Главное меню

Обследование технического состояния оснований и фундаментов


Обследование фундамента зданий и сооружений

Фундаментом называется конструкция, которая предназначена для равномерного распределения весовой нагрузки здания на грунт. Как правило, обустраивается ниже точки промерзания во избежание воздействия на постройку эффекта морозного пучения. Состояние основания является важным фактором, от которого зависит ресурс здания, его сейсмоустойчивость, целостность и внешний вид. Технология обследования фундамента зданий и сооружений позволяет оценить текущее состояние конструкции, а также определить перечень действий по устранению дефектов.

Когда нужно проводить обследование фундамента

В отличие от наземных конструкций и инженерных коммуникаций здания обследование фундамента усложнено его расположением ниже уровня участка. По этой причине оценка состояния оснований практически никогда не выполняется в плановом порядке. Подспорьем для проведения обследования являются определённые факторы технического и другого характера.

В том числе, диагностика оснований зданий осуществляется по следующим причинам:

Чаще всего обследование оснований и фундаментов проводится по одной и той же причине — появление дефектов или их последствий. Профессиональная экспертиза позволяет не просто выявить все проблемы. Проведённое в надлежащем порядке техническое обследование состояния фундаментов даёт ответы на вопросы — что стало причиной возникновения дефектов и, самое главное, как их устранить с минимальными усилиями и вложениями.

Особенности обследования оснований

Поскольку визуальное обследование фундаментов не позволяет получить полную картину состояния конструкции, практически всегда выполняется инструментальный анализ. Сложность его выполнения заключается в том, что основания сооружений и зданий располагаются ниже уровня земли. Чтобы добраться до них, осуществляется откопка шурфов, и только после этого делается максимально тщательный анализ. Как визуальный, так и с применением соответствующих инструментов и методов.

Шурфы для обследования фундаментов — это раскопы вглубь основания, в процессе которых выполняется выемка грунта с целью обеспечения доступа до проблемных (в том числе, предположительно) участков конструкции. Как правило, шурфы раскапываются до самой подошвы основания. В первую очередь, это делается в тех местах, где имеются визуально видимые дефекты фундамента.

Нередко бывает так, что наиболее серьёзные дефекты удаётся выявить только после раскопки нескольких шурфов. Это требует определённых затрат времени и средств, однако, только такой подход позволяет наиболее точно выявить требующие устранения дефекты и причины их появления. При этом получается увидеть повреждения фундамента даже там, где наличие дефектов не предполагалось вовсе.

Отдельно следует рассмотреть особенности обследования оснований зданий и сооружений разных типов. В зависимости от технологии изготовления фундамента и его конфигурации вносятся соответствующие правки в план проведения экспертизы, определяется набор наиболее подходящих методик, целей, инструментов и лабораторных анализов.

Особенности обследования ленточных фундаментов

Несмотря на то, что по технологии строительства ленточный фундамент является одним из самых простых, его обследование — наоборот, сложное и трудоёмкое. В первую очередь из-за того, что раскопка шурфов осуществляется не только снаружи здания, но и внутри. Соответственно, обследование ленточного фундамента связано с большим объёмом земляных работ, а также усложняется отсутствием прямого доступа к внутренним сторонам конструкции. При глубоком залегании подошвы основания инструментальное исследование может осложняться подходом грунтовых вод, без предварительной откачки которых провести полноценный анализ не получится.

Особенности обследования свайных фундаментов

Свайные фундаменты используются в основном для строительства зданий на проблемных участках. Чтобы обойти некоторые из этих проблем, в том числе, применяются сваи большой длины. Это даёт возможность добраться до более прочных слоёв грунта и обеспечить надлежащую несущую способность. Соответственно, при обследовании свайных фундаментов требуется добраться до основания свай, чтобы оценить их состояние или причину возникновения дефектов — локальной просадки, перекоса, крена и так далее.

Особенности обследования опорно-столбчатых фундаментов

Экспертиза опорно-столбчатых оснований проводится почти по тем же правилам, что и в случае с ленточными фундаментами. Выемка шурфов осуществляется, в первую очередь, в наиболее нагруженных местах, а также там, где предварительное визуальное обследование показало наличие дефектов. После обследования состояния грунта основания поверхность опор высушивается и берутся пробы бетона для лабораторного анализа. Также может выполняться ультразвуковое сканирование.

Методы обследования фундаментов

Для полноценного определения текущего состояния основания специалисты применяют разные методы обследования фундаментов:

Выбор методов обследования фундамента осуществляется с учётом особенностей каждого конкретного здания, типа основания, возможностей исполнительной компании и поставленных заказчиком задач.

Возможные дефекты

Проверка фундаментов выполняется с целью выявления следующих распространённых дефектов:

Следующим шагом обследования фундамента является выяснение возможных причин появления дефектов, выявленных в процессе экспертизы.

Причины возникновения дефектов

К основным причинам возникновения дефектов фундаментов зданий и сооружения относятся следующие факторы:

Кроме всего прочего дефекты возникают естественным путём в результате длительных сроков эксплуатации и неизбежного исчерпания ресурса конструкций. Для таких случаев следует предусматривать своевременный ремонт фундаментов, обслуживание, обновление гидроизоляции и прочие мероприятия, которыми, как правило, пренебрегают.

Этапы работ по обследованию фундаментов

Комплексное обследование фундаментов выполняется в четыре этапа:

  1. Подготовительный — сбор данных, ознакомление с имеющейся документацией, предварительный выбор методов анализа.
  2. Полевые работы — этап включает визуальный осмотр фундамента на месте, разработка шурфов, оценка состояния основания мобильными инструментами.
  3. Лабораторный анализ — ему подвергаются взятые образцы грунта и, при необходимости, материалов фундамента.
  4. Камеральный этап — анализ и обобщение собранной в процессе обследования информации, составление отчёта.

На некоторых промышленных объектах существует своя специфика проведения экспертизы, связанная с особенностями технологического процесса и сложными условиями эксплуатации фундамента.

Результат обследования

По завершению основных этапов обследования фундаментов составляется технический отчёт, включающий в себя:

Технический отчёт обследования является официальным документом, в том числе, позволяющим дальнейшую эксплуатацию здания или выступающим в роли руководства с рекомендациями по улучшению состояния фундамента и увеличению его ресурса.

Заключение

Обследование фундамента — это многоцелевой комплекс мероприятий, основной целью которых является оценка текущего состояния основания здания или сооружения. Причиной для проведения экспертизы могут быть как дефекты, так и другие факторы — реконструкция, перепрофилирование, расширение, ремонт в связи с исчерпанием ресурса. Обследование выполняется в несколько этапов. Методы анализа выбираются в зависимости от типа фундамента, поставленных целей и задач, а также в рамках возможностей исполнительной компании.

Для заказа услуги вы можете позвонить по номеру 8-800-775-87-88 или оставить заявку на сайте.

Обследование грунтов оснований и фундаментов

В зависимости от технического состояния грунтового основания и фундаментов программа детального обследования здания может включать:

Состав работ по обследованию оснований и фундаментов в зависимости от цели обследования следует принимать по таблице, представленной ниже.

Цель обследования здания (сооружения) Выполняемые работы
Определение конструктивных особенностей и оценка технического состояния фундаментов при капитальном ремонте здания без смены перекрытий и без увеличения нагрузки нагрузок на основание Проходка контрольных шурфов. Обследование фундаментов и освидетельствование оснований, определение геометрических характеристик и типа фундамента, а также, при согласовании с Заказчиком, отбор проб грунта для проведения лабораторных испытаний и возможности дальнейшего проведения поверочных расчетов (при необходимости) грунтов оснований. Определение уровня грунтовых вод.
Надстройка, реконструкция или капитальный ремонт с заменой или усилением отдельных конструкций и увеличением нагрузки на основание. Деформации наружных конструкций. Возведение зданий вблизи существующих. Углубление подвала. Детальное обследование фундаментов в открытых шурфах - определение геометрических характеристик и типа фундаментов. Исследование грунтов оснований, отобранных из-под подошвы фундаментов при проходке шурфов или проведение инженерно-геологических изысканий на объекте обследования. Лабораторное исследование грунтов. Определение прочности материала фундаментов методами неразрушающего контроля или проведение лабораторных испытаний отобранных образцов. Проведение поверочных расчетов.
Определение причин появления воды и увлажнения стен подвале. Определение причин образования трещин и других дефектов в несущих конструкциях. Проходка шурфов. Исследование грунтов участка бурением скважин. Проверка соблюдения инженерно-мелиоративных мероприятий, направленных на осушение грунтов и снижение влажности грунтов в основании фундаментов. Проверка наличия и состояния гидроизоляции. Наблюдение за уровнем подземных вод.

Выявление повреждений и дефектов фундаментов (осадки, сколы и отслоения защитного слоя, состояние гидроизоляции и антикоррозионной защиты, коррозия и прочность материала фундаментов) производят зондированием грунтового основания с проходкой шурфов для обнажения поверхности фундаментов.
Шурфы отрывают на глубину до 0,5 м ниже подошвы фундаментов, при этом длину обнаженного участка по низу рекомендуется принимать не менее 1,0 м и не более 2,0 м, а ширину - не менее 0,6 м. Более подробно о проходке шурфов можно прочитать здесь.
Если ниже подошвы фундаментов обнаружены насыпные, заторфованные, рыхлые песчаные, пылевато-глинистые грунты текучей и текучепластичной консистенции или другие слабые грунты, в шурфах должны быть заложены разведочные скважины.

После обнажения поверхности фундамента следует установить:

В зависимости от целей обследования оснований и фундаментов количество необходимых шурфов рекомендуется принимать по следующей таблице:

Цель обследования здания (сооружения) Количество шурфов
Реконструкция или капитальный ремонт без увеличения нагрузок. Наличие деформаций в наземных конструкциях. 2-3 в здании. Обязательно в местах деформации наземных конструкций.
Реконструкция или капитальный ремонт с увеличением нагрузок. У каждого вида конструкций в наиболее нагруженном месте.
Устранение проникания воды в подвал или увлажнения стен в подвале и на первом этаже. По одному в каждом обводненном или сыром отсеке.
Углубление подвала. По одному у каждой стены углубляемого подвала.

Количество шурфов в зависимости от размеров зданий и сооружений рекомендуем определять по следующей таблице:

Число секций здания (сооружения) Количество шурфов
1 3
2 5
3-4 7
5 и более 9-12

Физико-механические характеристики грунтов оснований определяют в лабораторных или полевых условиях следующими методами:

Для определения прочности бетона и камня в фундаментах по механическим характеристикам его поверхностного слоя используют многочисленные приборы неразрушающего контроля. Для более точного измерения прочности массивы фундаментов и обнаружения скрытых дефектов используют акустический, радиометрический, магнитометрический методы.
В ленточных фундаментах допускается отбор проб бетона, камня и раствора из массива фундаментов. Число отбираемых из разных участков проб должно составлять не менее:

Допускается выбуривать керны диаметром 70 мм, а также применять склеенные кубики раствора с ребром 20 мм.
Пробы бетонных образцов свайных фундаментов, возведенных на вечномерзлых грунтах, следует отбирать на глубине 5, 20, 50 и 80 см ниже поверхности грунта и в подполье на высоте 30 см от поверхности грунта.
Образцы древесины свай для определения влажности и микрологического обследования надлежит отбирать ниже поверхности земли на глубине 20 см, у поверхности земли на глубине 0-10 см и выше уровня земли на 20-50 см.

Исследования новообразований в поверхностном слое бетонных и железобетонных фундаментов (биологические, сульфатизация, карбонизация, выщелачивание) проводятся в лабораторных условиях на образцах, отобранных из массива фундаментов.

Обследование оснований и фундаментов

Обследование оснований и фундаментов является наиболее сложным и ответственным видом работ ввиду многообразия скры­тых факторов, влияющих на них, а также потому, что надежность фундаментов во многом определяет состояние наземных конст­рукций. Обследование оснований и фундаментов включает следующие этапы работ:
подготовительный, в котором изучается имеющаяся про- ектно-изыскательская документация, и уточняются задачи обследования;
натурный (полевой), предназначенный для получения или уточнения физико-механических свойств оснований и кон­струкций фундаментов и характеристик грунтовых вод;
лабораторный, необходимый для получения истинных ха­рактеристик свойств оснований и фундаментов; 


камеральный, предназначенный для определения состава мероприятий, обеспечивающих требуемые эксплуатацион­ные свойства оснований и фундаментов.
В состав работ подготовительного этапа входит изучение: проектной документации; материалов выполнявшихся ранее инженерно-геологических и гидрогеологических обследований; журналов наблюдений за осадками, кренами, трещинами, про­гибами и деформациями фундаментов; инженерных меропри­ятий, проводившихся в пределах площадки или вблизи нее. Во время подготовительного этапа осуществляется наружный осмотр здания для установления общего состояния конструкций, зоны наибольших деформаций и повреждений конструктивных элементов, намечаются места выработок, вскрытий фундамен­тов, места установки геодезических знаков и реперов.

При обследовании оснований — грунтов, залегающих под фундаментами и воспринимающими от них нагрузку, необходимо выявить характер грунтов, степень их пучинистости или просадочности, глубину промерзания и уровень грунтовых вод. Для этого отрывают шурфы и берут пробы грунта для лабораторных исследований. После отрывки шурфов выполняется обследование техничес­кого состояния конструкций фундаментов, при котором фикси­руется наличие и состояние гидроизоляции, выявляются трещины, расслоения, поверхностные разрушения, определяются геомет­рические размеры конструкций, отбираются образцы материа­лов для физико-механических и химических лабораторных ис­пытаний. При обследовании выполняется инструментальноеопределение физико-механических свойств материалов фунда­мента и деформаций надземных конструкций. По результатам натурных исследований составляют ведомости дефектов и повреж­дений фундаментов.

Испытание отобранных образцов материалов в лабораторных условиях проводится с целью установления фактических физи­ко-технических характеристик грунтов основания и материалов конструкций фундаментов. Камеральные работы включают обобщение результатов обсле­дований, выполнение расчетов по несущей способности осно­ваний и фундаментов, анализу агрессивных внешних воздействий. По результатам сравнения фактических или проектируемых нагрузок от здания и несущей способности оснований и фунда­ментов делаются выводы по обеспечению требуемых эксплуата­ционных характеристик и в случае необходимости разрабаты­ваются мероприятия по усилению оснований и конструкций. На основании выполненных расчетов составляется заключение  о  техническом состоянии конструкций фундаментов и их несу­щей способности.

Инженерно-геологическое обследование грунтов основания про­водится посредством бурения обследуемого участка. В результате устанавливается последовательность грунтовых пластов, вклини­вание пластов и их распространение на участке. При бурении выявляется уровень грунтовых вод, водовмещающие породы и определяют водоупоры, направление потока грунтовых вод, а также характеристики геологических слоев. Бурение проводят механическими или ручными буровыми установками. Диаметр скважин составляет 89-127 мм. Количе­ство скважин определяют в каждом конкретном случае в зави­симости от площади застройки, конфигурации здания, нагрузок на фундаменты и т.д. Оценка физико-механических свойств фундаментов заключается в определении их однородности, плотности, массивности и проч­ности. Если требуется установить конструкцию фундамента, то проводится контрольное зондирование материала шлямбуром или электродрелью диаметром 8—16 мм. Зондирование проводится выборочно. При этом особое внимание необходимо обращать на облегченные и смешанные участки фундамента. Прочность ма­териала фундамента определяют склерометрическими методами. Сплошное обследование фундаментов и стен подвалов осуществ­ляют ультразвуковыми методами.

В том случае, когда прочность является решающей при оп­ределении возможности дополнительной нагрузки, из фундамента отбираются образцы, испытываемые затем в лаборатории на прочность на прессах. Объем выборки определяется следующим образом. Из разных участков фундаментов выбираются 8—12 кир­пичей или 5 образцов бутового камня с минимальной стороной20 см. Для бетонных фундаментов берется 5 образцов кернов диаметром10 сми длиной12 см. Образцы кладочного раствора должны быть такими, чтобы их можно было сложить в 5 куби­ков размером 7x7x7 или 4x4x4 см. При обследовании фундаментов обязательно определение влажности материалов конструкций, наличия и состояния гид­роизоляции, особенно при неглубоком залегании грунтовых вод. Для установления причин возникновение дефектов оснований и фундаментов вначале производится визуальное исследование поврежденных участков: выявляется наличие и направления раз­вития трещин, определяется ширина и глубина их развития, наличие расслоений, разрушение поверхности фундаментов и т.п.

Внешний вид и характер трещин в фундаментах и стенах здания позволяют достаточно точно выяснить природу их возникнове­ния. К наиболее распространенным дефектам относятся: 
прогиб здания, возникающий в том случае, если под сред­ней частью фундамента по сравнению с крайними грунт более слабый. В этом случае стена работает на изгиб как балка на двух опорах. При этом наибольшее растягиваю­щее усилие возникает в нижней части стены, что опреде­ляет характер трещин: наибольшая ширина их раскрытия в нижней части стены. По высоте здания наблюдается умень­шение ширины раскрытия трещин и участка стены, где они выявляются . Как правило, трещины «угасают» к подоконникам первого (реже второго) этажа; 
выгиб здания, наблюдаемый в том случае, если наиболее прочный участок расположен в центральной части стены. В этом случае стена работает как двухконсольная балка на изгиб. Наибольшие растягивающие усилия возникают в верхней части здания над краем ослабленного или более прочного участка. Характер трещин на участке стены, име­ющей выгиб, представляется в виде треугольника с верши­ной в нижней части.  Наибольшая ширина раскрытия трещин и их количество на­блюдаются в верхней части здания, у нижней части стены харак­теристики трещин уменьшаются. Следует иметь в виду, что выгиб стены здания значительно опаснее прогиба, так как при последнем здание не теряет общей связи и не разваливается. Для зданий старой постройки выгиб может быть вызван пе­регрузкой продольных стен наиболее тяжелыми торцевыми (часто глухими) стенами или устройством арочных проездов у торцов здания.

 

Обследование состояния фундаментов существующего здания

Обследование состояния фундаментов существующего здания

Данное обследование производится для оценки технического состояния фундамента и грунтов основания эксплуатирующихся зданий, а также, в случае увеличения нагрузки на фундамент и основание от надстраиваемых этажей, замене перекрытий, пристройки к существующему зданию дополнительного объёма. Обязательным, также, является обследование фундаментов при наличии в конструкциях здания дефектов, свидетельствующих о просадках, неравномерной осадки здания. В случае строительства нового здания рядом с одиночно существующим, или рядом с группой зданий.

При обследовании фундаментов и основания обязательным является изучение материалов, ранее выполненных инженерно-геологических исследований на данном или на соседнем участке (при их наличии). Изучение результатов ранее произведённых обследований о техническом состоянии, глубине заложения фундаментов, произведённых ремонтных работах.

Непосредственно на объекте производится отрытие шурфов около фундаментов, для изучения текущего состояния основания, производится отбор проб грунта и грунтовых вод под подошвой фундамента, испытание грунтов статическими нагрузками. Определяется тип, конструкция и глубина залегания фундаментов, степень благоустройства и состояние отмостки здания. Приборным контролем определяются физико-механические характеристики материалов, фиксируются дефекты фундамента, состояние гидроизоляции. Определяется соответствие текущих характеристик инженерно-геологического состояния грунтов основания и уровня грунтовых вод архивным данным.

По результатам обследования определяются мероприятия по необходимости усиления фундаментов. В случае увеличения объема здания от дополнительной нагрузки и в случае обнаружения дефектов, поверочным расчётом определяется несущая способность грунтов основания для восприятия существующей и дополнительной нагрузки.

Основные положения по обследованию фундаментов содержит раздел 5, ГОСТ Р 53778-2010 «Здания и сооружения. Правила обследования и мониторинга технического состояния».

Пример обследования фундаментов здания. Определение состояния фундамента под существующую нагрузку.

При проведении обследования был осмотрен фундамент здания, определена его конструкция и состояние. Из шурфов были отобраны пробы грунта для обследования в лаборатории. Для определения нагрузок на основание произведено определение конструкции и состава перекрытий, стен здания, конструкции крыши, кровли. На основании обследований в лаборатории определены физико-механические свойства грунтов.

Выполнены обмеры конструкций, в отдельных местах были произведены зондажи для определения конструкции и состава перекрытий и пола на каждом этаже, определены нагрузки от стропильной системы и кровли. По результатам обследования установлено расчётное сопротивление основания, выполнен поверочный расчёт основания под подошвой фундамента на восприятие существующей нагрузки, определена максимальная осадка основания. По результатам обследования и проведения поверочных расчётов было определено, что несущая способность основания обеспечена для восприятия нагрузки, передаваемой от подошвы фундамента. Осадка в пределах норм СНиП.

По результатам обследования технического состояния конструкции фундамента установлено, что фундамент имеет дефекты, в виде вымывания деструктированного раствора из швов кладки. Горизонтальная гидроизоляция не обеспечивает защиту от капиллярного подсоса влаги из грунта. Отмостка, местами, разрушена, уклон планировки, местами, направлен в сторону здания, поверхностные воды проникают к фундаменту.

Выводами по результатам осмотра являются:

Обследование фундаментов зданий и сооружений

Аварийный фундамент

Фундаментные основания являются главным фактором долгой и безаварийной эксплуатации всего здания. Чем качественнее выполнено несущее основание, тем прочнее и долговечнее будет вся постройка, поэтому при проектировании любого объекта уделяют столько внимания этому начальному этапу строительства. Но, как и все элементы конструкции здания, фундаментные основания со временем могут подвергаться разрушению, что может плачевно сказаться на состоянии постройки. В связи с этим, требуется регулярно производить обследование фундаментов на предмет различных повреждений.

Необходимость обследования фундаментов

Обследование технического состояния оснований и фундаментов может производиться в различное время и с разными целями. Первое обследование должно происходить при сдаче дома в эксплуатацию. Также этот процесс обязательно производится специальной строительно-надзорной комиссией при принятии решения о капитальном ремонте дома или для признания его аварийным и непригодным к дальнейшей эксплуатации строением.

Данные о состоянии несущих оснований обследуемых объектов должны присутствовать и в разрешительных документах на внесение изменений в конструкцию здания, сопряжённых с увеличением нагрузки на фундамент.

Часто своевременно проведённое исследование позволяет предотвратить трагические последствия: частичное или полное обрушение здания. Происходит это, когда несущее основание получило серьёзные повреждения во время природных или техногенных катаклизмов, например, после сейсмического толчка, смещения грунта в результате оползня или наводнения, проведения вблизи здания крупных земельных работ, связанных с вибрационными нагрузками (бурение, забивка свай) и т.д.

Во всех этих случаях необходима оперативная и квалифицированная оценка состояния здания, даже если основание здания не имеет видимых повреждений. Тем более нужна проверка состояния фундаментов зданий и сооружений в том случае, если следы его начавшегося разрушения уже можно увидеть невооружённым глазом.

Причины разрушения из-за неправильного возведения оснований

Обследуют основания не только многоэтажных жилых домов или массивных промышленных зданий. Не лишним будет оценить конструкцию и состояние фундамента и у приобретаемого частного дома.

В последние годы возрос спрос на рынке загородной недвижимости. Это в основном малоэтажные частные дома, предназначенные как для круглогодичного проживания, так и летние дачные домики. В связи с этим очень выгодным бизнесом стало строительство загородных домов на продажу. При этом, в погоне за прибылью застройщики зачастую пренебрегают качеством строительства, в том числе небрежно относятся к выбору конструкции фундамента, совершенно не принимая в расчёт особенности грунта — его состав, плотность, прочие геологические особенности. Как результат, срок службы таких построек порой не превышает нескольких лет: фундаменты начинают растрескиваться, проседать, деформироваться.

Раскол бетонной заливки

Перед покупкой загородного дома следует внимательно осмотреть фундамент и ознакомиться с проектной документацией и типом почв на участке строительства. Тип фундамента должен соответствовать геологическим особенностям грунта.

Согласно СНиП, каждому типу почвы лучше всего соответствует определённая разновидность фундаментного основания.

Воздействие сил морозного пучения

Чтобы основание прослужило максимально долго, следует соблюдать рекомендации строительных нормативов относительно условий применения разных типов фундамента. Неправильное их использование рано или поздно неизбежно приведёт к разрушению несущего основания, а вслед за ним и дома.

Ленточный фундамент, заложенный на слабых грунтах, растрескается и просядет; столбчатое основание, обустроенное на участке с высоким уровнем грунтовых вод, с наступлением холодов будет выдавлено из земли силами морозного пучения почвы.

Второстепенные пагубные факторы

Кроме неправильного выбора конструкции, причиной разрушения несущего основания могут послужить следующие факторы:

Размытое основание здания

Методики обследования

Основная сложность в обследовании фундаментных оснований заключается в том, что большинство дефектов невозможно обнаружить невооружённым глазом. В связи с этим, для обследования фундаментов зданий был разработан ряд методик, применяемых как по отдельности, так и в комплексе. Все работы производятся в соответствии с требованиями соответствующих нормативных документов: СНиП №2-02-01 и №2-01-14 от 1983 г., №11-02 от 1996 г., ГОСТ №51-80 и 20-2-76 от 1996 г.

Подготовительные работы

Прежде чем начать обследование оснований и фундаментов, следует произвести глубокий анализ параметров грунта, технических характеристик строительных материалов и проектной документации. При анализе особое внимание следует обращать на следующие параметры:

После изучения всех этих данных, можно произвести вычисление несущей способности фундамента для данных условий эксплуатации. Исходя из этого, принимается решение о необходимых работах – усилению конструкции фундамента, укреплению грунта в его основании и т.д.

Визуальный осмотр

Визуальное обследование фундаментов является самым простым способом выявления их конструкционных дефектов и обнаружения первых признаков разрушения. По сравнению с другими технологиями, требующими применения сложной и дорогостоящей аппаратуры, он доступен практически любому человеку и весьма эффективен. Однако, чтобы получить при визуальном осмотре максимум информации о состоянии фундамента, следует соблюдать ряд правил.

Самое подходящее время для проведения визуальных наблюдений за состоянием несущих оснований — весна следующего после постройки здания года. Пройдя первый цикл заморозки и оттаивания, фундамент в полной мере покажет себя на предмет различных недостатков.

Измерение высоты бетонной заливки

Впрочем, первые негативные изменения в «поведении» фундамента становятся уже зимой с промерзанием почвы. Неправильно заложенные основания начинает выдавливать из земли силой морозного пучения. Почва с высоким уровнем грунтовых вод при замерзании леденеет и вспучивается буграми, поднимая и ломая ленточные фундаменты, выталкивая из земли столбчатые и неправильно установленные свайные основания.

Среди первых признаков начавшейся зимней деформации постройки — наружные и межкомнатные двери начинают плохо закрываться. Происходит это из-за перекоса стен основания, а затем и стен здания, в результате чего деформируются и дверные проёмы.

Вся технология визуального осмотра сводится к следующим действиям:

  1. Первоначально следует осмотреть грунт по периметру дома. Первым неблагополучным признаком будет проседание и провалы почвы. Это говорит о размывании грунта вокруг основания грунтовыми или сточными водами. Причиной этого может быть неправильно сделанная отмостка, либо полное ее отсутствие. Подобные провалы следует во избежание их расширения и углубления своевременно засыпать и уплотнять. Лучше всего для этого использовать песчано-гравийную смесь или крупный песок.
  2. Если выступающая над землёй часть фундаментного основания закрыта декоративной отделкой, то оценить на взгляд его состояние не представляется возможным. В этом случае следует обратить внимание на дверные и оконные проёмы, несущие стены здания. По проёмам определяют перекосы несущих конструкций, а по наличию трещин в кирпичной кладке стены или на оштукатуренной поверхности — начавшуюся деформацию фундамента.
  3. Если в доме имеется подвал, следует осмотреть внутренние поверхности его стен. О деформации конструкции будут свидетельствовать трещины на стенах, а также белые полосы на них. Появляются они в результате растрескивания бетонной заливки и разрывов в гидроизоляционном слое. Как результат — внутрь подвала начинают проникать грунтовые и талые воды, оставляя на стенах отложения минеральных солей. Инфильтрация воды во внутреннее пространство подвала может вызвать развитие плесени и грибка, что также ускоряет процесс разрушения здания.

Чтобы предотвратить такие неприятные последствия первой зимовки, на пучинистых водонасыщенных грунтах следует закладывать фундаменты с подошвой, заглублённой ниже уровня промерзания почвы, как минимум на 1/4. Чтобы избежать выталкивания свай или столбов из земли силой пучения, вокруг них и под ними отсыпается подушка из крупного песка. Это уменьшает боковую силу сцепки стен фундамента и мёрзлого грунта.

К визуальным методам контроля над состоянием фундамента относится и установка маяков. С их помощью можно отслеживать осадку основания в грунт. Для этого в проблемных местах на внешней поверхности основания делается заметка. С помощью лазерного уровня или нивелира она копируется на другой, заведомо неподвижный объект.

Это может быть соседняя постройка, не вызывающая подозрений на счёт осадки, либо специально закреплённый в земле металлический или бетонный столбик. Нанесённая на них контрольная отметка называется репером. Регулярное сравнение уровня высоты отметки на фундаменте с контрольным репером позволит обнаружить подвижки основания здания.

С помощью маячков можно определить, расширяется ли и с какой скоростью трещина в бетонной заливке. Для этого на трещину наклеивается бумажная полоска, либо наносится слой шпаклёвки. Если раскол имеет тенденцию к расширению, полоса бумаги со временем будет разорвана, а на слое шпаклёвке появится трещина.

Обследование с помощью шурфов

Шурф глубиной до подошвы фундамента

Следующий способ, с помощью которого производится обследование фундаментов зданий, заключается в прокладке шурфов. Шурф — небольшая траншея, которую выкапывают вплотную к бетонной заливке фундамента. С помощью данной методики можно оценить состояние заливки, скрытой в глубине грунта.

Закладываются шурфы в местах, вызывающих подозрение на предмет начавшегося разрушения, либо испытывающих, согласно проведённому анализу, повышенные нагрузки. Для возможности сравнения общего состояния фундамента шурфирование делается на нескольких участках со всех сторон здания.

Если обследование делается в профилактических целях, либо для заключения о возможности увеличения массы здания путём надстройки дополнительных этажей, достаточно будет сделать два контрольных шурфа с противоположных концов здания.

При получении спорных результатов следует заложить ещё несколько шурфов по периметру постройки, а также изнутри со стороны подвального помещения. Глубина шурфов должна быть не менее 0,5–1 м в зависимости от глубины залегания подошвы фундамента. При более глубоком шурфировании во избежание осыпания стенки ямы закрепляются щитами и распорками.

С помощью шурфов можно установить:

При проведении шурфирования следует учитывать ряд негативных последствий, к которым оно может привести. Это возможность подтопления подвальных и цокольных помещений при высоком уровне грунтовых вод или во время обильных осадков. Также обнажение фундамента ветхих построек может ускорить процесс его разрушения.

Затопленный шурф

Обследования свайного фундамента

Обследование свайных оснований имеет свои отличительные особенности. При работе с таким типом фундамента следует применять специальную аппаратуру, в чём заключается основная трудность. Сами по себе диагностические приборы стоят достаточно дорого, кроме того, чтобы правильно ими пользоваться, следует пройти соответствующую подготовку, поэтому работать с ними могут только профессионалы. С помощью приборов можно «увидеть» самое незначительное отклонение сваи от вертикали, а методом измерения электропроводности определить степень коррозии её подземной части.

Рассчитать несущую способность сваи можно теоретическим путём. Подробные рекомендации для этого даны в положениях СНиП № 2-02-03 от 1985 г. Для этого следует знать длину заглублённой части сваи, её сечение, технические особенности (наличие расширения в подземной части, диаметр лепестков винтовой сваи и т.п.), а также характеристики грунта.

Технические особенности разных типов грунта

 Научные методики исследования

Наиболее точные результаты обследования несущих оснований можно получить в лабораторных условиях. Проводятся они с использованием специальной аппаратуры, анализирующей образцы бетонной заливки и каркасной арматуры. Для этого на месте производятся различные замеры технических характеристик фундамента, берутся пробы.

Также при помощи геодезического оборудования тщательно исследуются несущие грунты, на которые опирается фундамент. После получения лабораторных анализов проводятся камеральные работы, в ходе которых обобщаются все данные, выдаётся заключение о состоянии фундамента и грунты. На основании этого составляется решение о необходимости ремонта несущего основания, особенностях проведения ремонтных работ, разрешается или нет проведение перестройки здания.

Спектрограф и молоточек

Наиболее распространённый научный способ исследования фундаментов – метод спектральной дефектоскопии. Для этого используют специальный молоточек и электронный спектрограф. Датчики прибора устанавливают на одном конце фундамента, а на другом наносят удар молоточком. Спектрограф улавливает колебания, а также изменение скорости и характера ударной волны. Если в промежутке между датчиком и местом удара имеются скрытые трещины, волна исказится, и прибор точно укажет место её преломления.

Также в арсенале специалистов имеется целый ряд других методик исследования фундаментов – метод триангуляции, гидростатического нивелирования, створных наблюдений, фотограмметрический и т.д. Подобные методики обследования доступны только работникам лицензированных компаний, исполняющим обследование зданий по заказу застройщика или владельца дома. Эти же организации выдают официальные заключения о состоянии фундамента.

Видео по обследованию фундаментов зданий:

При необходимости профилактический осмотр состояния фундамента или обследование небольшого частного дома можно произвести своими силами без привлечения специалистов. При этом можно установить общие признаки разрушения и своевременно приняться за их ликвидацию. Если нужно произвести более сложные обследования, например, на предмет возможности надстройки дополнительного этажа, то лучше обратиться за помощью к специалистам. Ошибки в этом случае могут обойтись слишком дорого – вплоть до обрушения перестраиваемого здания, чему имеются многочисленные примеры.

Обследование оснований и фундаментов зданий — заказать экспертизу фундаментов и грунтов

Бутовый фундамент общественного здания

Различного рода дефекты оснований и фундаментов могут возникать как во время строительства, так и при эксплуатации зданий и сооружений, если причины, приведшие к их развитию, не были своевременно выявлены и устранены.

В отличие от наземных конструкций, подземная часть – основания и фундаменты, всегда остаются скрытыми и недоступными для визуальных наблюдений, фиксации возможных изменений, оценки физических и других характеристик в процессе длительной эксплуатации сооружений.

В связи с этим сплошь и рядом их обследованию зачастую уделяется недостаточное внимание, тогда как наиболее серьезные деформации любого здания и сооружения (вплоть до их разрушения) связаны именно с дефектами и повреждениями грунтов оснований и фундаментов, а уже далее наземных конструкций (стен, колонн, перекрытий и др.).

Наиболее серьезные деформации зданий и сооружений связаны именно с дефектами грунтов оснований и фундаментов.

Важность технического обследования фундаментов и грунтов оснований

Изучение инженерно-геологических изысканий

Не стоит также забывать, что при возведении объекта стоимость фундаментов составляет в среднем около 15-25%, а при их усилении данная цифра может возрастать и до 50%, так как необходимо выполнять сложные, трудоемкие и часто немеханизированные работы в ограниченном пространстве существующих конструкций.

Поэтому обследование грунтов оснований и фундаментов является наиболее важной частью обследовательских работ, особенно при реконструкции зданий и сооружений (надстройка дополнительных этажей, увеличение нагрузки на перекрытия и пр.).

 

Общий порядок обследования оснований и фундаментов

Рассмотрим обследование оснований и фундаментов более подробно. Данный процесс принято разделять на несколько этапов.

1) Подготовительный этап

Включает в себя изучение проектной и эксплуатационной документации по объекту, материалов инженерно-геологических и гидрогеологических изысканий, журналов наблюдений за осадками, возможными кренами, деформацией фундаментов и др.

2) Натурный (полевой) этап

а) Обследование окружающей местности и наземных конструкций обследуемого здания или сооружения

Исследование прилегающей территории может сказать о причинах, а осмотр конструкции - поможет выявить характер деформации.

Шурф возле столбчатого фундамента под колонной

б) Экспертиза фундаментов

Обследование фундаментов производится из шурфов, число и размер которых определяются размерами и конфигурацией объекта, грунтовыми условиями и целями обследования. Шурфы отрываются рядом с обследуемыми фундаментами на глубину ниже уровня подошвы на 0,5 м. Если здание с подвалом, то шурфы закладывают, как правило, внутри здания с целью уменьшения объема земляных работ.

В открытых шурфах уточняют тип фундамента, его форму, размеры в плане, глубину заложения. Одновременно выявляются выполненные ранее подводки и усиления, дефекты и повреждения, определяются прочность тела фундамента, наличие гидроизоляции.

в) Обследование грунтов основания

Шурф возле ленточного фундамента несущей стены

Обследование грунтов оснований производится в тех же шурфах, которые служат для обследования фундаментов.

Для инженерно-геологической оценки грунтов из шурфов назначаются разведочные скважины, число которых определяется размерами и конфигурацией обследуемого объекта.

В скважинах выполняется отбор образцов грунта и грунтовых вод для последующего определения их физико-механических и химических характеристик. Также выполняются гидрогеологические исследования: определяются глубина залегания и мощность водоносных пластов, проводятся наблюдения за колебаниями уровня грунтовых вод

3) Камеральный этап

Графическое оформление результатов

На данном этапе выполняется окончательная обработка и систематизация полученной в процессе обследования информации:

Обследование оснований и фундаментов - фото работ

Откопанный шурф у фундамента колонны

Обследование оснований и фундаментов

Графическое оформление результатов

Шурф возле столбчатого фундамента под колонной

Обследование фундаментов в откопанном шурфе

Шурф у наружной стены для осмотра фундамента

Откопка шурфа с помощью экскаватора

Замеры геометрических размеров фундамента

Заказать обследование фундаментов и грунтов основания

Специалистами нашей организации производится выполнение обследования оснований и фундаментов любых жилых, общественных и промышленных зданий и сооружений.

Экспертиза фундамента может быть выполнена как отдельно, так и в составе комплексного обследования всего объекта в целом.

Для определения стоимости обследования и получения подробной консультации по всем возникшим вопросам Вы можете позвонить по телефону +7 (495) 923-91-29, либо оставить заявку с помощью формы ниже, и мы сами Вам перезвоним.

Мы гарантируем выставление коммерческого предложения в течение суток.

Лицензии и Сертификаты

Сертификат соответствия

Выписка из реестра СРО СП

Выписка из реестра СРО СП - страница 2

Выписка из реестра СРО ЛИ

Выписка из реестра СРО ЛИ - страница 2

Веб-страница не найдена на InspectApedia.com

.

Что делать, если ссылка на веб-страницу на InspectApedia.com приводит к ошибке страницы 404

Это так же просто, как ... ну, выбирая из 1, 2 или 3

  1. Воспользуйтесь окном поиска InspectAPedia в правом верхнем углу нашей веб-страницы, найдите нужный текст или информацию, а затем просмотрите ссылки, которые возвращает наша пользовательская поисковая система Google
  2. Отправьте нам электронное письмо напрямую с просьбой помочь в поиске информации, которую вы искали - просто воспользуйтесь ссылкой СВЯЗАТЬСЯ С НАМИ на любой из наших веб-страниц, включая эту, и мы ответим как можно скорее.
  3. Используйте кнопку НАЗАД вашего веб-браузера или стрелку (обычно в верхнем левом углу экрана браузера рядом с окном, показывающим URL-адрес страницы, на которой вы находитесь), чтобы вернуться к предыдущей статье, которую вы просматривали. Если вы хотите, вы также можете отправить нам электронное письмо с этим именем или URL-адресом веб-страницы и сообщить нам, что не сработало и какая информация вам нужна.

    Если вы действительно хотите нам помочь, используйте в браузере кнопку НАЗАД, затем скопируйте URL-адрес веб-страницы, которую вы пытались загрузить, и используйте нашу ссылку КОНТАКТЫ (находится как вверху, так и внизу страницы), чтобы отправьте нам эту информацию по электронной почте, чтобы мы могли решить проблему.- Благодарность.

Приносим свои извинения за этот SNAFU и обещаем сделать все возможное, чтобы быстро ответить вам и исправить ошибку.

- Редактор, InspectApedia.com

Задайте вопрос или введите условия поиска в поле поиска InspectApedia чуть ниже.

Мы также предоставляем МАСТЕР-ИНДЕКС по этой теме, или вы можете попробовать верхнюю или нижнюю панель ПОИСКА как быстрый способ найти необходимую информацию.

Зеленые ссылки показывают, где вы находитесь. © Copyright 2017 InspectApedia.com, Все права защищены.

Издатель InspectApedia.com - Дэниел Фридман .

Исследование грунта и типы фундаментов на основе свойств грунта

Исследования грунта проводятся для определения свойств грунта и подходящих для них типов фундамента. В этой статье обсуждаются различные типы почвенных исследований, их отчеты и подходящие типы фундаментов для различных типов почв.

Виды почвенных исследований для выбора фундамента

Исследования недр

Состояние недр исследуется с помощью пробных скважин, предоставленных инженером-грунтовиком (инженер-геолог).Количество и расположение отверстий зависит от типа здания и условий участка.

Обычно для равномерных почвенных условий буровые скважины располагаются на расстоянии 100-150 футов друг от друга, для более детальной работы, когда грунтовые основания расположены близко друг к другу, а грунтовые условия даже не расположены на расстоянии 50 футов друг от друга.

Большие открытые складские помещения, где меньше колонн (большие пролеты), требуют менее скучных образцов. Буровые скважины должны доходить до твердого слоя (проходить через неподходящий грунт фундамента) и , а затем простираться как минимум на 20 футов дальше в пригодную почву.

Расположение образцов скважин указано на инженерном плане. Они не включены непосредственно в предлагаемые столбцы.

В скважинах указывается глубина, классификация почвы (согласно единой почвенной системе) и содержание влаги, а иногда также отображается уровень грунтовых вод. (Физические свойства: размер частиц, влажность, плотность).

Отчет о подземных исследованиях почвы Рекомендация должна быть основана на испытании материалов, полученных в результате бурения на месте, и включать:

  1. Несущая способность грунта
  2. Рекомендации по проектированию фундамента
  3. Рекомендации по проектированию мощения
  4. Уплотнение почвы
  5. Поперечная прочность (активная, пассивная и коэффициент трения)
  6. Проницаемость
  7. Глубина промерзания

Исследования поверхностных почв

Исследования грунта поверхности необходимы для строительства в следующих случаях:

Наземные показатели состояния почвы:

Классификация почв

Инженеры, занимающиеся механикой грунтов, разработали простую систему классификации, которая расскажет инженеру о свойствах данного грунта. Единая система классификации почв основана на идентификации почв по их текстурным свойствам и пластичности, а также на их группировке по поведению. Почвы обычно встречаются в природе в виде смесей с различной долей частиц разного размера, каждый из этих компонентов вносит свой вклад в почвенную смесь.

Земля классифицируется на основании:

Пластичность и сжимаемость грунта

В единой системе классификации почв (uscs) почве дается описательное название и буквенный символ, обозначающий ее основные характеристики. Отнесение твердого тела к соответствующей группе осуществляется визуальным осмотром и лабораторными исследованиями.В единой классификации почв для обозначения диапазонов размеров частиц почвы используются термины булыжник, гравий, песок и мелкие частицы (ил или глина).

Размер частиц почвы варьируется от самого большого до самого маленького:

  1. Брусчатка
  2. Гравий (крупный + мелкий)
  3. Песок (крупный + средний + мелкий)
  4. Мелкие частицы, состоящие из глины или ила

Группы почв:

Почвы затем сгруппированы в три группы, состоящие из:

  1. Крупнозернистые - разделены на гравийные почвы (G) и пески и песчаные почвы (S)
  2. Мелкозернистая - разделена по пластичности. (Д, В)
  3. Высокоорганические - не подразделяются. (Пт)

Coarse Gained - это почвы, состоящие из гравия и / или песков и содержащие самые разные частицы.Они наиболее подходят для фундаментов, когда они хорошо дренированы и закрыты. Это почвы с хорошей несущей способностью. В частности, серия G (GW, GP, GM, GC). Определяется по процентному содержанию щебня и песка.

Мелкозернистые - почвы, представляющие собой илы и глины (L, H). Содержат более мелкие частицы ила и глины. Они подходят для фундаментов, но требуют уплотнения. Самым подходящим из этой серии (L) является CL. Эти почвы идентифицируются на основе их когезионных свойств и проницаемости.

Высоко Органический - это почвы, которые обычно очень сжимаются и не подходят для строительства. Они содержат частицы листьев, травы и веток. Для этой группы типичны торф, гумус и болотные почвы с высокоорганическим составом (Pt). Их легко идентифицировать по цвету, текстуре и запаху. В этом типе почвы также очень высокое содержание влаги.

Названия почв, указанные в единой системе классификации почв, связаны с определенным размером зерна и текстурными свойствами.Так обстоит дело с крупнозернистыми почвами. Названия ила и глины основаны на пластичности почвы.

Соответствующая информация о пробах, взятых из буровых скважин, которая может помочь инженеру-геологу при определении фундамента, включает:

  1. Для крупнозернистых грунтов - размер частиц, минералогический состав, форма зерен и характер вяжущего.
  2. Для мелкозернистых грунтов - прочность, влажность, пластичность.

На предварительных этапах визуальный осмотр может определить поведение почвы при ее использовании в качестве компонента в строительстве предлагаемого здания. Классифицировать почву можно по классификационным категориям единой системы классификации почв. (Позже могут быть проведены лабораторные исследования).

Прочность и уплотнение, составляющие характеристики уплотнения почвы, определяют ее пригодность для строительства фундаментов.

Проблемы с почвой

Проблема подъемного давления в почве может быть уменьшена за счет наличия хорошо дренированного и свободного дренирования гравия (GW, GP).Подъемные давления могут возникать в мелкозернистых грунтах, состоящих из илов и глин; такие почвы могут вызвать пучение фундаментов и образование фурункулов.

Из-за возможного промерзания

За счет дренажа Характеристики

Уплотнение почвы

Катки с опорными лапами и колесными колесами являются обычным оборудованием, используемым для уплотнения почвы. Некоторое преимущество имеет овчинный валик в том, что он оставляет шероховатую поверхность, которая обеспечивает лучшее соединение между слоями.

Гранулированный грунт, состоящий из хорошо гранулированных материалов (GW, SW), дает лучшие результаты уплотнения, чем плохо гранулированный грунт (GP, SP) .

Мелкозернистые грунты также можно уплотнять

Типы фундаментов по исследованию грунтов

Для большинства мелкозернистых грунтов (содержащих ил и глину) может быть достаточно использования простых раскладываемых опор, это в значительной степени зависит от величины нагрузки.Расположение фундамента по отношению к грунту (необходимо учитывать фундаментные стены и гидростатическое давление, поскольку в почве присутствует влага).

Если грунт плохой, а нагрузки на конструкцию относительно большие, требуются альтернативные методы.

Свайный фундамент может потребоваться в некоторых случаях, когда присутствует тонкий связный ил и глинистая почва. (СН, ОН). Иногда может быть желательно и экономически целесообразно провести чрезмерную выемку грунта для удаления таких грунтов, которые не обладают несущей способностью; может удалить уплотнение и засыпать или импортировать другой спроектированный грунт.

Инженер-геолог на основе результатов бурения порекомендует подходящие системы фундаментов или альтернативные решения, также могут быть установлены выдерживаемость, минимальные глубины и специальные процедуры проектирования или строительства.

Безопасная несущая способность грунта равна предельной несущей способности, деленной на коэффициент запаса прочности (обычно 2-4). предельная несущая способность определяется как максимальное удельное давление, которое грунт может выдержать, не допуская больших осаждений.

Bedrock имеет самую высокую безопасную несущую способность.Хорошо отсортированный гравий и песок, которые удерживаются и осушаются, имеют безопасную несущую способность от 3 000 до 12 000 фунтов на квадратный фут. Илы и глины имеют более низкую безопасную несущую способность 1000 - 4000 фунтов на квадратный фут.

Роль фондов

  1. Переместите строительную нагрузку на землю.
  2. Якорное сооружение от ветровой и сейсмической нагрузки.
  3. Изолировать здание от морозного пучения.
  4. Изолировать здание от обширных почв.
  5. Защищает от влаги.
  6. Предусмотрены жилые помещения (подвал, кладовая).
  7. Дома механические системы.

Конфигурации фундамента: плита на уровне земли, пространство для подполья и подвал.

Типы фундаментов

Используется для большинства зданий с небольшими нагрузками и / или с прочными мелкими грунтами. У колонн имеются одноточечные квадратные площадки, несущие стены которых имеют удлиненную форму. Они почти всегда усилены. Эти опоры переносят нагрузку непосредственно на опорные почвы.

Площадь основания основания получается делением приложенной силы на безопасную несущую способность грунта (f = P / A). Обычно подходит для малоэтажных домов (1-4 этажа).

Требуются твердые грунтовые условия, способные поддерживать здание на площади раздвинутых опор. При необходимости опоры колонн могут быть соединены вместе с поперечными балками для обеспечения большей поперечной устойчивости при землетрясениях.

Они наиболее широко используются, потому что они наиболее экономичны.Глубина основания должна быть ниже верхнего слоя почвы и линии промерзания на уплотненной насыпи или твердой естественной почве.

Расставленные опоры должны быть выше уровня грунтовых вод. Толщина бетонных оснований должна быть не меньше ширины ствола.

По мере того, как вес здания увеличивается по сравнению с несущей способностью или глубиной хорошо несущего грунта, необходимо увеличить размер фундамента или использовать другие системы.

Пробуренные пирсы или кессоны

Для экспансивных грунтов с низкими и средними нагрузками или с высокими нагрузками с камнями, расположенными не слишком глубоко, можно использовать просверленные кессоны (опоры) и профильные балки.

Кессоны могут быть прямыми или выпуклыми внизу для распределения нагрузки. Балка уклона предназначена для перекрытия опор и передачи нагрузок на столбчатый фундамент. Кессоны доставляют груз на грунт большей вместимости, расположенный не слишком далеко вниз

.

Фундамент свайный

Для обширных грунтов или грунтов, которые сжимаются при больших нагрузках, где глубокие грунты не могут выдержать строительную нагрузку и где грунты с большей емкостью, если они находятся глубоко под ними.

Есть два типа свай

  1. Фрикционные сваи - используются там, где нет приемлемого несущего слоя, и они зависят от сопротивления кожи сваи грунту.
  2. Концевой подшипник - переносится непосредственно на почву с хорошей несущей способностью.

Несущая способность свай зависит от конструкционной прочности самой сваи или прочности грунта, в зависимости от того, что меньше.

Сваи могут быть деревянными, стальными, железобетонными или монолитными.

Забивные сваи состоят из отверстий, просверленных в земле и затем заполненных бетоном, они используются для легких нагрузок на мягком грунте и там, где бурение не вызывает обрушения. Тип трения, определяемый по периметру вала и окружающей земле.

Мат Фундамент

Железобетонный плот или мат можно использовать для небольших зданий с небольшой нагрузкой на очень слабых или обширных почвах, таких как глина.

Они часто представляют собой бетон после растяжения. Они позволяют зданию плавать на земле или в земле, как плот.Его можно использовать в зданиях высотой 10-20 этажей, где он обеспечивает сопротивление опрокидыванию.

Его можно использовать там, где почва требует такой большой несущей поверхности, а основание может быть разложено настолько, что становится более экономичным залить одну большую плиту (толстую), более экономичным - меньше форм.

Используется вместо забивных свай, поскольку может быть менее дорогим и менее заметным (т. Е. Меньшим воздействием на окружающие территории). Обычно используется на обширных глинах и илах, чтобы фундамент оседал без больших перепадов.

Общий обзор исследования почвы и типы фундаментов

Рейтинг грунтов для фундаментов: (от лучших к непригодным):

Чем больше PI - индекс пластичности, когезионность, тем больше вероятность усадки и набухания, обычно характерных для глинистых грунтов.

Несвязные грунты - это зернистые грунты, состоящие из гравия и песков. Связные почвы представлены илами и глинами, а также органическими.

Дифференциальные осадки в бетонных фундаментах должны быть ограничены максимумом от до ½ дюйма.

Как правило, стоимость фундамента составляет 5% от общей стоимости строительства. Наиболее экономичен там, где безопасная несущая способность составляет не менее 3000 фунтов на квадратный фут - раздвижные опоры. Сваи самые дорогие, в 2 или 3 раза дороже, чем шпунтовые опоры.

.

% PDF-1.3 % 1772 0 объект > endobj xref 1772 34 0000000016 00000 н. 0000001035 00000 н. 0000001266 00000 н. 0000001399 00000 н. 0000001542 00000 н. 0000001651 00000 н. 0000001835 00000 н. 0000002019 00000 н. 0000002189 00000 п. 0000002358 00000 п. 0000002542 00000 н. 0000002726 00000 н. 0000002900 00000 н. 0000003084 00000 н. 0000003261 00000 н. 0000003445 00000 н. 0000004605 00000 н. 0000004785 00000 н. 0000005016 00000 н. 0000005059 00000 н. 0000005543 00000 н. 0000005775 00000 н. 0000005830 00000 н. 0000006429 00000 н. 0000006667 00000 н. 0000007255 00000 н. 0000007335 00000 н. 0000028192 00000 п. 0000028379 00000 п. 0000031058 00000 п. 0000062196 00000 п. 0000084311 00000 п. 0000003555 00000 н. 0000004582 00000 н. трейлер ] >> startxref 0 %% EOF 1773 0 объект > endobj 1774 0 объект [ 1775 0 R 1776 0 R 1777 0 R 1778 0 R 1779 0 R 1780 0 R 1781 0 R 1782 0 R 1783 0 Р 1784 0 Р 1785 0 Р 1786 0 Р ] endobj 1775 0 объект > / Ж 31 0 Р >> endobj 1776 0 объект > / Ж 27 0 Р >> endobj 1777 0 объект > / Ж 41 0 Р >> endobj 1778 0 объект > / Ж 45 0 Р >> endobj 1779 0 объект > / Ж 52 0 Р >> endobj 1780 0 объект > / Ж 62 0 Р >> endobj 1781 0 объект > / Ж 63 0 П >> endobj 1782 0 объект > / Ж 70 0 Р >> endobj 1783 0 объект > / Ж 71 0 Р >> endobj 1784 0 объект > / Ж 75 0 Р >> endobj 1785 0 объект > / Ж 85 0 Р >> endobj 1786 0 объект > / Ж 89 0 Р >> endobj 1787 0 объект > endobj 1804 0 объект > ручей HTkg rKXrv9t2] F [ҚJ [Ct $ FQ.1К, 'ч mZSnD / `{.Q #} y

.

% PDF-1.4 % 20283 0 объект > endobj xref 20283 41 0000000016 00000 н. 0000001179 00000 п. 0000001546 00000 н. 0000008551 00000 п. 0000009002 00000 н. 0000009512 00000 н. 0000010182 00000 п. 0000010416 00000 п. 0000010898 00000 п. 0000011133 00000 п. 0000011373 00000 п. 0000011418 00000 п. 0000011450 00000 п. 0000011474 00000 п. 0000012151 00000 п. 0000012508 00000 п. 0000012670 00000 п. 0000012694 00000 п. 0000013306 00000 п. 0000013330 00000 п. 0000013917 00000 п. 0000013941 00000 п. 0000014531 00000 п. 0000014555 00000 п. 0000015174 00000 п. 0000015198 00000 п. 0000015803 00000 п. 0000015827 00000 н. 0000016467 00000 п. 0000016491 00000 п. 0000017107 00000 п. 0000035214 00000 п. 0000060869 00000 п. 0000095174 00000 п. 0000102799 00000 н. 0000102880 00000 п. 0000103089 00000 н. 0000105769 00000 н. 0000105980 00000 н. 0000001768 00000 н. 0000008526 00000 н. трейлер ] >> startxref 0 %% EOF 20284 0 объект > >> / LastModified (D: 20030321074949) / MarkInfo> >> endobj 20285 0 объект > endobj 20322 0 объект > ручей HtS} 8 wa1J-: q0> P \ e> tVfQ.vmuml5 "Yiqi | EAc №

.

Типы свайных фундаментов, основанные на методе строительства

Существует три типа свайных фундаментов в зависимости от методов их строительства: забивные сваи, монолитные сваи, забивные и монолитные сваи.

Типы свайных фундаментов по способу строительства

1. Фундамент забивной свай

Забивной свайный фундамент может быть бетонным, стальным или деревянным. Эти сваи предварительно собираются перед размещением на строительной площадке.Забивные сваи бетонные - сборные. Эти сваи забиваются с помощью свайного молота.

Когда эти сваи забиваются в сыпучий грунт, они вытесняют равный объем грунта. Это способствует уплотнению почвы по бокам свай и приводит к ее уплотнению. Сваи, уплотняющие прилегающий к нему грунт, также называются уплотняющими сваями. Такое уплотнение почвы увеличивает ее несущую способность.

Насыщенные илистые и связные почвы плохо дренируют.Таким образом, эти грунты не уплотняются при бурении забивных свай. Для уплотнения почвы необходимо слить воду. Таким образом, напряжения, возникающие рядом с сваями, должны восприниматься только поровой водой. Это приводит к увеличению порового давления воды и снижению несущей способности почвы.

2. Монолитные свайные фундаменты

Забивные сваи бетонные. Эти сваи сооружаются путем сверления отверстий в земле на необходимую глубину и последующего заполнения ям бетоном.Армирование также используется в бетоне в соответствии с требованиями. Эти сваи имеют небольшой диаметр по сравнению с буронабивными сваями.

Монолитные сваи - это сваи с прямыми буронами или с одной или несколькими забивными сваями через определенные интервалы. Сваи с одной или несколькими луковицами называются недоработанными сваями.

3. Забивные и монолитные сваи

Забивные и монолитные сваи обладают преимуществами как забивных, так и забивных свай. Порядок установки забивной и монолитной сваи следующий:

Стальная оболочка диаметром сваи забивается в землю с помощью оправки, вставленной в оболочку.После забивания оболочки оправку снимают и заливают в оболочку бетон.

Оболочка изготавливается из гофрированного и армированного тонкого стального листа (однотрубные сваи) или труб (сварные трубы Armco или обычные бесшовные трубы). Сваи этого типа называются сваями оболочечного типа.

Безоболочечный тип образуется путем снятия оболочки во время укладки бетона. В обоих типах свай дно оболочки закрыто коническим наконечником, который можно отделить от оболочки.Путем выталкивания бетона из оболочки в сваях обоих типов может образоваться увеличенная луковица. К этому типу относятся сваи франки. В некоторых случаях оболочку оставляют на месте, а трубу забетонируют. Этот тип сваи очень часто используется при наваливании на воду.

.

концепций информационной безопасности | Компьютеры в опасности: безопасные вычисления в век информации

для спасения жизней (например, управление воздушным движением или автоматизированные медицинские системы). Планирование на случай непредвиденных обстоятельств касается оценки рисков и разработки планов предотвращения или восстановления после неблагоприятных событий, которые могут сделать систему недоступной.

Традиционное планирование на случай непредвиденных обстоятельств для обеспечения доступности обычно включает ответы только на стихийные бедствия (например,ж., землетрясения) или случайные антропогенные события (например, утечка токсичного газа, препятствующая проникновению на объект). Однако планирование на случай непредвиденных обстоятельств должно также включать обеспечение реагирования на злонамеренные действия, а не просто стихийные бедствия или несчастные случаи, и как таковое должно включать явную оценку угрозы, основанную на модели реального противника, а не на вероятностной модели природы.

Например, простая политика доступности обычно формулируется так: «В среднем терминал должен отключаться менее чем на 10 минут в месяц."Конкретный терминал (например, банкомат или клавиатура и экран агента по бронированию) работает, если он правильно отвечает в течение одной секунды на стандартный запрос на обслуживание; в противном случае он не работает. Эта политика означает, что время работы на каждом терминале , усредненное по всем терминалам, должно быть не менее 99,98%.

Политика безопасности для обеспечения доступности обычно принимает другую форму, как в следующем примере: «Никакие входы в систему со стороны любого пользователя, который не является авторизованным администратором, не должны приводить к прекращению обслуживания системой какого-либо другого пользователя."Обратите внимание, что в этой политике ничего не говорится о сбоях системы, за исключением тех случаев, когда они могут быть вызваны действиями пользователя. Вместо этого она определяет конкретную угрозу, злонамеренное или некомпетентное действие обычного пользователя системы и требует В нем ничего не говорится о других способах, которыми враждебная сторона может отказать в обслуживании, например, перерезав телефонную линию; для каждой такой угрозы требуется отдельное утверждение, указывающее степень сопротивления этой угрозе. считается важным.

Примеры требований безопасности для различных приложений

Точные потребности систем в безопасности будут варьироваться от приложения к приложению даже в пределах одного приложения. В результате организации должны как понимать свои приложения, так и продумывать соответствующие варианты для достижения необходимого уровня безопасности.

Автоматизированная кассовая система, например, должна сохранять конфиденциальность личных идентификационных номеров (PIN-кодов) как в хост-системе, так и во время передачи для транзакции.Он должен защищать целостность учетных записей и отдельных транзакций. Защита конфиденциальности важна, но не критично. Доступность хост-системы важна для экономического выживания банка, но не для его фидуциарной ответственности. По сравнению с наличием

.

Смотрите также