) | 390 | 590 | 14 | - | - | 90°; с = 3d |
А600 (A-IV) | 590 | 883 | 6 | 2 | - | 45°; с = 5d |
А800 (A-V) | 785 | 1030 | 7 | 2 | - | 45°; с = 5d |
А1000 (А-VI) | 980 | 1230 | 6 | 2 | - | 45°; с = 5d |
По согласованию с потребителем допускается не проводить испытание на ударную вязкость арматурной стали класса АсЗ00 (Ас-II).
Для А600 (A-IV) диаметром 18 мм стали марки 80С норма изгиба в холодном состоянии устанавливается не менее 30° .
Для А240 (A-I) диаметром свыше 20 мм при изгибе в холодном состоянии на 180° с = 2d, для А300 (А-II) диаметром свыше 20 мм с = 4d.
На поверхности стержней, включая поверхность ребер и выступов, в соответствии с требованиями ГОСТ 5781 не должно быть трещин, раковин, плен и закатов
Механические свойства арматурной термомеханически упрочненной стали до и после электронагрева, а также результаты испытаний ее на изгиб должны соответствовать установленным требованиям
Механические свойства арматурной термомеханически упрочненной стали
Класс арматурной стали | Номинальные размеры, мм | Температура электронагрева, градус | Временное сопротивление разрыву, Н/мм2 | Предел текучести, Н/мм2 | Относительное удлинение, % | Испытание на изгиб в холодном состоянии, градус | Диаметр оправки (d – диаметр стержня) |
---|---|---|---|---|---|---|---|
Ат400 | 6-40 | - | 550 | 440 | 16 | 90 | 3d |
Ат500 | 6-40 | - | 600 | 500 | 14 | 90 | 3d |
Ат600 | 10-40 | 400 | 800 | 600 | 12 | 45 | 5d |
Ат800 | 10-32* | 400 | 1000 | 800 | 8 | 45 | 5d |
Ат1000 | 10-32 | 450 | 1250 | 1000 | 7 | 45 | 5d |
Ат1200 | 10-32 | 450 | 1450 | 1200 | 6 | 45 | 5d |
Примечание. * Для Ат800К — диаметры 18-32 мм
Маркировка и обозначения арматурной стали
Маркировка арматурной стали должна содержать:
• номинальный диаметр (номер профиля), мм;
• обозначение класса прочности;
• обозначение ее эксплуатационных характеристик — свариваемости (индекс С), стойкости против коррозионного растрескивания (индекс К).
Примеры условного обозначения арматурной стали различного класса прочности и технического назначения:
арматурная сталь диаметром 20 мм, класса прочности А300 (A-II): 20А300 ГОСТ 5781-82;
арматурная сталь диаметром 18 мм, класса прочности А240 (A-I): 18А240 ГОСТ 5781-82;
арматурная сталь диаметром 20 мм, класса прочности Ат800: 20Ат800 ГОСТ 10884-94;
то же, диаметром 10 мм, класса прочности Ат400, свариваемой (С): 10Ат400С ГОСТ 10884-94
то же, диаметром 16 мм, класса прочности Атб00, стойкой против коррозионного растрескивания (К): 16Атб00К ГОСТ 10884-94
Маркировка и упаковка горячекатаной стали для армирования железобетонных конструкций
Концы стержней из низколегированных сталей класса А600 (A-IV) должны быть окрашены красной краской, класса А800 (A-V) — красной и зеленой, класса А1000 (А-VI) — красной и синей. Допускается окраска связок на расстоянии 0,5 м от концов.
Стержни упаковывают в связки массой до 15 т, перевязанные проволокой или катанкой. По требованию потребителя стержни упаковывают в связки массой до 3 и 5 т.
На связки краска наносится полосами шириной не менее 20 мм на боковую поверхность по окружности (не менее 1/2 длины окружности) на расстоянии не более 500 мм от торца.
На мотки краска наносится полосами шириной не менее 20 мм поперек витков с наружной стороны мотка.
На неупакованную продукцию краска наносится на торец или на боковую поверхность на расстоянии не более 500 мм от торца.
На ярлыке, прикрепленном к каждой связке стержней, наносят условное обозначение класса по пределу текучести (например, А400) или принятое обозначение класса арматурной стали (например, A-III)
Маркировка и упаковка арматурной термо-механически упрочненной стали для железобетонных конструкций
Маркировка производится в соответствии с ГОСТ 10884 при прокатке или же при отсутствии прокатной маркировки несмываемой краской.
Маркировка при прокатке
Арматурная сталь периодического профиля имеет маркировку класса прочности и завода-изготовителя, наносимую при ее прокатке в виде маркировочных коротких поперечных ребер или точек на поперечных выступах.
Маркировочные короткие поперечные ребра высотой 0,5 мм, не выходящие за пределы габаритного размера по окружности диаметром d, располагают на поверхностях, примыкающих к продольным ребрам.
Маркировочные точки высотой, равной высоте поперечного выступа, представляют собой конусообразные утолщения на поперечных выступах
При отсутствии прокатной маркировки концы стержней или связки арматурной стали соответствующего класса должны быть окрашены несмываемой краской следующих цветов:
Ат400С — белой;
Ат500С — белой и синей;
Атб00 — желтой;
Атб00С — желтой и белой;
Атб00К — желтой и красной;
Ат800 — зеленой;
Ат800К — зеленой и красной;
Ат1000 — синей;
Ат1000К — синей и красной;
Ат1200 — черной.
К каждому мотку или связке стержней должен быть прочно прикреплен ярлык, на котором указывают:
Правила приемки и методы испытания арматуры установлены соответствующими стандартами и техническими условиями. Испытание на растяжение проводят по ГОСТ 12004, а испытание на изгиб – по ГОСТ 14019
Арматурная проволока
Холоднодеформированную арматуру (арматурную проволоку) диаметром от 3 до 12 мм изготавливают способом холодного волочения и подразделяют по форме поперечного сечения на гладкую и периодического профиля, а также по классам прочности: 500, 600, 1200, 1300, 1400, 1500. Класс прочности соответствует гарантированному значению условного предела текучести проволоки, МПа, с доверительной вероятностью 0,95
Расчетная площадь поперечного сечения и теоретическая масса 1000 м проволоки
Номинальный диаметр (номер профиля), мм | Площадь поперечного сечения, мм2 | Масса 1000 м, кг |
3,0 | 7,07 | 55,5 |
4,0 | 12,57 | 98,7 |
5,0 | 19,63 | 154,1 |
6,0 | 28,27 | 221,9 |
7,0 | 38,48 | 302,1 |
8,0 | 50,27 | 394,6 |
Примечание. Линейная плотность проволоки периодического профиля класса В500 не должна превышать следующих значений: диаметром 3 мм — 0,052 кг, диаметром 4 мм — 0,092 кг, диаметром 5 мм — 0.144 кг.
В условных обозначениях холоднодеформированная арматура (проволока) обозначается буквой В. Например, проволока диаметром 5 мм класса прочности 1400 обозначается: 5-В1400.
Пример условного обозначения проволоки номинальным диаметром 3,0 мм класса прочности 500;
Проволока 3-В500 ГОСТ 6727-80
В качестве ненапрягаемой арматуры применяют проволоку класса B500(Bp-I, В500С), которую изготовляют из низкоуглеродистой стали по ГОСТ 380, а для напрягаемой арматуры применяют проволоку гладкую и периодического профиля классов прочности 1200,1300, 1400 и 1500, которую производят из углеродистой конструкционной стали марок 65-85 по ГОСТ 14959. Проволоку класса В600, изготовляемую из стали марок СтЗкп и Ст5пс с термической обработкой, можно применять в качестве ненапрягаемой и напрягаемой арматуры
Марку стали для арматурной проволоки завод-изготовитель выбирает так, чтобы обеспечить заданные стандартами и техническими условиями механические свойства.
Высокопрочную арматурную проволоку в процессе изготовления подвергают низкотемпературному отпуску, в результате чего повышаются ее упругие свойства: развернутая из мотка и свободно уложенная проволока должна сохранять нормируемую прямолинейность.
Высокопрочную проволоку диаметром 7 и 8 мм изготовляют по разовым заказам, согласованным с заводом-изготовителем
Характеристика холоднотянутой проволоки
Класс арматурной проволоки | ГОСТ и ТУ | Класс прочности | Номи – нальный диаметр, мм | Разрывное усилие, кН | Усилие, соотв. пределу текучести, кН | Относи-тельное удлинение после разрыва на расчетной длине 100мм, % | Число перегибов на 180° | Диаметр оправки при испытании на изгиб на 180° в холодном сост., мм |
---|---|---|---|---|---|---|---|---|
В | ГОСТ 6727 | 500 | 3 | 3,9 | 3,5 | 2 | 4 | |
В | ГОСТ 6727 | 500 | 4 | 7,1 | 6,2 | 2,5 | 4 | |
В | ГОСТ 6727 | 500 | 5 | 10,6 | 9,7 | 3 | 4 | |
В | ТУ 14-4-1322-85 | 600 | 4 | 10,5 | 8 | 2,5 | 4 | |
В | ТУ 14-4-1322-85 | 600 | 4,5 | 13,2 | 10,2 | 2,7 | 4 | |
В | ТУ 14-4-1322-85 | 600 | 5 | 16,4 | 12,5 | 3 | 5 | |
В | ТУ 14-4-1322-85 | 600 | 6 | 22,6 | 18 | 4 | 6 | |
В | ГОСТ 7348 | 1500 | 3 | 12,6 | 106 | 4 | 9(8) | |
В | ГОСТ 7348 | 1400 | 4 | 21,4 | 18 | 4 | 7(6) | |
В | ГОСТ 7348 | 1400 | 5 | 32,8 | 27,5 | 4 | 5(3) | |
В | ГОСТ 7348 | 1400 | 6 | 47,3 | 39,7 | 5 | 30 | |
В | ГОСТ 7348 | 1300 | 7 | 60,4 | 50,7 | 6 | 35 | |
В | ГОСТ 7348 | 1200 | 8 | 74 | 62 | 6 | 40 |
Примечания:
В скобках приведены данные для проволоки периодического профиля.
Для гладкой стабилизированной проволоки диаметром 5 мм (ТУ 14-4-1362-85) усилие, соответствующее условному пределу текучести, равно 30,1 кН
Промышленностью освоено производство следующих новых видов арматурной проволоки:
стабилизированной гладкой высокопрочной проволоки диаметром 5 мм с повышенной релаксационной стойкостью;
низкоуглеродистой проволоки периодического профиля диаметром 4-6 мм повышенной прочности класса В600.
Проволока изготовляется в мотках массой 500-1500 кг. Допускается изготовление, проволоки в мотках массой 20-100 кг. Каждый моток должен состоять из одного отрезка проволоки. Проволока должна быть свернута в мотки не перепутанными рядами
Арматурные канаты
Арматурные канаты изготавливают из высокопрочной холоднотянутой проволоки. Для наилучшего использования прочностных свойств проволоки в канате шаг свивки принимают максимальным, обеспечивающим не раскручиваемость каната, обычно в пределах 10-16 диаметров каната
Механические свойства арматурных канатов
Марка каната | ГОСТ, ТУ | Класс прочности каната | Ø каната, мм | Ø проволоки, мм | Номин. плошадь поперечн. сечения каната, мм2 | Разрывное усилие каната, кН | Усилие при условном пределе текучести, кН | Относит. удлинение при разрыве, % | Теор. масса 1м, кг |
---|---|---|---|---|---|---|---|---|---|
К-7 | ГОСТ 13840 | 1500 | 6 | 2 | 22,7 | 40,6 | 34,9 | 4 | 0,173 |
К-7 | ГОСТ 13840 | 1500 | 9 | 3 | 51 | 93,5 | 79,5 | 4 | 0,402 |
К-7 | ГОСТ 13840 | 1500 | 12 | 4 | 90,6 | 164 | 139,5 | 4 | 0,714 |
К-7 | ГОСТ 13840 | 1400 | 15 | 5 | 141,6 | 232 | 197 | 4 | 0,714 |
К-19 | ТУ 14-4-22-71 | 1400 | 14,2 | 2,8 | 128,7 | 236,9 | 181,5 | 4 | 1,014 |
В процессе производства канаты К-7 и К-19 подвергают низкотемпературному отпуску. Согласно ТУ 14-4-1362-85 усилие, соответствующее условному пределу текучести, равно 30,1 кН
Маркировка и упаковка арматурной проволоки и канатов
Арматурную проволоку и канаты поставляют в не смазаном виде. Канаты поставляют на барабанах или в мотках, проволоку в мотках массой 500-1500 кг, равномерно перевязанных по окружности не менее чем в трех местах. Допускается изготовление проволоки в мотках массой 20-100 кг, перевязанных не менее чем в трех местах. Каждый моток должен состоять из одного отрезка проволоки.
По требованию потребителя моток массой 500-1500 кг должен иметь промежуточные вязки, расположенные внутри мотка. Мотки проволоки массой 20-100 кг связывают в бухты. К каждому мотку (бухте) должен быть прочно прикреплен ярлык, на котором указывают:
товарный знак или наименование и товарный знак предприятия-изготовителя ; условное обозначение проволоки; номер партии; клеймо технического контроля.
Правила приемки и методы испытания проволоки установлены соответствующими стандартами и техническими условиями. Испытание на растяжение проводят по ГОСТ 12004, испытание на перегиб по ГОСТ 1579, а испытание на изгиб — по ГОСТ 14019.
В качестве ненапрягаемой арматуры железобетонных конструкций следует применять:
а) стержневую арматуру классов А400 (A-III), Ат400С и Ат500С — для продольной и поперечной арматуры;
б) арматурную проволоку класса В500 — для поперечной и продольной арматуры;
в) стержневую арматуру классов А240(А-1), А300(А-II)и АсЗ00(Ас-II) — для поперечной арматуры, а также для продольной арматуры, если другие виды ненапрягаемой арматуры не могут быть использованы;
г) стержневую арматуру класса Ат600С — для продольной арматуры;
д) стержневую арматуру классов A600(A-IV), Ат600 и Ат600К — для продольной арматуры в вязаных каркасах и сетках;
е) стержневую арматуру классов A800(A-V), Ат800, Ат800К, A1000(A-VI), Ат 1000, Ат1000К, Ат1200 — для продольной сжатой арматуры, а также для продольной сжатой и растянутой арматуры при смешанном армировании конструкции (наличии в них напрягаемой и ненапрягаемой арматуры) в вязаных каркасах и сетках
Из-за хладноломкости запрещается применять арматуру классов А300 (A-II) марки стали Ст5пс (диаметром 18-40 мм) и класса А240(А-I) марки стали СтЗкп, А600 (A-IV) и выше при температуре ниже -30°С; класса А400 (A-III) при температуре ниже -40°С
Арматуру классов А400(А-III), Ат400С, Ат500С, Ат600С, В500, А240(А-1), А300(А-II) и Ас300(Ас-II) рекомендуется применять в виде сварных каркасов и сеток
Допускается использовать в сварных сетках и каркасах арматуру классов Ат600К (из стали марок 10ГС2 и 08Г2С) и Ат800 (из стали марки 20ГС) при выполнении крестообразных соединений контактно-точечной сваркой
Ненапрягаемая арматура классов А240(А-1), А300(А-II), А400(А-III), Ат400С, Ат500С, Ат600С хорошо сваривается контактной и дуговой сваркой; А600 (A-IV) и А800 (A-V) — только контактной сваркой.
В качестве напрягаемой арматуры предварительно напряженных конструкций следует применять стержневую арматуру классов A800(A-V), Ат800, Ат800К, A1000(A-VI), Ат1000, Ат1000К и Ат1200; высокопрочную арматурную проволоку и арматурные канаты.
В качестве напрягаемой арматуры также допускается применять стержневую арматуру классов A600(A-IV), Ат600, Ат600С, Ат600К
В качестве напрягаемой арматуры конструкций, предназначенных для эксплуатации в агрессивной среде, следует преимущественно применять арматуру класса A600(A-IV), а также классов Ат600К, Ат800К, Ат1000К и арматуру других видов в соответствии со СНиП 52-01-2003.
Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций должна применяться горячекатаная арматурная сталь класса Ас300(Ас-II) марки 10ГТ и класса А240(А-1) марок СтЗсп и СтЗпс, а также класса А240(А-1) по ТУ 14-2-736-87 (особенно для конструкций, предназначенных для применения в районах с расчетной температурой ниже -30°С). В случае, если возможен монтаж конструкций при расчетной зимней температуре ниже -40°С, для монтажных петель не допускается применять сталь марки СтЗпс, так как данная сталь является хладноломкой.
Для закладных деталей и соединительных накладок применяют, как правило, прокатную углеродистую сталь класса С38/23
При проектировании и производстве сборных железобетонных конструкций в ряде случаев следует учитывать величину модуля упругости арматуры
Расчетные значения модуля упругости арматуры
Класс арматуры | Модуль упругости Е, МПа |
А240(A-I), А300(A-II), Ас300(Ac-II), А400(А-III), Ат400С, Ат500С | 2,0 х 105 |
А600(A-IV), Ат600, Ат600С, АтбООК, А800(A-V), Ат800, Ат800К, А1000(A-VI), Ат1000, Ат1000К, Ат1200 | 1,9 х 105 |
В1200-1500 | 2,0 х 105 |
В500 | 2,0 х 105 |
В600 | 1,9 х 105 |
К-7, К-19 (К1400-К1500) | 1,8 х 105 |
Сравнительные технические характеристики и преимущества
композитной стеклопластиковой арматуры
Основные преимущества стеклопластиковой арматуры
Прежде всего,арматураиз полимерных строительных материалов, отличается высокой прочностью и достаточно низким удельным весом (меньше практически в четыре раза), если сравнивать с аналогичной арматурой, изготовленной из металла. К тому же показатель прочности на разрыв у композитной арматуры из стеклопластика в два с половиной раза превышает данный показатель у аналогов из металла. Эти свойства позволяют в значительной степени расширить область использованиястеклопластиковой арматуры. Сравнительные характеристики композитной арматуры АКП-СП и стальной арматуры A-III
Сравнительные технические характеристики композитной стеклопластиковой арматуры и стальной арматуры
|
Равнопрочная замена стальной металлической на композитную стеклопластиковую арматуру.
Понятие равнопрочной замены представляет собой замену арматуры произведенной из стали, на арматуру из композитных материалов, которая имеет такую же прочность и схожие прочие физико-механические показатели. Под равнопрочным диаметром стеклопластиковой арматуры, будем понимать ее такой наружный диаметр, при котором прочность будет равна прочности аналога из металла заданного диаметра.
Равнопрочная замена
Металлическая арматура класса A-III (A400C) | Арматура композитная полимерная стеклопластиковая (АКС) |
---|---|
6 | 4 |
8 | 5,5 |
10 | 6 |
12 | 8 |
14 | 10 |
16 | 12 |
18 | 14 |
20 | 16 |
Диаграмма растяжения. Определения предела текучести и предела прочности металлической арматуры
На рисунке 1 приведена кривая зависимости напряжения от деформации металлической арматуры.
Рисунок 1
На рисунке 2 приведено примерное расположение кривых зависимости напряжения
от деформации металлической и композитной арматуры (1).
Рисунок 2
Описание характерных точек диаграммы
σп- Наибольшее напряжение, до которого материал следует закону Гука, называется пределом пропорциональности. Предел пропорциональности зависит от условно принятой степени приближения, с которой начальный участок диаграммы можно рассматривать как прямую.
Упругие свойства материала сохраняются до напряжения, называемого пределом упругости σу, т.е это наибольшее напряжение, до которого материал не получает остаточных деформаций.
σт- предел текучести.
Под пределом текучести понимается то напряжение, при котором происходит рост деформации без заметного увеличения нагрузки. В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести условно принимается величина напряжения, при котором остаточная деформация составляет 0,2%.
Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит название предела прочности или временного сопротивления. Предел прочности также является условной величиной.
Единица измерения предела текучести и предела прочности - паскаль Па. Более удобно предел текучести и предел прочности измерять в мегапаскалях МПа.
Анализ графика:
- при малых нагрузках композитная арматура тянется лучше, чем металлическая.
- до того как в металле перестает действовать закон Гука, обе кривые почти прямолинейны.
- после того как метал начинает "течь", композитная арматура продолжает работать как раньше.
- после того как закон Гука перестал работать в композитной арматуре, стальная давно уже лопнула.
- композитная арматура почти не течет, а сразу лопается, это видно, когда косая прямая (1) очень быстро переходит в горизонтальную и прерывается.
- из графика видно, что композитная арматура выдержит намного большую нагрузку, чем металлическая.
- металлическая арматура вытянется и лопнет, когда при такой же нагрузке, композитная ведет себя намного лучше, так как график не меняет своего направления.
Физико-механические свойства арматурных сталей
⇐ ПредыдущаяСтр 3 из 9Следующая ⇒
Физико-механические свойства арматурных сталей зависят от химического состава стали, из которой сделана арматура, способа изготовления и обработки её.
Характеристики прочности и деформативности арматуры определяют по диаграмме , получаемой путём испытаний стандартных образцов. Арматурные стали условно подразделяются на «мягкие», основной гарантированной характеристикой которых является предел текучести σу, и «твёрдые» с основной гарантированной характеристикой в виде временного сопротивления разрыву σи.
Зависимость между напряжениями и деформациями при растяжении образцов горячекатаной арматуры из малоуглеродистой стали марки Ст3 («мягкая» сталь) определяется диаграммой (рис. 17, а).
Рис. 17. Диаграмма деформирования малоуглеродистой стали:
а – при растяжении; б – при сжатии
Поскольку при сжатии диаграмма деформирования стали существенно отличается от диаграммы при растяжении (рис. 17, 6), то для сжатых образцов с уверенностью можно говорить лишь о пределе текучести; величину временного сопротивления при сжатии установить практически невозможно.
Сталь марки Ст3 представляет собой почти чистое железо с содержанием различных примесей около 1% (из них углерода 0,14...0,22%). Эта сталь имеет физический предел текучести. Во избежание чрезмерных деформаций в конструкциях горячекатаная арматура может быть использована в них до напряжений σs < σу. Значит, основной характеристикой прочности для «мягких» сталей является σу, для «твёрдых» – σи.
Увеличение содержания углерода в арматурной стали марки Ст5 до 0,28...0,37% повышает её предел текучести и временное сопротивление (σу = 300 МПа и σи = 500 МПа) за счёт некоторого снижения пластичности (до δ≥19%, здесь δ – полное относительное удлинение образца при разрыве в %, включая длину шейки разрыва).
Увеличение содержания углерода в арматурной стали сверх 0,5% значительно снижает её пластические свойства и ухудшает свариваемость. Поэтому дальнейшее повышение σуи σигорячекатаной стали достигается легированием. В строительстве в основном применяются низколегированные арматурные стали с общим содержанием легирующих добавок обычно не более 2%. Однако, многие легирующие добавки, повышая прочность стали, одновременно снижают её деформативность, ухудшают свариваемость и др. полезные свойства, а также повышают стоимость.
В связи с этим для повышения прочности стали кроме легирования используется также термообработка. При этом сначала осуществляется закалка арматурной стали (нагрев до температуры 800...900°С и быстрое охлаждение), а затем отпуск (нагрев до температуры 300...400°С и медленное плавное охлаждение). Причём закалке могут быть подвергнуты стали, содержащие не менее 0,25% углерода.
Выносливость арматуры. От действия многократно повторяющейся нагрузки возможно усталостное разрушение арматуры при пониженном сопротивлении растяжению (меньшем предела текучести или предела прочности при однократном кратковременном загружении). Усталостное разрушение происходит внезапно и носит хрупкий характер (происходит без образования площадки текучести). Шейка в месте разрыва арматурного стержня не образуется.
Для исследования сопротивления арматуры при переменных напряжениях от действия многократно повторяющейся нагрузки на основании опытных данных строят кривую выносливости арматуры (рис. 18), на которой N – число циклов нагрузки-разгрузки до разрушения образца; σs – наибольшее значение периодически повторяющегося напряжения.
Предел прочности арматуры при действии многократно повторяющейся нагрузки называется пределом выносливости (это напряжение Rsf , соответствующее горизонтальному участку кривой выносливости). Rsfпредставляет собой то наибольшее напряжение, при котором как бы ни было велико N, разрушения не наступает.
|

Изображённая на рис. 18 кривая получается путём испытаний ряда одинаковых образцов, но при различных уровнях σs. Чем выше напряжение σs, тем после меньшего числа циклов происходит разрушение образца, если это напряжение превосходит предел выносливости Rsf. Испытание одного образца позволяет получить одну точку в системе осей σs – N. Начиная с N = 2...10 млн. циклов кривая выносливости имеет горизонтальный участок.
Предел выносливости арматурной стали в железобетонных конструкциях зависит от числа повторений нагрузки N, характеристики цикла , качества сцепления, наличия трещин в бетоне растянутой зоны и др.
При ρs = -1 (симметричный цикл) ; при ρs = 0 (пульсирующий цикл) .
Как правило, при действии многократно повторяющейся нагрузки конструкции армируют мягкими сталями.
1.2.4. Классификация арматуры по основным характеристикам. Сортамент арматуры
По виду применяемой арматуры различают железобетон с гибкой арматурой в виде стальных стержней круглого или периодического профиля сравнительно небольших диаметров (до 40 мм включительно) и конструкции с несущей или жёсткой арматурой. К жёсткой арматуре относится профильная прокатная сталь (уголкового, швеллерного и двутаврового сечения) и горячекатаные стержни диаметром более 40 мм. Основным видом арматуры является гибкая.
Вся арматура, используемая в железобетоне, по своим основным характеристикам делится на ряд классов, причём в один класс может входить арматура из сталей нескольких марок.
Основным нормируемым и контролируемым показателем качества стальной арматуры является класс арматуры по прочности на растяжение, обозначаемый:
А – для горячекатаной и термомеханически упрочненной арматуры;
В – для холоднодеформированной арматуры;
К – для арматурных канатов.
Класс арматуры соответствует гарантированному значению предела текучести (физического или условного) в МПа, устанавливаемому в соответствии с требованиями стандартов и технических условий, и принимается в пределах от A 240 до A 1500, от B 500 до B 2000 и от K 1400 до K 2500.
Классы арматуры следует назначать в соответствии с их параметрическими рядами, установленными нормативными документами.
Кроме требований по прочности на растяжение к арматуре предъявляют требования по дополнительным показателям, определяемым по соответствующим стандартам: свариваемость, выносливость, пластичность, стойкость к коррозионному растрескиванию, релаксационная стойкость, хладостойкость, стойкость при высоких температурах, относительное удлинение при разрыве и др.
К неметаллической арматуре (в том числе фибре) предъявляют также требования по щелочестойкости и адгезии к бетону.
Дадим краткие характеристики арматуры перечисленных классов.
Арматуру класса A240 изготовляют из стали марки Ст3. Она имеет гладкую цилиндрическую поверхность и применяется главным образом в качестве монтажной арматуры, хомутов, поперечных стержней; из неё изготавливают монтажные петли. Хорошо сваривается. Прокатывается, начиная с диаметра 6 мм (σv = 230 МПа, σu = 380 МПа и δ ≥ 25%).
Остальные классы стержневой арматуры представляют собой стальные стержни, поверхность которых имеет периодический профиль. Выступы, имеющиеся на поверхности стержней периодического профиля, резко (в 2...3 раза) повышают сцепление арматуры с бетоном и уменьшают ширину раскрытия трещин в бетоне растянутой зоны.
Например, для арматуры класса А300 периодический профиль имеет вид, показанный на рис. 19, а. Как видно из этого рисунка, арматура класса А300 представляет собой круглые стержни с часто расположенными выступами и с двумя продольными рёбрами.
Арматура класса А300 хорошо сваривается и используется в качестве рабочей в обычном железобетоне. Для её изготовления используются стали марок Ст5, 10ГТ, 18Г2С. Прокатывается, начиная с номинального диаметра 10 мм. Основные её характеристики σу = 300 МПа, σи = 500 МПа и δ ≥ 19%.
Рис. 19. Арматура периодического профиля:
а, б – стержневая; в – проволочная
Арматура класса A400 имеет на своей поверхности выступы, образующие «ёлочку» (рис. 19, 6). Эта арматура является основной рабочей арматурой в обычном железобетоне. Хорошо сваривается. Выпускается диаметрами 6, 8, 10 мм в мотках массой до 1300 кг и диаметрами 12...40 мм в прутках длиной до 13,2 м. Изготавливается из низколегированной стали марок 18Г2С, 35ГС, 25Г2С по усмотрению завода-изготовителя. Для неё σу = 400 МПа, σи = 600 МПа и δ≥ 14%.
В обозначениях марок стали отражается содержание в них углерода и легирующих добавок. Например, в марке стали 25Г2С первые две цифры обозначают содержание в стали углерода в сотых долях процента (0,25%), буква Г – что сталь легирована марганцем, цифра 2 – что его содержание может достигать 2%, а буква С – наличие в стали кремния. Буквой X обозначается хром, Т – титан, Ц – цирконий и т.д.
Обыкновенная низкоуглеродистая проволока класса В500 (ГОСТ 6727-80) выпускается диаметрами 3, 4, 5 мм. Изготовляют её волочением катанки из низкоуглеродистой стали группы Ст2 – Ст3 и используют преимущественно в сварных изделиях – сетках и каркасах; σи = 550...525 МПа в зависимости от диаметра, а σуи δ не нормируются.
Периодический профиль проволоки класса В500 (рис. 19, в) образуется расположенными на её поверхности вмятинами (рифами). Размеры вмятин зависят от диаметра проволоки. Проволока хорошо сваривается, что позволяет использовать её для изготовления арматурных изделий.
Класс арматурной стали при проектировании выбирается в зависимости от типа конструкции, условий ее возведения и эксплуатации.
При проектировании железобетонных конструкций пользуются сортаментом арматуры. Сортамент арматурной стали – это перечень типоразмеров каждого вида арматурных стержней, выпускаемых в настоящее время металлургической промышленностью. В стране существует единый сортамент для гладкой арматуры и арматуры периодического профиля. Он составлен по номинальным диаметрам стержней, выраженным в мм. Номинальный диаметр гладкого стержня совпадает с его фактическим диаметром. Для стержневой арматуры периодического профиля номинальный диаметр (номер) стержня, указанный в сортаменте, соответствует диаметру гладкого круглого стержня, равновеликого ему по площади поперечного сечения. Например, арматурный стержень, расчётный номинальный диаметр которого равен 20 мм (см. рис. 19, а, б), имеет наружный диаметр (по выступам) 22 мм и внутренний (по телу) – 19 мм, а высота выступов на его поверхности равна h = 0,5(d1–d) = 0,5(22–19) = 15 мм.
Сварные арматурные изделия
Сварка – это технологический процесс получения неразъёмных соединений металлических изделий (в наших случаях стальных).
По принципу создания сварного соединения различают сварку плавлением (дуговая, электродуговая, ванная) и сварку пластическим деформированием (контактная).
Сварка плавлением заключается в местном сплавлении соединяемых деталей. Источником теплоты чаще всего является электрический ток. Под действием высокой температуры электрической дуги, возникающей в процессе сварки (при металлических электродах она составляет около 2400°C на катоде и 2600°C на аноде – положительном полюсе источника тока), металл контактирующих поверхностей расплавляется, образуя общую сварочную ванну, после охлаждения которой остаётся сварочный шов.
Сварка пластическим деформированием (или контактная) заключается в местном нагреве соединяемых деталей до пластического или жидкого состояния при пропускании через них электрического тока большой силы с одновременным или последующим сильным сжатием, обеспечивающим взаимодействие атомов металла. Контактная сварка не требует дополнительного расхода металла для накладок и электродов. Прочное соединение образуется только за счёт расплавленного металла деталей.
Свариваемость сталей зависит от их химического состава, физико-механических свойств и термообработки перед сваркой. Особенно отрицательно влияет на качество сварного шва углерод. Углеродистые стали хорошо свариваются любым способом при содержании углерода до 0,25% и удовлетворительно при содержании углерода до 0,55% .
Сварные арматурные изделия (сетки и каркасы) применяют для снижения трудоёмкости армирования железобетонных конструкций. Кроме того, они обеспечивают лучшее сцепление арматурных стержней с бетоном.
Продольные и поперечные стержни сварных изделий, которые называются сетками или каркасами, в местах пересечений (обычно под прямым углом) соединяют между собой контактной точечной электросваркой либо с помощью дуговой электросварки (возможны и другие способы соединения).
Сварные сетки изготовляют чаще всего из обыкновенной арматурной холоднотянутой проволоки класса В500 диаметром 3, 4, 5 мм и стержневой арматуры класса A400 диаметром 6, 8, 10 мм. Они могут быть рулонные и плоские (рис. 20).
|
В рулонных сетках наибольший диаметр продольных стержней – 6 мм. Рабочей арматурой могут являться продольные или поперечные стержни сетки. Возможно также расположение рабочих стержней в двух направлениях. Ширина стандартной рулонной сетки ограничена размером 3,8м, длина – массой рулона 900...1300 кг. Длина сетки в рулоне составляет 50...100 м, поэтому при использовании в конструкциях сетки разрезают по месту.
Маркировка сетки из числа стандартных осуществляется следующим образом:
где С – сетка; D – диаметр продольных стержней сетки, мм; v – шаг продольных стержней, мм; d – диаметр поперечных стержней сетки, мм; и – шаг поперечных стержней, мм; А — полная ширина сетки, мм; L – длина сетки, мм; c1c2 – длина свободных концов продольных стержней, мм; k – длина свободных концов поперечных стержней, мм.
Сварные каркасы изготовляют плоскими и пространственными (рис. 21). Их применяют для армирования линейных элементов (балок, колонн и т.п.).
Плоские сварные каркасы (их называют иногда также сетками) состоят из продольных стержней и приваренных к ним поперечных (рис. 21, а). Концевые выпуски продольных и поперечных стержней каркаса должны быть не менее 0,5d1+d2или 0,5d2+d1и не менее 20 мм. Пространственные каркасы конструируют из плоских каркасов (рис. 21, б), в ряде случаев применяя соединительные стержни (рис. 21, в). Пространственные каркасы должны обладать достаточной жёсткостью для возможности их складирования, транспортирования и сохранения проектного положения в опалубочной форме при бетонировании.
Рис. 21. Сварные каркасы:
а – плоские; б – пространственный, образованный из плоских каркасов; в – то же, что б с применением соединительных стержней; 1 – продольные и поперечные стержни плоских каркасов; 2 – дополнительные продольные стержни; 3 – соединительные стержни пространственного каркаса
Качество точечной электросварки каркасов зависит от соотношения диаметров свариваемых поперечных и продольных стержней, которое должно быть не менее 1/3... 1/4. Наименьшее расстояние между осями свариваемых стержней также зависит от диаметров стержней.
Соединения арматуры
По длине стержни горячекатаной арматуры в обычном железобетоне соединяются, как правило, с помощью сварки, независимо от способа образования каркаса.
Стержни отдельных позиций сварного каркаса могут быть простыми, состоящими из цельного стержня одного диаметра, или, в целях экономии арматурной стали, составными, состоящими по длине из стержней двух-трёх различных диаметров (рис. 22), соединённых контактной стыковой сваркой. Составными могут быть только стержни из горячекатаной арматуры периодического профиля. Составные стержни часто применяют при армировании ригелей, колонн, подпорных стенок и т.п.
Все сварные соединения в зависимости от места их выполнения делятся на:
- сварные соединения, выполняемые в заводских условиях;
- сварные соединения, выполняемые в условиях стройплощадки.
|

Сварные соединения, выполняемые в заводских условиях. Различают два основных их типа:
А. Контактная электросварка встык (или контактная стыковая электросварка) предназначена для соединения заготовок арматурных стержней, приварки к стержням коротышей большего диаметра и т. п. Выполняется на специальных сварочных машинах. Процесс сварки состоит в том, что концы стержней в месте их контакта под действием электрического тока большой силы (до 100 кА) разогреваются до пластического или жидкого состояния с одновременным или последующим сильным сжатием, обеспечивающим взаимодействие атомов металла. В зоне сварки металл оплавляется, образуя небольшое утолщение (рис. 23, а). Прочность такого соединения получается даже выше, чем прочность самих стыкуемых стержней. Этим способом может производиться соединение стержней диаметром от 10 до 80 мм.
При соединении стержней арматуры классов A240, А300, A400, А500, A600, А800, A1000 разных диаметров должно соблюдаться условие d1 /d2 ≥ 0,85 (соотношение 0,3 допускается при использовании специальной технологии сварки), а наименьший диаметр стержня d1 = 10 мм.
Б. Контактная точечная электросварка используется для соединения отдельных стержней в местах их пересечения при изготовлении сеток и каркасов, В этих случаях применяют стержневую арматуру классов A240, A300, A400 и проволочную класса В500. Перекрещивающиеся стержни сдавливают с большой силой в зажимах сварочной машины, затем включают ток, который доводит металл между зажимами до оплавления, а прилегающую зону – до пластического состояния.
Качество точечной электросварки зависит от соотношения диаметров свариваемых поперечных и продольных стержней. Оно должно быть в пределах d1 /d2 = 0,25...1.
Сварные соединения, выполняемые в условиях стройплощадки. Ограничимся рассмотрением двух типов таких соединений.
А. При монтаже арматурных изделий и сборных железобетонных конструкций для соединения встык как горизонтальных, так и вертикальных стержней (или выпусков) арматуры классов A240, A300, A400 диаметром 20 мм и более применяют электродуговую ванную сварку в съёмных инвентарных медных формах или на стальной скобе-подкладке (рис. 23, б). Принцип электродуговой сварки основан на образовании электрической дуги между свариваемым металлом и электродом. В зазор 10... 15 мм между свариваемыми стержнями помещается гребёнка электродов. При прохождении электрического тока между гребёнкой и формой возникает электрическая дуга. В результате этого образуется ванна расплавленного металла, которая разогревает и плавит торцы стыкуемых стержней. При этом расплавленный металл электродов и стержней образует сварной шов.
Б. Если диаметр соединяемых стержней менее 20 мм, то применяют дуговую сварку стержней четырьмя фланговыми швами с использованием круглых накладок (рис. 23, в). Этим способом могут соединяться стержни диаметром от 10 до 80 мм, начиная от класса A240 до класса A500 включительно. Допускается применять и односторонние сварные швы с удлинёнными накладками (рис. 23, г). При этом должны быть соблюдены следующие требования к размерам сварного шва: b≥ 10 мм и b≥ 0,5d; h ≥ 4 мм и h ≥ 0,25d, где b – ширина шва; h – глубина шва (рис. 23, д).
Соединение стержней в тавр с пластиной толщиной δ = 0,75d (из листовой или полосовой стали) выполняют автоматической дуговой сваркой под флюсом (рис. 23, е). Соединение внахлёстку арматурных стержней диаметром 8...40 мм с пластиной или плоскими элементами проката выполняют дуговой сваркой фланговыми швами (рис. 23, ж).
Сварные соединения способствуют рациональному расходу стали и использованию отходов арматуры.
Рис. 23. Сварные стыковые соединения арматуры:
а – контактная электросварка встык; б – дуговая ванная сварка в инвентарной форме; в – дуговая сварка с накладками с четырьмя фланговыми швами; г – то же, с двумя фланговыми швами; д – размеры сварного шва; е – сварное соединение в тавр стержней с пластиной; ж – сварное соединение внахлёстку стержня с пластиной
Стыки арматуры внахлёстку без сварки. Стержневую арматуру классов A240, А300, A400 допускается соединять внахлёстку без сварки с перепуском концов стержней на 20...50 диаметров в тех местах железобетонных элементов, где прочность арматуры используется не полностью. Однако такой вид соединения стержневой арматуры вследствие излишнего расхода стали и несовершенства конструкции стыка применять не рекомендуется.
Внахлёстку можно выполнять стыки сварных и вязаных каркасов и сеток в направлении рабочей арматуры (рис. 24).
При этом диаметр рабочей арматуры должен быть не более 36 мм. Длина перепуска (нахлёстки) стыкуемых стержней, каркасов, сеток в рабочем направлении определяется расчётным путём по формуле (1.25).
Рис. 24. Стыки сварных сеток в направлении рабочей арматуры:
а – при гладких стержнях, когда поперечные стержни расположены в одной плоскости; б, в – то же, но поперечные стержни расположены в разных плоскостях; г – при стержнях периодического профиля, когда в пределах стыка поперечные стержни отсутствуют в одной из стыкуемых сеток; д – то же, когда в пределах стыка поперечные стержни отсутствуют в обеих стыкуемых сетках; l – длина перепуска сеток; d, d1– соответственно диаметры рабочей и распределительной арматуры
Поперечные стержни соединяемых сеток могут располагаться в разных плоскостях (рис. 24, б, в) или в одной плоскости (рис. 24, а). В каждой из соединяемых в растянутой зоне сеток на длине нахлёстки должно быть расположено не менее двух поперечных стержней, приваренных ко всем продольным стержням сеток. Такие же типы стыков применяются и для стыковки внахлёстку сварных каркасов с односторонним расположением рабочих стержней из всех видов арматуры; при этом на длине стыка устанавливают дополнительные хомуты или поперечные стержни с шагом не более 5 диаметров продольной арматуры. Если рабочей арматурой сеток являются стержни периодического профиля, то одна из стыкуемых или обе сетки в пределах стыка выполняются без приваренных поперечных стержней (рис. 24, г, д).
Стыки сварных сеток в нерабочем направлении (когда соединяется распределительная арматура) также выполняются внахлёстку (рис. 25).
Длину перепуска (считая между крайними рабочими стержнями сетки) принимают равной 50 мм при диаметре распределительной арматуры до 4 мм и равной 100 мм при диаметре распределительной арматуры более 4 мм. При диаметре рабочей арматуры 16 мм и более сварные сетки в нерабочем направлении допускается укладывать впритык друг к другу, перекрывая стык специальными стыковыми сетками, укладываемыми с перепуском в каждую сторону не менее 15 диаметров распределительной арматуры и не менее 100 мм (рис. 25, в). Стыки плоских каркасов, как и сеток, в конструкциях следует располагать вразбежку.
Рис. 25. Стыки сварных сеток в направлении нерабочей (распределительной) арматуры:
а – внахлёстку с расположением рабочих стержней в одной плоскости; б – то же, с расположением рабочих стержней в разных плоскостях; в – стык впритык с наложением дополнительной стыковой сетки; d, d1 – соответственно диаметры рабочей и распределительной арматуры; 1 – рабочая арматура; 2 – распределительная арматура
Вязаные каркасы и сетки в настоящее время применяют редко, так как при использовании вязаных изделий существенно повышается трудоёмкость. Однако в случае применения вязаных изделий исключается концентрация напряжений, которая при сварных изделиях возникает в зонах точечной сварки, а также устраняется опасность пережога поперечных стержней, что иногда наблюдается в сварных изделиях. В вязаных сетках и каркасах соединение стержней между собой осуществляется с помощью вязальной (отожжённой) проволоки диаметром 0,8...1 мм.
Железобетон
Общие сведения
Введение в бетон стальной арматуры заметно меняет его физико-механические свойства. Бетон и арматура в железобетоне оказывают положительное влияние друг на друга. Так, например, вследствие сцепления арматуры с бетоном усадка и ползучесть в железобетоне протекают несколько иначе, чем в неармированном бетоне.
Напряженное состояние железобетонных конструкций обусловливается, во-первых, действием внешней нагрузки и, во-вторых, процессом перераспределения внутренних усилий, вызванным тем, что при совместной работе двух материалов арматура становится внутренней связью, препятствующей свободному проявлению усадки и ползучести бетона.
Механические свойства железобетона зависят от соответствующих свойств бетона и арматуры, но не всегда совпадают с ними.
Например, появление трещин в растянутой зоне бетонной балки приводит к её разрушению, в то время как для железобетонной балки это, как правило, не опасно. Сжатый стальной элемент при достижении предела текучести теряет несущую способность, а в сжатой железобетонной колонне вследствие ползучести бетона при эксплуатационных нагрузках арматура может быть напряжена на сжатие до предела текучести, но конструкция работает нормально. Из этих примеров видно, что механические свойства железобетона требуют самостоятельного рассмотрения.
Содержание арматуры
Нормами установлены минимальные проценты армирования (μs,тiп)для сечений железобетонных элементов. Их величины назначаются в зависимости от характера работы элементов и их гибкости и колеблются в пределах от 0,05 до 0,25%. Если μs < μs,тiп, то конструкцию при расчёте следует рассматривать как чисто бетонную. Из экономических соображений процент армирования железобетонных конструкций обычно не превышает 2...3%. С изменением μsменяется не только несущая способность элемента, но и характер его разрушения.
Значение трещиностойкости
Существенным недостатком железобетона является появление трещин в растянутых зонах бетона при нагрузках даже ниже эксплуатационных. Это объясняется малой растяжимостью бетона.
Между долговечностью и трещиностойкостью железобетонных конструкций существует тесная связь. Поэтому существенно важным является вопрос о том, при каком напряжении в арматуре появляются первые трещины в растянутом бетоне. Для ответа на него воспользуемся опытными данными о предельной растяжимости бетона, которая составляет в среднем = 0,00015 = = 15-10-5 относительных единиц.
При достаточно хорошем и непрерывном по длине арматуры сцеплении считают, что до появления трещин деформации бетона и арматуры в любой точке по поверхности их контакта равны, т.е. .
Следовательно, в момент, предшествующий появлению трещины, арматура и бетон работают совместно и
При таких деформациях арматура любого класса работает ещё упруго и напряжения в ней определяются по закону Гука:Если σ s > 30 МПа, то считаем, что в растянутом бетоне появляются трещины. Следовательно, для получения трещиностойкой конструкции требуется значительно ограничить использование прочности арматуры при растяжении (имеется ввиду обычный железобетон, а не предварительно напряжённый). Например, в арматуре из стали класса A240 для обеспечения трещиностойкости конструкции приходится допускать растягивающие напряжения, составляющие лишь примерно 13% от предела текучести.
Поэтому в обычных железобетонных конструкциях в большинстве случаев приходится мириться с появлением трещин для того, чтобы повысить степень использования арматуры и иметь возможность применять арматуру более высоких классов. Однако и при этом все равно исключается возможность эффективного использования арматуры из высокопрочных сталей, начиная с класса A600 и выше, так как высокие напряжения, которые в ней можно допускать, сопровождаются значительными деформациями, т.е. образованием недопустимых по ширине раскрытия трещин. Это очень неприятное обстоятельство, поскольку прочность этих сталей растёт гораздо быстрее, чем стоимость, и их использование с экономической точки зрения является целесообразным.
Видимые волосяные трещины шириной примерно 0,05 мм появляются в бетоне при нагрузках, меньших эксплуатационных, в зонах возникновения наибольших растягивающих напряжений. При возрастании нагрузки эти трещины раскрываются. Приближенно можно считать, что при напряжениях в арматуре порядка σ s = 200...250 МПа ширина раскрытия трещин находится в пределах = 0, 2...0,3 мм. Наличие трещин открывает доступ к арматуре атмосферной влаге и агрессивным газам, что при определённой ширине раскрытия может вызвать коррозию. Поэтому ширина раскрытия трещин в период эксплуатации железобетонных конструкций должна быть ограничена. Предельно допустимая ширина раскрытия трещин, при которой еще обеспечивается сохранность арматуры, устанавливается в зависимости от условий работы конструкции, вида применяемой арматуры, продолжительности действия нагрузки и не должна превышать 0,3 мм (считая по оси арматурных стержней) при длительном их раскрытии и 0,4 мм — при непродолжительном. При такой ширине раскрытия трещин напряжения в арматуре достигают примерно σ s = 250...300 МПа.
Расчет по раскрытию трещин производят из условия ,
где аcrc– ширина раскрытия трещин от действия внешней нагрузки;
аcrc,ult – предельно допустимая ширина раскрытия трещин.
Значения аcrc,ult принимают равными:
а) из условия обеспечения сохранности арматуры:
– классов А240-А600, В500:
0,3 мм – при продолжительном раскрытии трещин;
0,4 мм – при непродолжительном раскрытии трещин;
– классов А800, А1000, а также Вр1200-Вр140, К1400, К1500 (К-19) и К1500 (К-7) диаметром 12 мм:
0,2 мм – при продолжительном раскрытии трещин;
0,3 мм – при непродолжительном раскрытии трещин;
– классов Вр1500, К1500 (К-7) диаметром 6 и 9 мм:
0,1 мм – при продолжительном раскрытии трещин;
0,2 мм – при непродолжительном раскрытии трещин;
б) из условия ограничения проницаемости конструкций:
0,2 мм – при продолжительном раскрытии трещин;
0,3 мм – при непродолжительном раскрытии трещин.
Ширину раскрытия трещин(аcrc) определяют исходя из взаимных смещений растянутой арматуры и бетона по обе стороны трещины на уровне оси арматуры и принимают:
- при продолжительном раскрытии аcrc= аcrc,1;
- при непродолжительном раскрытии аcrc = аcrc,1+ аcrc,2_– аcrc,3,
где аcrc,1 – ширина раскрытия трещин от продолжительного действия постоянных и временных длительных нагрузок;
аcrc,2 – ширина раскрытия трещин от непродолжительного действия постоянных и временных (длительных и кратковременных) нагрузок;
аcrc,3 – ширина раскрытия трещин от непродолжительного действия постоянных и временных длительных нагрузок.
Читайте также:
Механические свойства и классификация арматурных сталей.
Прочностные показатели арматурных сталей рассматриваются на диаграмме σ – ε (рис. 9).
Деформативность арматуры оценивается по удлиннению (деформации) арматуры (%) до разрыва. Деформативность арматуры уменьшается с повышением прочности: для стержневой арматуры оценивается по физическому пределу текучести деформации составляют от 25 до 14%, оцениваемых по условному пределу текучести 8-5%, для проволочной арматуры - 6-4%.
Модуль упругости стали находится в пределах
Еs=(1,7÷ 2,1)·105Мпа.
Для арматурной стали характерно проявление пластических свойств во времени (ползучесть), а также релаксаций напряжений.
Релаксация стали – уменьшение напряжения при постоянной деформации с течением времени. Наибольшей релаксацией обладает арматура из твердых (прочных) сталей и поэтому релаксация имеет очень большое значение для предварительно напряженных конструкций. В мягких горячекатаных сталях релаксация незначительна и в расчетах не учитывается. Арматура в зависимости ее основных характеристик (прочность, деформативность и др.) делится на классы. Один и тот же класс арматуры включает арматуру, изготовляемую из сталей разных марок.
Классы арматуры.
Основным показателем качества арматуры, который нормируется, является класс арматуры по прочности на растяжение – это значение предела текучести (физического или условного) в МПа, устанавливаемого в соответствии с требованиями стандартов. Пределы прочности классов по СНиП-52-01:
- для стержневой арматуры – от А240 до А1500;
- для проволочной – от В500 до В2000;
- для канатов – от К1400 до К2500.
В настоящее время осуществляется переход на нормы проектирования железобетонных конструкций СНиП-52-01-2003.
Нормы построены так:
1. Выпущен СНиП 52-01 – основные положения;
2. В развитие этих норм предусмотрен выпуск сводов Правил, примерный перечень которых приведен в приложении к СНиП-52-01-2003, всего предусмотрено разработать 17 сводов Правил. Пока выпущен только СП-52-101-2003 «Бетонные и железобетонные конструкции из тяжелого бетона без предварительного напряжения арматуры».
Для железобетонных конструкций, проектируемых в соответствии с требованиями свода Правил СП-52-101, следует предусматривать арматуру:
- гладкую класса А240;
- периодического профиля горячекатаную и термически упрочненную;
- периодического профиля классов: А300, А400, А500;
- периодического профиля проволочную класса В500.
Нормативные и расчетные сопротивления арматуры.
Основной прочностной характеристикой арматуры является нормативное значение сопротивления растяжению Rs,n, принимаемое в зависимости от класса арматуры по табл.4.
Таблица 4.
Класс арматурыпо СП-52-101 | А240 | А300 | А400 | А500 | В500 |
Номинальный диаметр, мм | 6-40 | 10-70 | 6-40 | 6-40 | 3-12 |
Нормативные сопротивления растяжению Rs,n и расчетные сопротивления растяжению для предельных состояний второй группы Rs,ser, МПа | |||||
Соответствует классу по СНиП 2.03.01 | А-I | А-II | А-III | А-IV | Вр-I |
Расчетные значения сопротивления арматуры растяжению Rs для предельных состояний первой группы определяют по формуле
, | (23) |
де gs – коэффициент надежности по арматуре, принимаемый равным:
1,1 - для арматуры классов А240, А300 и А400;
1,15 - для арматуры класса А500;
1,2 - для арматуры класса В500.
Таблица 5. Расчетные сопротивления арматуры
Арматура классов | Расчетные значения сопротивления арматуры для предельных состояний первой группы, МПа | ||
растяжению | сжатию, Rsc | ||
продольной, Rs | поперечной (хомутов и отогнутых стержней), Rsw | ||
А240 | |||
А300 | |||
А400 | |||
А500 | |||
В500 |
Расчетные сопротивления арматуры по СНиП2.03.01-84 можно принимать по М.У. «Материалы железобетонных конструкций», изд.
Арматурные изделия.
Арматурные стержни длиной до 12м применяются как самостоятельно, так и в арматурных изделиях. Арматурная проволока поставляется в бухтах и применяется в вязаных изделиях и в сварных сетках и каркасах.
Арматурные каркасы состоят из продольных и поперечных стержней, соединяемых сваркой. Продольные стержни в плоском каркасе располагают в один или в два ряда, а по отношению к поперечным стержням могут иметь одностороннее или двустороннее расположение.
Рекомендуется применять каркасы с односторонним расположением стержней, т.к. в этом случае улучшаются условия сварки и сцепление арматуры с бетоном (рис. 11).
Из плоских каркасов образуют пространственные каркасы путем сварки их специальной сварочной машиной или дуговой электросваркой (рис. 12).
Качество сварки определяется в зависимости от соотношения диаметров свариваемых стержней.
Соотношение диаметров продольных (D) и поперечных (d) стержней (рис. 13) с учетом требований сварки принимается по таблице 6.
Таблица 6.
D, мм | 3-12 | 14,16 | 18,20 | 25-32 | ||
d, мм | ≥3 | ≥4 | ≥5 | ≥6 | ≥8 | ≥10 |
Сварные сетки.
Арматурные сетки бывают рулонные и плоские. Как в тех, так и в других различают продольную и поперечную арматуру. В зависимости от расположения арматуры в конструкции в качестве рабочей арматуры может назначаться как продольная арматура, так и поперечная.
Рулонные сетки имеют разную ширину (расстояние между крайними продольными стержнями), а длина рулона определяется весом поставляемого рулона (от 900 до 1300 кг).
|

Для изготовления сварных сеток используют обыкновенную проволоку диаметром 3 -7мм и стержневую арматуру класса А400 диаметром 6-12мм. В рулонных сетках наибольший диаметр продольных стержней 7 мм. Это ограничение обусловлено необходимостью сгибать стержни при сворачивании в рулоны.
Плоские сетки выпускают длиной до 3м.
Ширина сеток как рулонных, так и плоских ограничивается размером 3800мм.
Марка сетки.
Параметры указываются в обозначении марки сетки:
где С – сетка.
Если с1=с2 или с1=с2=k, то указывается только значение с1. Если с1=с2=k=25, то и значение с1 опускается.
Арматурные проволочные изделия.
Напрягаемую арматуру предварительно напряженных конструкций изготавливают из отдельных проволок объединяемых в арматурные изделия – канаты и пучки.
Наибольшее применение находят семипроволочные канаты из проволоки диаметром 3, 4, 5мм (рис 16).
Обозначают такие канаты в зависимости от их диметра и количества использованных проволок: 9К7, 12К7, 15К7.
Читайте также:
ЗНАЕТЕ ЛИ ВЫ? |
⇐ ПредыдущаяСтр 10 из 38Следующая ⇒ 7.37 Нормативные значения прочности арматуры гарантируют с обеспеченностью не менее 0,95, нормативные значения деформационных характеристик принимают равными их средним значениям. Основной прочностной характеристикой стержневой арматуры при растяжении (сжатии) является нормативное значение сопротивления Rsn, равное значениям физического предела текучести или условного, соответствующего остаточному удлинению, равному 0,2 %. Для гладкой проволочной арматуры класса В по ГОСТ 7348 и арматурных канатов К7 по ГОСТ 13840 в качестве нормативного значения сопротивления принимаются напряжения, соответствующие 0,95 условного предела текучести; для проволоки периодического профиля класса Вр по ГОСТ 7348 - 0,9 условного предела текучести. Указанные характеристики определяют по действующим стандартам на арматурные стали. Расчетные прочностные характеристики арматуры на растяжение (расчетные сопротивления) определяют делением нормативных значений на соответствующий коэффициент надежности по материалу (устанавливаемый в зависимости от вида и класса арматуры, группы предельных состояний) и умножением на коэффициент условий работы по назначению. Для предельных состояний первой группы коэффициенты надежности по материалу приведены в таблице 7.15; коэффициенты условий работы по назначению принимают равными: для железнодорожных мостов - 0,90, для автодорожных мостов - 0,95. Для предельных состояний второй группы коэффициенты надежности по материалу и коэффициенты условий работы принимают равными 1,0. Расчетные сопротивления растяжению арматурных сталей следует принимать по таблице 7.16. 7.38 Расчетные сопротивления сжатию арматуры Rsc, Rpc принимают равными расчетным сопротивлениям растяжению Rs, Rp, но не более 400 МПа при действии кратковременной нагрузки и 500 МПа при действии остальных нагрузок - для всех видов арматуры, включая напрягаемую, имеющую сцепление с бетоном, и нулю - для напрягаемой арматуры, не имеющей сцепления. Таблица 7.15
Таблица 7.16
Коэффициенты условий работы арматуры 7.39 При расчете арматуры на выносливость расчетные сопротивления арматурной стали растяжению для ненапрягаемой Rsf и напрягаемой Rpf арматуры следует определять по формулам:
где mas1, map1 - коэффициенты условий работы арматуры, учитывающие влияние многократно повторяющейся нагрузки; Rs, Rp - расчетные сопротивления арматурной стали растяжению, принимаемые по таблице 7.16; ερs, ερp - коэффициенты, зависящие от асимметрии цикла изменения напряжений в арматуре ρ = σmin/σmax, приведены в таблице 7.17; βρw - коэффициент, учитывающий влияние на условия работы арматурных элементов наличия сварных стыков или приварки к арматурным элементам других элементов, приведен в таблице 7.18. Таблица 7.17
Окончание таблицы 7.17
7.40 При расчете растянутой поперечной арматуры (хомутов и отогнутых стержней) в наклонных сечениях на действие поперечной силы к расчетным сопротивлениям растяжению арматурной стали, указанным в таблице 7.16, вводятся коэффициенты условий работы арматуры: ma4 = 0,8 - для стержневой арматуры; mа4 = 0,7 - для арматуры из высокопрочной проволоки, арматурных канатов К7 и стальных канатов со спиральной и двойной свивкой и закрытых. Если в сварных каркасах диаметр хомутов из арматурной стали класса А400 менее 1/3 диаметра продольных стержней, то учитываемые в расчете на поперечную силу напряжения в хомутах не должны превышать, МПа: 245 - при диаметре хомутов 6 и 8 мм; 255 - то же, 10 мм и более. Таблица 7.18
7.41 Для арматурной стали классов А600 и А800 при применении стыков, выполненных контактной сваркой без продольной механической зачистки, и стыков на парных смещенных накладках к расчетным сопротивлениям растяжению, указанным в таблице 7.16, вводится коэффициент условий работы арматуры ma5 = 0,9. Для арматурной стали классов А240, А300 и А400 при наличии стыков, выполненных контактной сваркой, ванным способом на удлиненных или коротких подкладках, на парных смещенных накладках, расчетные сопротивления растяжению следует принимать такими же, как для арматурной стали, не имеющей стыков. 7.42 При расчете по прочности нормальных сечений в изгибаемых конструкциях для арматурных элементов (отдельных стержней, пучков, канатов), расположенных от растянутой грани изгибаемого элемента на расстоянии более чем 1/5 высоты растянутой зоны сечения, к расчетным сопротивлениям арматурной стали растяжению допускается вводить коэффициенты условий работы арматуры
где (h - х) - высота растянутой зоны сечения; а ≥ 0,2 (h - x) - расстояние оси растянутого арматурного элемента от растянутой грани сечения. 7.43 При перегибе стальных канатов со спиральной или двойной свивкой вокруг анкерных полукруглых блоков диаметром D менее 24d (d - диаметр каната) к расчетным сопротивлениям канатов растяжению при расчетах на прочность должны вводиться коэффициенты условий работы канатов ma10, которые при отношениях D/d от 8 до 24 допускается определять по формуле
При перегибах вокруг блоков диаметром D менее 8d коэффициенты условий работы канатов следует назначать по результатам опытных исследований. 7.44 При расчетах по прочности оцинкованной высокопрочной гладкой проволоки класса В диаметром 5 мм к расчетным сопротивлениям проволоки растяжению по таблице 7.16 следует вводить коэффициенты условий работы арматуры ma11, равные: 0,94 - при оцинковке проволоки по группе С, отвечающей среднеагрессивным условиям среды; 0,88 - то же, по группе Ж, отвечающей жесткоагрессивным условиям среды. 7.45 На всех стадиях работы железобетонной конструкции, на которых арматура не имеет сцепления с бетоном, арматура, не имеющая сцепления с бетоном, должна удовлетворять требованиям по предельным состояниям первой группы, включая требования по расчету на выносливость, и второй группы, предъявляемым в соответствии с разделом 8. При расчетах на прочность напрягаемых элементов на осевое растяжение на стадии создания в конструкции предварительного напряжения,. а также на стадии монтажа до объединения арматуры с бетоном (омоноличивание напрягаемой арматуры) следует применять расчетные сопротивления арматурной стали растяжению с коэффициентами условий работы, равными: 1,10 - для стержневой арматурной стали, а также арматурных элементов из высокопрочной проволоки; 1,05 - для арматурных канатов класса К7, а также стальных канатов со спиральной и двойной свивкой и закрытых. При этом, если проектом предусмотрен контроль процесса натяжения механическим способом (по манометру) и по вытяжке, коэффициент надежности по нагрузке разрешается принимать равным 1,0. Для отдельных видов напрягаемой арматуры и конкретных производителей, при соответствующем технико-экономическом обосновании и при условии проведения соответствующих испытаний, регламентируемых 7.33, разрешается применять иные коэффициенты, больше указанных выше, но такие, чтобы расчетные сопротивления на этих стадиях не превышали 80 % временного, но не выше нормативного сопротивления растяжению. При этом коэффициент надежности по нагрузке при определении усилий в напрягаемой арматуре принимается равным 1,10 и может быть понижен до значения 1,05 при условии, что проектом предусмотрен двойной контроль и допускаемое отклонение фактических значений усилия и вытяжки от проектных отличается не более 5 % для каждого напрягаемого элемента или группы элементов при групповом натяжении. Расчетные характеристики для стальных изделий 1.46 Для стальных изделий железобетонных мостов и труб, представляющих отдельные их конструктивные детали (опорные части, элементы шарниров и деформационных швов, упорные устройства и т.д.). и для стальных закладных изделий из листового и фасонного проката расчетные сопротивления следует принимать такими же, как для элементов стальных конструкций мостов (см. раздел 8). Расчетные сопротивления для арматурных стержней, анкеруемых в бетоне, следует принимать в соответствии с указаниями, относящимися к арматуре. Характеристики деформативных свойств арматуры и отношение модулей упругости 7.47 Предельные значения относительных деформаций растянутой арматуры (при расчетах по предельным деформациям) следует принимать равными: - для ненапрягаемой арматуры - 0,025; - для напрягаемой арматуры - 0,015. Значения модуля упругости арматуры следует принимать по таблице 7.19. Таблица 7.19
7.48 Во всех расчетах элементов мостов, производимых по формулам упругого тела, кроме расчетов мостов с ненапрягаемой арматурой на выносливость и на трещиностойкость следует использовать отношения модулей упругости n1 (Es/Eb или Ер/Eb), определяемые по значениям модулей, приведенным для арматуры в таблице 7.19 и для бетона в таблице 7.11. При расчетах элементов мостов с ненапрягаемой арматурой на выносливость и на трещиностойкость, при определении напряжений и геометрических характеристик приведенных сечений площадь арматуры учитывается с коэффициентом отношения модулей упругости n', при котором учитывается виброползучесть бетона. Значения n' следует принимать при бетоне классов: В20............................................................................ 22,5; В22,5 и В25............................................................... 20; В27,5......................................................................... 17; В30 и В35.................................................................. 15; В40 и выше............................................................... 10. Читайте также: |
Нормы арматуры
Стандарты, касающиеся армирования и предварительного напряжения бетона:
EN 10138 - Предварительно напряженная сталь
Стали предварительного напряжения в четырех частях:
- EN 10138-1. Стали предварительного напряжения. Общие требования
- EN 10138-2. Стали предварительного напряжения. Проволока
- EN 10138-3. Стали предварительного напряжения. Strand
- EN 10138-4. Стали предварительного напряжения.Бары
Эти детали в настоящее время находятся в разработке.
EN 10080: Сталь для армирования бетона, сварная, ребристая арматурная сталь
BS EN 10080: 2005
Свариваемая сталь для армирования бетона стала предметом европейского стандарта BS EN 10080. Этот стандарт много лет ходил вперед и назад в поисках прагматического соглашения между европейцами о том, как стандартизировать арматуру. Другими словами, потребовалось много времени, чтобы перейти от обязательного стандарта (который Европейская комиссия попросила CEN подготовить) к гармонизированному стандарту.В 2008 году его пришлось отменить как гармонизированный стандарт, поскольку не были соблюдены законодательные требования некоторых стран в отношении дополнительных свойств арматуры. Однако он был внедрен в Великобритании в конце 2005 года, и его последующая отмена не повлияла на BS 4449 и т. Д.
BS EN 10080: 2005 не дает фактических спецификаций или цифр; это оставлено на усмотрение национальных стандартов.
Требует, чтобы технические классы определялись значениями:
- R e , предел текучести;
- R м / R e , Отношение прочности на разрыв / предел текучести,
- A gt , Общее удлинение в процентах при максимальном усилии,
- R e, act / R e, nom (где применимо), отношение фактического значения предела текучести к заданному,
- усталостная прочность,
- производительность изгиба,
- свариваемость,
- прочность сцепления,
- допусков и
- габаритов.
Он содержит информативное приложение ZA, в котором описывается, как стандарт может быть использован для целей маркировки CE. Обратите внимание, что знак CE - это , а не как знак качества. Он просто идентифицирует продукт как соответствующий основному требованию, установленному Европейской Комиссией в ее «мандате» перед CEN. Маркировка CE не является требованием стандарта BS 4449: 2005, и усиление не может иметь маркировку CE, поскольку гармонизированный стандарт был отменен.
BS EN ISO 17660: Сварка арматурной стали
Этот стандарт состоит из двух частей:
- BS EN ISO 17660-1: 2006.Сварка. Сварка арматурной стали - Несущие сварные соединения
- BS EN ISO 17660-2: 2006. Сварка. Сварка арматурной стали - Ненесущие сварные соединения
BS 4449: 2005 Сталь для армирования бетона Свариваемая арматурная сталь, стержень, рулон и размотанный продукт
Это была полная редакция стандарта, определяющая три класса арматуры, соответствующие ныне отмененному стандарту BS EN 10080: B500A, B500B и B500C. Характерный предел текучести установлен на уровне 500 МПа, а свойства при растяжении и пластичность трех марок описаны в таблице 1.
Характерные свойства при растяжении
Марка | Предел текучести R e МПа | Соотношение предел прочности / предел текучести R м / R e | Полное удлинение при максимальном усилии, A gt % |
---|---|---|---|
B500A | 500 | 1.05 a | 2,5 б |
B500B | 500 | 1.08 | 5,0 |
B500C | 500 | 1.15, <1,35 | 7,5 |
a R м / R c характеристика составляет 1,02 для размеров менее 8 мм b A gt характеристика составляет 1,0% для размеров менее 8 мм Указанные значения R c характерны для p = 0,95 Указанные значения R m / R c и A gt характерны для p = 0.90 Рассчитайте значения R м и R c , используя номинальную площадь поперечного сечения | |||
Абсолютно допустимое значение предела текучести 650 МПа. |
Три марки соответствуют трем рекомендуемым классам пластичности в BS 1992-1-1: 2004 (Еврокод 2). Следует отметить, что арматурная сталь диаметром менее 8 мм по BS 4449 не соответствует BS EN 1992-1-1 в отношении пластичности.Это не единственный случай, когда BS 4449: 2005 пришлось учитывать требования BS EN 1992-1-1. Например, Еврокод 2 ограничивается ребристой арматурой с прочностью от 400 до 600 МПа. Следовательно, простой круглый пруток марки 250 был исключен из BS 4449 (его использование в конструкциях в любом случае сильно сократилось: он, как правило, дороже и больше нет преимущества в радиусе изгиба звеньев и т. Д.).
BS 4449: 2005 использует термин «стержень» для ребристой арматурной стали.Термины «пруток» и «проволока» следует ограничивать описанием арматурной стали в рулонах или проволоки в железобетонных изделиях.
BS 4482: 2005 Проволока стальная для армирования бетонных изделий. ТУ
.Этот стандарт включает гладкую, рифленую и рифленую проволоку, свернутую или свернутую в бухту. Был включен класс 250. Характеристическая прочность стали с высоким пределом текучести была установлена на уровне 500 МПа, а пластичность согласована с B500A в BS 4449: 2005, но усталостные характеристики не указаны.
Большинство проводов к BS 4482 вряд ли будут соответствовать BS EN 1992-1-1. Чтобы избежать путаницы, любая конструкция согласно BS EN 1992-1-1: 2004 должна иметь усиление, указанное в BS 4449: 2005. Точно так же любая ткань, используемая для структурных целей, должна производиться в соответствии с BS 4483 с использованием материала, указанного в BS 4449: 2005.
BS 4483: 2005 Стальная ткань для армирования бетона - ТУ
Помимо оберточных тканей D49 и D98, ткань будет производиться из материала BS 4449: 2005, который оценивается как материал.Требование прочности сварных соединений в BS EN 1992-1-1 потребовало изъятия A98 и B196 и увеличило диаметр поперечных стержней в некоторых других обозначенных типах тканей.
BS 5896: 2012 Высокопрочная стальная проволока и прядь для предварительного напряжения бетона.
Этот стандарт устанавливает требования к непокрытой высокопрочной стальной проволоке и прядям для предварительного напряжения бетона. Его можно использовать во время подготовки стандартов EN10138.
BS 8666: 2005 Технические условия для планирования, определения размеров, гибки и резки стальной арматуры для бетона
Редакция 2005 года этого кодекса была разработана для того, чтобы соответствовать ожидаемой реализации EN 10800, и эта редакция включает:
- Коды формы доступны в соответствии с BS EN ISO 3766: 2003.
- Пересмотренные обозначения в соответствии с BS4449: 2005 и BS EN 10080: 2005.
- Изменения к BS4449: 2005 (включая отсутствие арматуры класса 250), BS4482: 2005 и BS4483: 2005.
- Положения EN 1992-1-1 (включая запрет на использование проволоки в соответствии с BS 4482: 2005 в конструкционных целях).
- Измерение свойств разматываемого материала
- Периодичность проверки размеров компонентов.
BS 7123: Технические условия для дуговой сварки стали для армирования бетона
Этот стандарт был отозван, и следует сделать ссылку на BS EN ISO 17660.
.Предел текучести
Предел текучести И ТЕПЛООБРАБОТКА
Предел текучести является важным показателем для большинства инженерных разработок, на который влияют многие факторы, такие как качество сырья, химический состав, процесс формования, процесс термообработки и т. Д. В этой статье представлен пример, показывающий влияние термической обработки на текучесть прочность легированной стали AISI 4140.
1. ПРОЧНОСТЬ УХОДА
Предел текучести - это величина напряжения, при которой пластическая деформация становится заметной и значительной.На рис.1 представлена инженерная диаграмма напряжения-деформации при испытании на растяжение. Поскольку на кривой нет определенной точки, где заканчивается упругая деформация и начинается пластическая деформация, предел текучести выбирается равным той прочности, когда возникает определенная величина пластической деформации. Для общего инженерного проектирования конструкции предел текучести выбирается, когда имеет место пластическая деформация 0,2%. Предел текучести 0,2% или предел текучести смещения 0,2% рассчитывается при смещении 0,2% от исходной площади поперечного сечения образца (s = P / A).
На стадии текучести материал деформируется без увеличения приложенной нагрузки, но на стадии деформационного упрочнения материал претерпевает изменения в своей атомной и кристаллической структуре, что приводит к увеличению сопротивления материала дальнейшей деформации.
Предел текучести - очень важная величина для использования в инженерном проектировании конструкций. Если мы проектируем компонент, который должен выдерживать силу во время использования, мы должны быть уверены, что компонент не деформируется пластически.Поэтому мы должны выбрать материал с высоким пределом текучести или сделать компонент достаточно большим, чтобы приложенная сила создавала напряжение ниже предела текучести. Напротив, предел прочности на растяжение относительно не важен для выбора и применения пластичных материалов, поскольку слишком большая пластическая деформация имеет место до ее достижения. Однако предел прочности при растяжении может дать некоторое представление о материалах, например о твердости и дефектах материала.
Рис.1 Диаграмма напряжение - деформация
2. РАЗНИЦА ПРОЧНОСТИ УХОДА (YS)
2.1 Разница в пределе текучести
В таблице 1 показаны различные значения предела текучести, полученные для легированной стали AISI 4140, но с разными термообработками.
2.2 Влияние состава на разницу YS
Состав влияет на предел текучести только за счет изменения легирующих элементов, таких как углерод (C), хром (Cr), марганец (Mn), молибден (Mo), никель (Ni) и кремний (Si).Ниже приведены легирующие элементы, благоприятно влияющие на прочность, прокаливаемость, ударную вязкость и обрабатываемость.
AISI 4140 - легированная сталь с низким содержанием хрома и молибдена. Его стандартный и измельченный составы приведены в таблице 2.
Данные в таблице 2 показывают, что все материалы соответствуют спецификации. Цифры 3 и 4 показывают, что материалы были изготовлены из одной партии слитков с идентичным составом.Однако предел текучести сильно различается между цифрами 3 и 4. Числа 3 и 4 имеют идентичный состав, но подвергались термообработке только разными термообработчиками. Явным признаком является то, что разница в пределе текучести возникла из-за различных процессов термообработки, а не из-за состава материала.
Сравнение двух поставщиков металла также показывает, что разница в пределе текучести объясняется в основном поставщиками термообработки, а не поставщиками металла и / или составом.Также для широко применяемой стали AISI 4140 редко присутствуют такие дефекты материала, как сегрегация и включения.
2.3 Влияние процесса термообработки на разницу YS
Закалка и отпуск Процесс термической обработки для AISI 4140 приведет к изменению микроструктуры стали. Несомненно, разница в пределе текучести была вызвана в основном разной микроструктурой, возникшей в результате разных параметров термообработки, используемых поставщиками термообработки.Основные регулируемые параметры при термообработке включают температуру аустенизации, время выдержки, среду закалки, а также температуру и время отпуска. Они влияют на микроструктуру, размер зерна и, в конечном итоге, на механические свойства деталей, включая предел текучести и твердость. Подсчитано, что основные различия в параметрах обработки, используемых поставщиками термообработки, заключаются в температуре аустенизации, времени выдержки, регулировании закалки и температуре отпуска.
2.4 Влияние микроструктуры на разницу YS
Механические свойства стали тесно связаны с ее микроструктурой. По оценкам, возможная микроструктура материала AISI 4140, закаленного в масле, состояла из бейнита вместе с мартенситом из-за низкого предела текучести из образцов Heat Treater 4 (h5). Для высоких пределов текучести от 1 до 3 разница в микроструктурных фазах возникла из-за различных параметров термообработки, используемых при термообработке.Считается, что основными используемыми различными параметрами обработки являются температура аустенизации, время выдержки, температура закалочного масла и температура отпуска.
В отпущенном состоянии микроструктура состоит из вышеуказанной матрицы с однородной дисперсией карбидов. Податливость материала в отпущенном состоянии сильно зависит от расстояния между частицами карбида.
2,5 Влияние размера зерна на предел текучести YS
Размер зерна, один из микроструктурных измерений, имеет особенно значительное влияние на предел текучести.Для AISI 4140 предел текучести обычно имеет тенденцию к уменьшению с увеличением размера зерна, так же как и вязкость.
Как правило, по мере уменьшения среднего размера зерна металл становится прочнее (более устойчивым к пластическому течению), а по мере увеличения размера зерна происходит обратное влияние на прочность. Разница в размере зерна вызвана, главным образом, разными параметрами термообработки и / или, возможно, исходным размером зерна материала перед затвердеванием.
Влияние размера зерна на предел текучести sy определяется уравнением Холла-Петча для конструкционных сталей:
где:
- таково сопротивление решетки, т.е.е. напряжение трения, препятствующее движению дислокации
- k - постоянная величина, иногда называемая членом блокировки дислокации
- d - размер зерна феррита
Соотношение между размером зерна и пределом текучести для простой углеродистой стали схематично показано на рисунке 2.
Рис.2 Соотношение, показывающее влияние размера зерна на предел текучести
Результаты, сообщенные многими исследователями, показывают, что предел текучести первоначально увеличивается в соответствии с уравнением Холла-Петча, но по мере уменьшения размера зерна до нанодиапазона он будет отклоняться и уменьшаться.
Разница в размере зерна также должна быть связана с различными параметрами термообработки, особенно с температурой и временем аустенизации, и / или, возможно, с исходным размером зерна материала перед затвердеванием.
3. ПРОЧНОСТЬ ПРОТИВ ТВЕРДОСТИ
3,1 Твердость в зависимости от прочности на разрыв
Твердость стали - это ее устойчивость к вдавливанию на поверхности при стандартных условиях испытаний. И твердость, и предел прочности при растяжении являются показателями устойчивости металла к пластической деформации.Следовательно, они примерно пропорциональны. Обычно корреляция между твердостью и пределом прочности приводится во многих учебниках для приблизительной оценки прочности стали на растяжение по ее значению твердости. Корреляция твердости с пределом прочности на разрыв в целом хорошая (разница обычно менее ± 10%)
Наиболее часто используемые испытания на твердость по Роквеллу, Бринеллю, Виккерсу и Кнупу - это все испытания, в которых закаленный шарик или алмаз вдавливается в сталь и каким-то образом измеряется глубина проникновения.В тестах Роквелла испытательные машины автоматически определяют глубину проникновения и предоставляют числовое значение твердости в соответствующей шкале. В тестах Бринелля, Виккерса и Кнупа горизонтальный размер оттиска измеряется и преобразуется в число твердости. Однако горизонтальный размер оттиска геометрически связан с глубиной оттиска, поэтому эти тесты все еще являются измерениями глубины проникновения в сталь.
Вдавливание индентора твердости в сталь вызывает пластическую деформацию (перемещение) стали в месте вдавливания индентора.Пластическая деформация стали является результатом превышения прочности стали. Следовательно, чем меньше пластическая деформация стали под индентором для испытания на твердость, тем выше прочность стали. В то же время меньшая пластическая деформация приводит к меньшему отпечатку твердости, и поэтому результирующее число твердости для любого из рассмотренных испытаний выше. Отсюда и соотношение: чем выше твердость, тем выше прочность.
3,2 Предел текучести в зависимости от прочности на разрыв
Для низколегированной стали предел текучести обычно составляет около 75-90% от предела прочности.Сопоставимый показатель для низкоуглеродистой стали составляет около 65-75%. Для отожженной аустенитной нержавеющей стали ее предел текучести составляет очень низкую долю прочности на разрыв, обычно всего 40-45%, но только несколько% холодной обработки увеличивают выход на 200 или 300 МПа, а в материалах, подвергнутых жесткой холодной обработке. подобно пружинной проволоке или полосе, предел текучести обычно составляет около 80-95% от прочности на разрыв.
При более высоком содержании углерода увеличение предела прочности более чем в три раза превышает увеличение предела текучести.Следовательно, характерной особенностью современной низкоуглеродистой стали HSLA является высокое отношение текучести к пределу прочности (Y / T), которое даже увеличивается, если более высокий предел текучести достигается за счет измельчения зерна. Однако отношение текучести к пределу прочности на разрыв не является значением, подходящим для характеристики требований безопасности.
3,3 Предел текучести в зависимости от твердости
Соответствующее соотношение твердости и предела текучести несколько менее впечатляюще, но все же разумно (разница обычно в пределах ± 15%).
Данные в таблице 1 показывают, что пределы текучести имеют больший разброс по сравнению с разницей в значениях твердости. Посредством грубой корреляции твердости с пределом текучести с использованием таблиц преобразования нормальной твердости и предела прочности считается, что более широкие вариации предела текучести при одинаковых уровнях твердости были вызваны в основном (1) различием микроструктуры, включая фазы, размер и распределение отпущенного карбида и размер зерна и (2) ошибки измерения нормальной твердости соответствующим поставщиком термообработки.
В процессе отпуска однофазный закаленный мартенсит превращается в отпущенный мартенсит, состоящий из стабильных ферритной и карбидной фаз. Микроструктура отпущенного мартенсита должна состоять из чрезвычайно мелких и однородно диспергированных частиц карбида. Чем мельче карбиды и размер зерна, тем выше предел текучести. От отпуска зависит размер частиц карбида. Повышение температуры отпуска на определенное время ускорит диффузию, но приведет к тому, что карбид и зерно станут более крупными, а материал немного мягче.В этом случае предел текучести снизится больше, чем твердость.
4. ПРОЧНОСТЬ УХОДА ПО ТРЕБОВАНИЯМ
4.1 Коэффициент запаса прочности (FS) в конструкции
Коэффициент запаса прочности - это отношение предельного напряжения к допустимому:
F.S. = предельное напряжение / допустимое напряжение
Где:
- Предельное напряжение: максимальное напряжение, которое элемент может выдержать до разрушения
(может быть пределом прочности на растяжение или предел текучести) - Допустимое напряжение: максимальное напряжение, на которое рассчитан элемент.
FS используется для предотвращения разрушения конструкции.Инженерный проектировщик стремится гарантировать, что компонент не будет разрушаться и не претерпит постоянного изменения своих размеров под действием приложенной нагрузки. Следовательно, возникающее напряжение не должно превышать предел упругости материала. Однако для пластичных материалов предел текучести или предел текучести часто используется для целей проектирования. Кроме того, поскольку прочность материала на растяжение может быть легко определена, на практике обычно используют этот показатель вместе с коэффициентом запаса прочности в качестве основы для проектирования.
FS, используемая в каждом конкретном случае, зависит от обстоятельств и зависит от
- Тип нагрузки, т.е. статическая или динамическая,
- Тип материала,
- Возможность дефекта материала,
- Вероятная степень износа материала (из-за износа или коррозии),
- Последствия отказа.
Для стали коэффициенты безопасности могут варьироваться от примерно 3 для условий статической нагрузки до примерно 15 для ударных нагрузок.Более высокие коэффициенты запаса прочности (например, 20) могут использоваться там, где есть переменные напряжения с последующей опасностью усталости металла.
Для инженерного проектирования компонент часто подвергается напряжению до 80% от предела текучести, даже намного ниже до 60% от его YS.
ЗАКЛЮЧЕНИЕ
- Разница в пределе текучести объяснялась в основном разной микроструктурой, вызванной различными параметрами термообработки, используемыми поставщиками термической обработки, а не поставщиками металла и / или составом, а также дефектами металла.
- Основными различиями в параметрах обработки, используемых поставщиками термообработки, являются, в основном, температура аустенизации, время выдержки, контроль закалки и температура отпуска, что приводит к вариациям микроструктуры, особенно смеси фаз, размеру и распределению карбидов и гранулометрическому составу.
- Корреляция твердости с пределом текучести обычно хорошая (разница обычно менее ± 10%), но соответствующая корреляция твердости с пределом текучести несколько менее впечатляющая, но все же разумная (разница обычно в пределах ± 15%).Предел текучести обычно составляет около 75-90% от предела прочности для низколегированных сталей. Однако отношение текучести к пределу прочности на разрыв не является значением, подходящим для характеристики требований безопасности.
ССЫЛКА
- Р. Смоллмен, Современная физическая металлургия, Баттервортс, 1985.
- Спецификация материалов для аэрокосмической промышленности, AMS 6349A, сталь SAE 4140, пересмотренная 1-1-88.
- В. Ф. Смит, Принципы материаловедения и инженерии, McGraw-Hill, 1990.
- Д. Дж. Дэвис, Л. А. Оельманн, Структура, свойства и термическая обработка металлов, Pitman Books Ltd., 1983.
- Д. Р. Аскеланд, Наука и инженерия материалов, Чепмен и Холл, 1988 г.
EC2: Минимальная и максимальная продольная арматура
7.3.2 Минимальная арматура
(1) P Если требуется контроль трещин, требуется минимальное количество склеенной арматуры для контроля трещин в областях, где ожидается растяжение. Величину можно оценить из равновесия между растягивающей силой в бетоне непосредственно перед растрескиванием и растягивающей силой в арматуре при подаче или при более низком напряжении, если необходимо ограничить ширину трещины.
(2) Если более строгий расчет не показывает, что меньшие площади подходят, требуемые минимальные площади армирования могут быть рассчитаны следующим образом.В профилированных поперечных сечениях, таких как балки и коробчатые балки, минимальное усиление должно определяться для отдельных частей профиля (перемычек, полок).
A s, min · σ s = k c · k · f ct, eff · A ct
(7.1)
где:
9,2 Балки
9.2.1 Продольная арматура
9.2.1.1 Минимальная и максимальная площади армирования
(1) Площадь продольной растянутой арматуры не следует принимать меньше A с, не менее .
Примечание 1: См. Также 7.3 для области арматуры продольного растяжения для контроля растрескивания.
Примечание 2: Значение A s, min для лучей для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение приведено ниже:
A с, мин = 0,26 · f ctm / f yk · b т · d, но не менее 0,0013 · b t · d
(9.1N)
где:
- b t обозначает среднюю ширину зоны растяжения; для тавровой балки с сжатой полкой при расчете значения b t учитывается только ширина стенки.
- f ctm следует определять по соответствующему классу прочности в соответствии с таблицей 3.1:
f ctm = 0,30 × f ck (2/3) , f ck ≤ 50
f ctm = 2,12 · Ln (1+ (f см /10)), f ck > 50/60
при f см = f ck +8 (МПа)
(2) Секции, содержащие арматуру меньше, чем A s, мин. , следует рассматривать как неармированные.
(3) Площадь поперечного сечения растянутой или сжатой арматуры не должна превышать с, не более за пределами нахлеста.
Примечание. Значение A с, макс. для лучей, используемых в стране, можно найти в ее национальном приложении. Рекомендуемое значение 0,04 · A c .
9,3 Сплошные плиты
(1) Этот раздел применяется к односторонним и двусторонним сплошным плитам, для которых b и l eff составляют не менее 5h (элемент, для которого минимальный размер панели не менее чем в 5 раз превышает общую толщину плиты).
9.3.1 Армирование на изгиб
9.3.1.1 Общие
(1) Для минимального и максимального процентного содержания стали в основном направлении применяются 9,2,1,1 (1) и (3).
(2) Вторичная поперечная арматура, составляющая не менее 20% от основной арматуры, должна быть предусмотрена в односторонних плитах. На участках вблизи опор поперечная арматура к основным верхним стержням не требуется, если отсутствует поперечный изгибающий момент.
(3) Расстояние между стержнями не должно превышать max, плит .
Примечание; Значение s max, плиты для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение:
- для основной арматуры, 3 · h ≤ 400 мм, где h - общая глубина плиты;
- для вторичной арматуры 3,5 · h ≤ 450 мм
В зонах с сосредоточенными нагрузками или в зонах максимального момента эти положения становятся соответственно:
- для основной арматуры 2 · h ≤ 250 мм
- для вторичной арматуры 3 · h ≤ 400 мм.
9,5 Колонны
(1) В этом разделе рассматриваются столбцы, для которых больший размер h не больше чем в 4 раза меньший размер b.
9.5.1 Общие
9.5.2 Продольная арматура
(1) Продольные стержни должны иметь диаметр не менее Φ мин. .
Примечание. Значение ¢ min для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение - 8 мм.
(2) Суммарное количество продольной арматуры должно быть не менее A с, min
Примечание. Значение A с, мин. для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение дается выражением (9.12N)
.A с, мин. = макс. (0,1 · N Ed / f ярд ; 0,002 · A c )
(9,12N)
где:
- f yd - расчетный предел текучести арматуры
- N Ed - расчетное осевое усилие сжатия
(3) Площадь продольной арматуры не должна превышать A с, не более
Примечание. Значение A s, max для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение составляет 0,04 · A c вне участков внахлестку, если не будет продемонстрировано, что целостность бетона не нарушена, и что полная прочность достигается при ULS. Этот предел следует увеличить до 0,08 · A c на кругах.
(4) Для колонн, имеющих многоугольное поперечное сечение, по крайней мере, по одному стержню следует размещать в каждом углу. Количество продольных стержней в круглой колонне должно быть не менее четырех.
9,6 Стены
9.6.1 Общие
(1) Этот пункт относится к железобетонным стенам с отношением длины к толщине 4 или более, в которых армирование учитывается при анализе прочности
9.6.2 Вертикальное армирование
(1) Площадь вертикальной арматуры должна находиться между A s, vmin и A s, vmax .
Примечание 1. Значение A s, vmin для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение 0,002 · A c .
Примечание 2: Значение A s, vmax для использования в стране можно найти в ее национальном приложении. Рекомендуемое значение составляет 0,04 · Ac вне участков нахлеста, если не будет продемонстрировано, что целостность бетона не нарушена и что полная прочность достигается при ULS. Это ограничение может быть увеличено вдвое на кругах.
(2) Если минимальная площадь армирования, A s, vmin , контролирует проект, половина этой площади должна быть расположена на каждой грани.
(3) Расстояние между двумя соседними вертикальными стержнями не должно превышать трехкратную толщину стенки или 400 мм в зависимости от того, что меньше.
9.6.3 Горизонтальная арматура
(1) На каждой поверхности должна быть предусмотрена горизонтальная арматура, идущая параллельно граням стены (и свободным краям). Оно не должно быть меньше A с, hmin .
Примечание. Значение A s, hmin для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение составляет 25% от вертикальной арматуры или 0,001 · A c , в зависимости от того, какое из значений больше.
(2) Расстояние между двумя соседними горизонтальными стержнями не должно превышать 400 мм.
9,8 Фундаменты
9.8.1 Опоры колонн и стен
(1) Должен быть предусмотрен минимальный диаметр стержня Φ мин.
Примечание. Значение Φ мин. для использования в стране можно найти в ее национальном приложении.Рекомендуемое значение - 8 мм.
.Разница между пределом текучести и пределом прочности
Когда к твердому материалу прилагается достаточная внешняя нагрузка, он подвергается деформации и, следовательно, внутри материала возникает напряжение, препятствующее этой деформации. Способность конкретного материала противостоять деформации является мерой прочности рассматриваемого материала. Таким образом, материал, имеющий более высокую прочность, ведет себя более резистентно при деформации и, таким образом, может сохранять свою форму и размер неповрежденными при сравнительно более высокой нагрузке.Деформация любого твердого материала происходит в двух различных фазах - упругой деформации и пластической деформации. Обе фазы явно ощутимы для пластичных и полупластичных материалов; однако хрупкие материалы демонстрируют незначительную пластическую деформацию.
Поскольку деформация вызывает напряжение в материале, способность выдерживать упругие и пластические нагрузки определяется отдельно. Предел текучести указывает максимальное напряжение или нагрузку, которые твердый материал может выдержать, когда он деформируется в пределах своего предела упругости.С другой стороны, предел прочности указывает на максимальную способность материала выдерживать напряжение или нагрузку при его пластической деформации. Фактически, предел прочности - это максимальное напряжение или нагрузка, которую может выдержать материал до полного разрушения под действием внешней нагрузки. Большинство конструкционных материалов демонстрируют предел прочности в 1,5 - 2,0 раза выше предела текучести. Различные различия между пределом текучести и пределом прочности приведены ниже в виде таблицы.
- Для очень хрупких материалов предел текучести и предел прочности также совпадают (пластическая деформация хрупких материалов незначительна).
- Оба в основном измеряют напряжение.
- Оба измеряются в одной единице (Н / мм 2 ).
- Помимо материала, его состава, кристаллической структуры, дефектов и т. Д., Температура и внутреннее напряжение (остаточное напряжение) могут влиять на оба эти фактора.
Предел текучести | Максимальная прочность |
---|---|
Предел текучести определяется как максимальное напряжение, которое твердый материал может выдержать, когда он деформируется в пределах своего предела упругости. | Предел прочности определяется как максимальное напряжение, которое твердый материал может выдержать до его разрушения. |
Это напряжение, соответствующее пределу текучести (верхний) на инженерной кривой зависимости напряжения от деформации при растягивающей нагрузке. | Это напряжение, соответствующее точке предела прочности при растяжении (UTS) на инженерной кривой «напряжение-деформация» при растягивающей нагрузке. |
Хрупкие материалы не имеют предела текучести. Значит, у них нет предела текучести. | Предел прочности на разрыв (UTS) рассматривается как критерий разрушения хрупкого материала. |
У пластичных материалов предел текучести намного ниже предела прочности. | Для пластичных материалов предел прочности примерно в 1,5 раза превышает предел текучести. |
Предел текучести используется при проектировании компонентов или конструкций из пластичных материалов. | Предел прочности на разрыв используется при проектировании компонентов или конструкций из хрупких материалов.Это также важный параметр в процессах обработки металлов давлением. |
Ссылки
- Книга: Материаловедение и инженерия Каллистера, Р. Баласубраманиам (Wiley India). Купить эту книгу
- Книга: Введение в проектирование машин В. Б. Бхандари (McGraw Hill Education India Private Limited). Купить эту книгу
- Книга: Учебник сопротивления материалов Р. К. Бансала (Laxmi Publications Private Limited). Купить эту книгу
What is, Algorithms, Applications, Example
- Home
-
Testing
-
- Back
- Agile Testing
- BugZilla
- Cucumber
- Database Testing
- J20003 Тестирование базы данных ETL
- Назад
- JUnit
- LoadRunner
- Ручное тестирование
- Мобильное тестирование
- Mantis
- Почтальон
- QTP
- Назад
- Центр качества (ALM)
- Центр качества (ALM)
- Управление тестированием
- TestLink
-
-
SAP
-
- Назад
- ABAP
- APO
- Начинающий
- Basis
- BODS
- BI
- BPC
- CO
- Назад
- CRM
- Crystal Reports
- QM4000
- QM4
- Заработная плата
- Назад
- PI / PO
- PP
- SD
- SAPUI5
- Безопасность
- Менеджер решений
- Successfactors
- Учебники SAP
-
-
- Apache
- AngularJS
- ASP.Net
- C
- C #
- C ++
- CodeIgniter
- СУБД
- JavaScript
- Назад
- Java
- JSP
- Kotlin
- Linux
- Linux
- Kotlin
- Linux js
- Perl
- Назад
- PHP
- PL / SQL
- PostgreSQL
- Python
- ReactJS
- Ruby & Rails
- Scala
- SQL 000
- SQL 000 0003 SQL 000 0003 SQL 000
- UML
- VB.Net
- VBScript
- Веб-службы
- WPF
Обязательно учите!
-
- Назад
- Бухгалтерский учет
- Алгоритмы
- Android
- Блокчейн
- Business Analyst
- Создание веб-сайта
- Облачные вычисления
- COBOL
- Встроенные системы
- 0003 Эталон
- 9000 Дизайн 900 Ethical
9009
- Назад
- Prep
- PM Prep
- Управление проектом Salesforce
- SEO
- Разработка программного обеспечения
- VBA
Большие данные
-
- Назад
- AWS
- BigData
- Cassandra
- Cognos
- Хранилище данных
- DevOps Back
- DevOps Back
- HBase
- HBase2
- MongoDB
- NiFi
»Расчет предела текучести и предела прочности
В большинстве случаев прочность данного материала, используемого для изготовления крепежа, имеет требования к прочности или параметры, описанные в фунтах на квадратный дюйм (psi) или в тысячах фунтов на квадратный дюйм (ksi). Это полезно при анализе того, какой сорт материала следует использовать для конкретного применения, но это не говорит нам о фактической прочности материала этого диаметра. Чтобы рассчитать фактические значения прочности для данного диаметра, вы должны использовать следующие формулы:
Примечание: приведенные ниже формулы не зависят от отделки застежки.
Предел текучести
Возьмите минимальный предел текучести в фунтах на квадратный дюйм для класса ASTM (см. Нашу таблицу требований к прочности для этого значения), умноженный на площадь напряжения определенного диаметра (см. Нашу диаграмму шага резьбы). Эта формула даст вам максимальный предел текучести для данного размера и марки болта.
Пример: Каков предел текучести стержня F1554 класса 36 диаметром 3/4 дюйма?
Это минимальное требование для класса 36 F1554.Другими словами, анкерная штанга F1554 класса 36 диаметром 3/4 дюйма будет способна без деформации выдерживать силу в 12 024 фунта-силы (фунт-сила).
Предел прочности на разрыв
Возьмите минимальную прочность на разрыв в фунтах на квадратный дюйм для класса ASTM, умноженную на площадь напряжения диаметра. Эта формула даст вам предельную прочность на разрыв для данного размера и марки болта.
Пример: Каков предел прочности на разрыв у стержня F1554 класса 36 диаметром 3/4 дюйма?
Это минимальное требование для класса 36 F1554.Другими словами, анкерный стержень F1554 класса 36 диаметром 3/4 дюйма будет способен выдерживать силу 19 372 фунта-силы (фунт-сила) без разрушения.
Прочность на сдвиг
Сначала найдите предел прочности на разрыв, используя формулу выше. Возьмите это значение и умножьте на 60% (0,60). Важно понимать, что это приблизительное значение. В отличие от пределов прочности и текучести, не существует опубликованных значений прочности на сдвиг или требований к спецификациям ASTM. Институт промышленного крепежа (Дюймовые стандарты крепежа, 7-е изд.2003. B-8) утверждает, что прочность на сдвиг составляет примерно 60% от минимальной прочности на разрыв. Дополнительные сведения см. В разделе часто задаваемых вопросов по вопросам прочности болтов на сдвиг.
Написанный , г.01.12.2017
.