Главное меню

Коэффициент использования светового потока


индекс помещения освещение, методы расчета

Многие люди, изучая электрику, сталкиваются с таким понятием как световой коэффициент формула. Что это такое, какие существуют методы его измерения, как правильно подобрать коэффициент использования светового потока светодиодных светильников? Об этом и другом далее.

Что это такое

Световым потоком является физическая величина, характеризующая солнечный вид силы или энергии в момент излучения, которая переносится в конкретный период времени. То есть это показатель, пропорциональный тому моменту, когда произошло излучение по спектральной чувствительности глаза человека. Это мощность, которая перенеслась при помощи излучения на любую форму тела.

Важно! Коэффициентом светопотока считается сложная функция, которая зависит от того, какой тип осветительного оборудования, индекс и отражение поверхностей.

Что это такое по учебному пособию

Определение общего типа подсветки

Если было принято решение использовать коэффициент светопотока, чтобы рассчитать освещение в помещении, нужно воспользоваться соотношением минимального уровня освещенности, перемноженного на площадь с мощностным запасом и показателем освещенности от санпина, а далее поделить значение на число светильников, количество ламп в нем и коэффициент, который применяется для светопотока. В результате можно выявить общее освещение.

Для расчета мощности ламп освещения конкретного помещения, можно использовать формулу, где нужно перемножить число ламп на количество осветительных устройств и потребляемую мощность одной лампочки.

Общий тип подсветки

Методы расчета

Метод расчета представлен пошаговой процедурой. Вначале пользователь должен определиться со схемой света, затем выписать необходимую норму освещенности, подобрать тип светоисточников, проанализировать как они работают, определить коэффициент запаса и неравномерности. Далее он должен оценить коэффициент отражения поверхностей, узнать индекс помещения, понять нужное количество светильников и ламп в них, а также просчитать соответствующий коэффициент использования светопотока.

Все это сделать можно по общей формуле Ф= (Emin*k*S*Z)/(N*n*η). Также можно воспользоваться формулами, представленными на схеме.

Формула расчета

Коэффициент запаса k

Это величина, которая показывает возможность осветительной конструкции выдерживать предполагаемые нагрузки и гарантировать тот факт, что она будет надежной и долговечной. Она зависит как от лампочек, так и условий, в которых они находятся. К примеру, на цементных заводах и литейных цехах с использованием газоразрядных лампочек показатель k равен 2, а с применением ламп накаливания — 1,7. В кузнечных и сварочных цехах — 1,8 и 1,5 соответственно, а в жилых и офисных помещениях — 1,2 и 1,1.

Запас k

Коэффициент неравномерности Z

Это показатель неравномерного распределения света на всем помещении и наличие затемняющих участков. Он зависит от того, насколько симметрично расположены светильники и каково соотношение длины приборов и высоты потолка. Находится по формуле h=H-hсв-hр, где H является высотой потолка, hcв — соотношением расстояния от подвеса до низа осветительного устройства, а hp — соотношением высоты с плоскостью. К примеру, там, где светильники находятся по углам, этот показатель равен двум, а в местах, где они расположены в шахматном порядке — двум с половиной.

Важно! В соответствии с этим, чем больше светоисточников, тем меньше неравномерного освещения.

Неравномерность Z

Коэффициент использования светового потока

Это показатель, который находится в зависимости от того, в какой цвет выкрашены стены и потолок. Также он зависит от того, какую форму излучения имеют светильники. Эту величину можно узнать из соответствующей схематичной документации ниже. Важно понимать, что отражение от поверхности меньше там, где использованы темные и черные цвета.

Использование светопотока

Как выбрать

Выбор освещения для помещения должен быть сделан, исходя из выбора системы освещения, определения по законодательным нормам количество света, материала настенных и напольных поверхностей, типа и числа осветительных устройств, коэффициента пульсации. Важно отметить, что итоговый результат будет зависеть от того, какой цвет имеют сами светильники. Кроме того, есть типы осветительных устройств, которые имеют плохую освещенность, это, например, лампы накаливания. Хорошим будет выбор в пользу люминесцентных и светодиодных приборов.

Обратите внимание! Сегодня в сети нашли большое распространение различные калькуляторы, в которые уже встроены необходимые формулы. Все, что нужно пользователям, это подставить свои значения или выбрать конкретный вид светильника, а затем нажать соответствующие клавиши.

Еще одним альтернативным способом подсчета всех необходимых данных будет использование профессиональной помощи электрика, который не просто сможет подобрать по санитарным нормам освещенность, но и порекомендовать лампы, которые будут экономично тратить электроэнергию. В результате, пользователь получит не только грамотный расчет, но и дальнейшее экономное использование осветительного оборудования.

Требования санпин для жилых помещений

Индекс освещения помещения

Это еще один очень важный параметр, чтобы правильно рассчитать который нужно воспользоваться формулой i= (AB)/(h*(A+B)), где А и В является длиной и шириной пространства, а h — высотой от светильника до потолка.

Индекс помещения освещение

В целом, коэффициент использования светового потока — величина, характеризующая силу солнечного излучения источника, представленная в люменах. Индекс помещения освещения благодаря коэффициенту измеряется с помощью люменометра и формул, основной из которых является Фu = Km*V*Фe.

Как выполняется расчет освещения: основные методы

Методы расчета освещения

Расчет светового освещения методом светового потока, точечным, или способом удельной мощности, может быть осуществлен для любого помещения. Но если метод коэффициента использования светового потока применяется для расчета общего равномерного освещения, то точечный метод чаще используют для расчета освещенности локальных мест, а метод удельной мощности — для определения примерной мощности светильников.

Кроме того, метод расчета зависит от известных параметров освещения и его конечного назначения. Поэтому, дабы не быть голословными, давайте разберем каждую из этих методик отдельно и по этапам.

Методы расчета освещения

Как мы уже указали выше, существует три основных способа расчета освещения – это метод коэффициента использования светового потока, точечный метод и метод удельной мощности. Давайте разберем каждый из них по отдельности.

Расчет по методу коэффициента использования светового потока

Данный метод расчета, может быть выполнен для двух случаев – когда известно точное количество ламп и необходимо рассчитать их мощность, или, когда известна мощность ламп и необходимо рассчитать их количество. Давайте рассмотрим оба варианта.

Расчет производится по формуле:

Формула расчета методом коэффициента использования

Давайте рассмотрим каждое из значений из этой формулы по отдельности, и разберемся от чего оно зависит.

Часть табл.1 СНиП 23-05-95

Итак:

Часть табл.2 СНиП 23-05-95

Выбор коэффициента запаса

Коэффициент неравномерности освещения

Eср – это среднее значение освещенности в помещении, а Emin – соответственно его минимальное значение.

Обратите внимание! Для большинства помещений, неравномерность освещения строго ограничена. Так, для помещений, в которых выполняются работы I—II зрительных разрядов, коэффициент Z не должен превышать 1,5 для люминесцентных ламп, или 2 для других источников света. Для остальных помещений, данный коэффициент составляет 1,8 и 3 соответственно.

Таблица выбора коэффициента использования светового потока

Методом коэффициента использования светового потока, можно произвести расчет и количества необходимых светильников, при известной величине светового потока. Для этого следует использовать формулу —

Метод коэффициента использования для расчета количества светильников

Величины в этой формуле не отличаются от рассмотренного выше варианта, поэтому более детально данную формулу рассматривать не будем.

Расчет точечным методом

Расчет точечным методом содержит некоторые отличия для точечных светильников, и для так называемых, световых полос. Под световыми полосами подразумевают люминесцентные лампы. Давайте рассмотрим оба варианта.

Расчет точечным методом

Итак:

Расчет величины Нр

Расчет угла α

Чертим план помещения с расстановкой на нем светильников

План помещения с большим количеством светильников

На фото графики пространственных изолюксов

Формула расчета точечным методом

Но для люминесцентных ламп данный расчёт не подходит. Для него разработан так называемый точечный метод расчета светящихся полос. Суть данного метода идентична варианту, рассмотренному выше, и его вполне можно сделать своими руками.

Расчет для светящихся полос

Для начала, как и в первом варианте, вычисляем значение Нр. Затем рисуем план помещения и расположения светильников.

Обратите внимание! План следует создавать с соблюдением масштаба. Это необходимо для определения точки А, для которой мы производим расчет. Эта точка будет расположена посередине светящейся полосы, то есть лампы, и удалена от этой середины на расстояние р.

План помещения и пространственные изолюксы для расчета светящихся полос

Расчет способом удельной мощности

Последним возможным вариантом расчета освещения, является метод удельной мощности. Данный метод относительно прост, но не дает точных результатов. Кроме того, он требует использования большого количества справочной литературы, приведенной на видео.

Суть данного метода сводится к следующему. Прежде всего, определяем величину Нр. Ее мы искали во всех описанных выше вариантах, поэтому не будем на ней останавливаться более подробно.

Таблицы выбора удельной мощности светильников

Формула расчета удельной мощности

Где S – площадь помещения, а n – количество ламп.

Исходя из полученного значения, находим ближайшее большее значение существующих ламп. Если мощность ламп не соответствует требованиям светильника, то увеличиваем количество светильников, и повторяем расчет методом удельной мощности.

Выбор метода расчета

Имея представление, каким образом производится расчет, давайте рассмотрим, какой из способов выбрать конкретно для вашего случая. Ведь различные методы расчета предназначены для различных помещений и условий.

Итак:

Выбираем метод расчета освещенности

Кроме того, данный расчет позволяет определить, какова приближенная цена монтажа и эксплуатации данной осветительной системы.

Вывод

Конечно, такие сложные методологии совершенно не нужны, если вы просто создаете освещение рассады в домашних условиях. Для этого и подобных случаев, достаточно применить нормируемый показатель минимальной освещенности, умножив его на площадь помещения.

А уже, исходя из полученного значения, выбрать количество и мощность ламп. Но если говорить о промышленных масштабах, то здесь без тщательного расчёта не обойтись. И лучше в данном вопросе не заниматься самодеятельностью, а довериться профессиональным конструкторским бюро.

Коэффициент использования светового потока — Мегаобучалка

РАСЧЕТ ОБЩЕГО ОСВЕЩЕНИЯ

Основные положения

1.1. Для заданных характеристик зрительной работы и рабочего помещения определить необходимую минимальную величину освещённости рабочего места, создаваемую системой общего освещения или системой общего освещения в комбинированной системе освещения по действующим строительным нормам и правилам СНиП 23-05-95 [1], и провести методом светового потока (коэффициента использования) расчёт общего равномерного освещения для горизонтальной рабочей поверхности.

1.2. Выбрать тип источника света и тип светильников с учётом характеристики помещения и светораспределения светильников.

1.3. Распределить светильники и определить их количество (схему распределения светильников привести в отчёте).

1.4. Расчёт довести до определения электрической мощности системы общего освещения.

Нормы освещенности выбираются по таблице 1.

 

Методика расчета

2.1. Определить разряд и подразряд зрительной работы, учитывая заданные по варианту характеристики зрительной работы, наименьший размер объекта различения, характеристику фона и контраста объекта различения с фоном (табл. 1.) [1].

2.2. Определить нормируемый уровень минимального освещения на рабочем месте, используя табл. 1 [1].

Если в вашем варианте в системе местного освещения используются лампы накаливания, то определите нормируемый уровень минимального освещения, учитывая требования [1]:

«Освещённость при использовании ламп накаливания следует снижать по шкале освещённости: а) на одну ступень при системе комбинированного освещения, если нормируемая освещённость составляет 750 лк и более…», используя при этом данные [1]:

«Нормируемые значения освещённости в люксах, отличающиеся на одну ступень, следует принимать по шкале: 0,2; 0,3; 0,5; 1; 2; 3; 5; 7; 10; 20; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 750; 1000; 1250; 1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000».

2.3. Выбрать тип светильников общего освещения с учётом характеристик светораспределения.

В помещениях вычислительных центров рекомендуется использовать светильники с металлической экранирующей решёткой и непрозрачными боковинами типа ЛСО; с отражённым и рассеянным светораспределением — типа УСП и типа ЛПО.



При выборе типа светильника можно ограничиться светильниками, приведёнными на рисунке 1 [2].

Таблица 1

Нормы проектирования искусственного освещения

(фрагмент из СНиП 23-05-95*/2010; остальное – смотреть в отдельном файле)

 

Характеристика зрительной работы Наименьший размер объекта различения, мм Разряд зрительной работы Подразряд зрительной работы Контраст объекта с фоном Характеристика фона Искусственное освещение
Освещённость, лк
Комбинированное Общее
Наивысшей точности Менее 0,15 I а Малый Тёмный
б Малый Средний Средний Тёмный
в Малый Средний Большой Светлый Средний Тёмный
г Средний Большой Большой Светлый Светлый Средний
Очень высокой точности 0,15–0,3 II а Малый Тёмный
б Малый Средний Средний Тёмный
в Малый Средний Большой Светлый Средний Тёмный
г Средний Большой Большой Светлый Светлый Средний
Высокой точности 0,3–0,5 III а Малый Тёмный
б Малый Средний Средний Тёмный
в Малый Средний Большой Светлый Средний Тёмный
г Средний Большой Большой Светлый Светлый Средний

 

2.5. Распределить светильники и определить их количество [2].

2.5.1. Для ламп накаливания и ДРЛ. Обеспечение равномерного освещения для горизонтальной рабочей поверхности достигается при определённых отношениях расстояния между центрами светильников L к высоте подвеса светильников над рабочей поверхностью Hр

— для светильников типа ЛСО, УСП, ЛПО — L/Hр = 1,3 … 1,4;

— для «Глубокоизлучателя» типа УПМ-15 — L/Hр = 1,5;

— для «Молочного шара» и для взрывозащищённого светильника типа ВЗГ с отражателем — L/Hр = 2.

Светильники с лампами накаливания (ЛН) и дуговыми ртутными с люминофором (ДРЛ) рекомендуется располагать в шахматном порядке.

Количество светильников с лампами ЛН и ДРЛ определяется по формуле:

,

где S — площадь помещения, м2.

2.5.2. Для люминесцентных ламп. Длину светильников lсв принимать равной длине лампы (lл) плюс 50 – 100 мм (lл - выбирают из таблицы)

Светильники с люминесцентными лампами для получения равномерной горизонтальной освещённости рекомендуется располагать сплошными рядами, параллельными стенам с окнами или длинным сторонам помещения. Расстояние между центрами светильников в ряду L принимают с учётом рекомендаций:

.

Расстояние между параллельными рядами светильников C определяют в соответствии с рекомендациями:

.

Количество светильников с ЛЛ определяется по формуле:

.

 
 

2.6. В отчёте привести рисунок со схемой распределения светильников.

1 — «Универсаль»; 2 — «Глубокоизлучатель»; 3 — «Люцетта»;

4 — «Молочный шар»; 5 — типа ВЗГ; 6 — типа ОД; 7 — типа ПВЛ

Рисунок 1 – Примеры типов некоторых светильников

 

2.7. Для расчёта общего равномерного освещения горизонтальной рабочей поверхности основным методом является метод светового потока (коэффициент использования), учитывающий световой поток, отражённый от потолка и стен [2].

Световой поток одной лампы (для ЛН и ДРЛ) или световой поток группы ламп (для светильника с ЛЛ) рассчитывают по формуле:

,

где Eн — нормированная минимальная освещённость, лк;

Z — коэффициент минимальной освещённости, равный отношениюEср/Eмин, для ЛН и ДРЛ Z = 1,15; для ЛЛ Z = 1,1;

K — коэффициент запаса (см. табл. 2 - с учетом варианта) [2];

η — коэффициент использования светового потока ламп.

Коэффициент использования светового потока ламп (η ) зависит от КПД и кривой распределения силы света светильника, коэффициентов отражения от потолка ρп и стен ρс, высоты подвеса светильников над рабочей поверхностью Hр и показателя помещения.

Таблица 2

Коэффициент запаса K

 

№ п/п Характеристика объекта Коэффициент запаса Срок чистки светильников, не реже одного раза
при люминесцентных лампах при лампах накаливания
Помещения с большими выделениями пыли, дыма или копоти 1,7 в 1 мес.
Помещения со средними выделениями пыли, дыма или копоти 1,8 1,6 в 3 мес.
Помещения с малыми выделениями пыли, дыма или копоти 1,5 1,3 в 6 мес.

 

Значение коэффициента использования светового потока определяют по табл. 3 [2], при этом для светильников типа ЛОУ, ЛСП, ЛСО, ЛПО и УСП брать те же коэффициенты использования, что и для светильников типа ПВЛ.

Показатель помещения:

,

где A и B — соответственно длина и ширина помещения, м.

2.9. В конце расчета необходимо: по полученному расчетному значению светового потока подобрать ЛН, ДРЛ или группу ЛЛ.

Для этого необходимо использовать выписки из ГОСТ 6825-74, ГОСТ 16354-77 и ГОСТ 2239-79 (табл. 4–6).

Для светильника с ЛЛ надо учитывать, что в таком светильнике количество ламп n = 2 или n = 4 [2].

Расчет будет выполнен верно, когда отклонение светового потока выбранной по таблице лампы (FлТ) от расчётного значения потока (FлР) будет в пределах: от 0 % и до +20 % {т.е. FлТ = (1-1,2) FлР}.

Если это условие не выполняется, то корректируют схему расположения светильников и уточняют расчет.

Например:

1 - выбирается другой тип ламп и проводится новый расчет;

2 - изменяется количество выбранных ламп и проводится уточнение расчета.

2.10. Определить потребляемую мощность светильной установки:

,

где P — потребляемая мощность, Вт;

p — мощность одной лампы, Вт;

n — количество ламп в светильнике для ЛЛ (n = 2 или 4).

Таблица 3

Коэффициент использования светового потока

 

Светильник «Глубокоизлучатель» «Универсаль» без затенителя «Люцетта» ВЗГ-200 с отражателем ОД ПВЛ
ρп, %
ρс, %
i Коэффициент использования η
0,5
0,6
0,7
0,8
0,9
1,1
1,25
1,5
1,75
2,25
3,5

 

Таблица 4

Люминесцентные лампы низкого давления (ГОСТ 6825-74*)

 

Тип и мощность лампы Длина, мм Световой поток, лм Тип и мощность лампы Длина, мм Световой поток, лм
ЛДЦ 20 ЛДЦ 40
ЛД 20 ЛД 40
ЛХБ 20 ЛХБ 40
ЛБ 20 ЛТБ 40
ЛТБ 20 ЛБ 40
ЛДЦ 30 ЛДЦ 65
ЛД 30 ЛДЦ 80
ЛХБ 30 ЛД 65
ЛТБ 30 ЛД 80
ЛБ 30 ЛБ 80

 

Примечание. Буквенные обозначения указывают тип лампы: Л — люминесцентная, Д — дневного света, ХБ — холодного белого, ТБ — тёплого белого, Ц — улучшенной цветопередачи.

 

 

Таблица 5

Типы и основные характеристики ламп ДРЛ (ГОСТ 16354-77*)

 

Тип лампы Мощность, Вт Световой поток, лм Минимальная высота подвеса над рабочим местом, м
ДРЛ-250 3,5
ДРЛ-400
ДРЛ-700
ДРЛ-1000

 

Примечание. ДРЛ — дуговая ртутная с люминофором.

 

Таблица 6

Типы и основные характеристики ламп накаливания (ГОСТ 2239-79)

 

Тип лампы Напряжение, В Мощность, Вт Световой поток, лм
Г 220-300
Г 220-500
Г 220-750
Г 220-1000
Г 220-1500

 

Примечание. Г — газонаполненная.

 

Измерение коэффициента использования светового потока и единицы светопотока

Мощность светового излучения, отдаваемая источником, – это поток света, который в состоянии воспринимать и оценивать человеческий глаз. Сила излучения разных источников света зависит от скорости электромагнитных волн. При выборе осветительных устройств часто возникает путаница в основных понятиях и обозначениях физических величин, характеризующих качество полученного освещения.

Оптический поток

Что такое световой поток

Определить свойства и качественные характеристики света от излучателя поможет такое понятие, как световой поток. При помощи этой величины вычисляют значение силы света, попадающего на единицу площади. Выполняя расчёты систем освещения, используют эту меру. Существуют требования к освещённости различных помещений. Проще говоря, поток света – это мощность, с которой излучение действует на какую-либо поверхность. Система единиц (СИ) обозначает поток буквой Ф, единицу измерения – 1 люмен (лм; lm).

Формула светового потока

Отличие освещенности от светового потока

Когда поток света в 1 лм падает на освещаемый участок площадью в 1 м², получается освещённость в 1 лк. Освещённость обозначают буквой Е, измеряют в люксах (лк). Её можно рассчитать по формуле:

Е = Ф/S, где:

Разницу между этими двумя физическими величинами понимают так: 1 люкс = 1 лм/м² освещаемой поверхности.

Световой поток и яркость – не одно и то же

Обращаясь к определению яркости L, измеряемой в канделах на квадратный метр (Кн/м²), видно, что это количество отражённого поверхностью света.

Яркость источника – это соотношение силы его свечения и величины этой силы, приходящейся на единицу площади поверхности источника, которую видит глаз. Сила света измеряется в канделах, потому яркость обозначается буквой L и измеряется в Кн/м².

Если наблюдать издалека два источника света, имеющих разную площадь поверхности, но с одинаковой силой света, то меньшая поверхность будет выглядеть ярче. Увеличение угла, под которым смотрят на световой источник, уменьшает воспринимаемую глазом яркость. Яркость максимальна, когда плоскость, в которой лежит излучатель, перпендикулярна глазу.

Величина яркости изменяется от вида поверхности:

Важно! Световые потоки – это вся энергия излучения источника, яркость – только та доля, которая поступает в глаз или на предмет. В частности, оптический проектор в своих технических характеристиках имеет обозначение не яркости, а величины СП.

Оптический проектор

Как и в чем измеряется

С появлением ламп, у которых используемая мощность в ваттах стала отличаться от яркости, возник вопрос, как измерить потоки света.

Единицы измерений светового потока 1 люмен – это свет, отдаваемый излучателем с силой в 1 кд в рамках телесного угла в 1 стерадиан. Обозначается буквой Ф.

Для информации. Лампа с нитью накаливания в 100 Вт выдаст поток света, равный 1000 лм. Чем ярче светильник, тем он больше люмен выдаст.

Небольшой перечень приборов, которые применяются для измерения:

  • портативный люксметр;
  • сферический фотометр;
  • люксметр-пульсметр.

Самостоятельно проверить соответствие параметров приобретённого осветительного прибора можно люксметром CEM DT-1300. При помощи этого прибора определяют уровень освещения поверхности или помещения. В комплекте – выносной сенсор, который регистрирует интенсивность потока. Дисплей отображает показания в единицах – Lux или FC. На выполнение измерения необходимо 1,5 секунды.

Что касается точности измерения световых параметров, то сложность заключается в том, что световое излучение – это поток, движущийся во всех направлениях. В лабораторных условиях используют сферические фотометры. Источник помещают в сферу, имеющую высокое оптическое использование измерения.

Интересно. Любая лампочка при излучении имеет пульсацию. Завышенный коэффициент пульсации при тусклом освещении вызывает усталость глаз и со временем снижает зрение. Измерить пульсацию осветительных приборов можно с помощью люксметра – пульсметра.

Типовое значение светового потока для источников света

При приобретении осветительных устройств стоит обращать внимание на СП, который будет излучаться. На самих приборах и на упаковке не всегда проставлены значения этой величины. Всё зависит от фирмы изготовителя и достоверности информации. Лампочки накаливания продаются в картонном поясе и с численным обозначением напряжения и мощности на колбе. Сколько люмен выдаёт лампа, не написано. Однако присутствует связь между Р (Вт) и Ф (Лм).

Стандартные значения Ф для осветительных элементов

Лампа накаливания, мощность, ВтСветодиодная
лампа, мощность, Вт
Люминесцентная
лампа, мощность, Вт
Световой поток,
Лм
202-35-7≈ 250
404-510-13≈ 400
608-1015-16≈ 700
7610-1218-20≈ 900
10012-1520-30≈ 1200

Распространённые источники света

К сведению. Получившие популярность светодиодные лампы, как показывает таблица, устанавливать выгодно. При низком, по сравнению с другими источниками, энергопотреблении они отдают света больше.

Освещенность и световой поток

Освещённость – это показатель силы светового потока, ложащегося на объект заранее известной площади. Связь между этими физическими величинами прослеживается при рассмотрении формулы:

Е=Ф/S, где:

  • Е – освещённость, Лк;
  • Ф – поток света, Лм;
  • S – площадь поверхности, м².

Из формулы видно, что освещённость зависит от силы светового потока.

Приступая к проектированию освещения в служебном помещении или квартире, сначала определяется необходимое значение освещённости рассматриваемой площади поверхности, потом выполняется расчёт необходимого светового потока:

Ф=Е*S.

Освещенность и требования стандартов

Там, где в дневное время недостаточно солнечного света, а также в вечерние и ночные часы, пользуются искусственными источниками. На предприятиях каждое рабочее место проходит аттестацию на соответствие допустимым санитарным нормам. В эти нормы укладывают и уровень освещённости. Неправильное освещение или его недостаток влияет на здоровье работников.

Основным нормативным документом, регламентирующим стандарты этого параметра, выступает СНИП 23-05-95 – это нормы, принятые к исполнению в 1995 году. Откорректированный его вариант в виде СП 52.13330.2011 от 20.05.2011 г. действует и поныне.

В перечне отражены границы степени освещённости для помещений:

  • производственных и складских;
  • рабочих площадок вне зданий;
  • жилых и общественных помещений;
  • уличного освещения населённых пунктов;
  • архитектурных подсветок;
  • витринной и рекламной иллюминации;
  • специального освещения.

Важно! Вреден как недостаток, так и избыток света. Яркие пятна люминесцентных реклам и витринных окон, выполненных с превышением требований, загрязняют световой фон улиц.

Освещённость

Ограничения на расчеты освещенности

При первичных расчётах учитываются следующие значения:

  • световой поток источников в светильнике;
  • нормируемая освещённость;
  • коэффициент запаса, зависящий от загрязнённости объекта и типа ламп;
  • поправочный коэффициент – отношение средней освещённости к освещённости нормируемой;
  • количество ламп;
  • коэффициент использования светового потока;
  • S помещения.

Теоретические расчёты содержат погрешность до 30%, значит, необходимы дополнительные измерения люксметром. При этом необходимо учитывать время суток и длительность пребывания человека в расчётном месте. Учитывается и конструктивное исполнение осветительного устройства: плафоны, крышки, стёкла. Защитные покрытия вносят искажения в характеристики ламп.

Особенности использования светодиодных ламп

Лидирующее место занимают LED-лампы, применяемые в современном освещении. В конструкцию входят от одного до нескольких светодиодов сразу. На первый взгляд это обычная лампа, но наличие электрической схемы и светоизлучающих элементов в сочетании с оптической системой обеспечивает иное качества излучения света. Изменяя количество светодиодов, можно менять мощность, применение разных оптических решений линзы позволяет фокусировать или рассеивать поток.

LED-лампы обладают рядом достоинств:

  • отсутствие ультрафиолетовой части спектра;
  • пульсация некоторых моделей менее 1%;
  • экономичность;
  • низкая теплоотдача;
  • срок службы 100 000 ч.;
  • минимальные размеры;
  • мгновенное включение в полноценный режим.

К недостаткам можно отнести следующие пункты:

  • стоимость;
  • спектр излучения требует тщательного подбора;
  • деградация кристалла;
  • нейтральный и холодный оттенки в некоторых случаях влияют на регуляцию сна.

Параметры дешёвых китайских изделий нарушают все допустимые нормы качества освещения. При выборе ЛЭД-ламп следует тщательно изучить характеристики и приобретать изделия проверенных производителей.

Светодиодные лампы

Нормы освещения помещений по использованию (СНиП)

Подробные нормы для различных зданий и объектов можно посмотреть в СП 52.13330.2011 от 20.05.2011 года. Для комфортного и безопасного освещения желательно знать, какие параметры должны иметь бытовые помещения. Некоторые из них отражены в таблице.

Таблица параметров

Грамотно подобранное искусственное освещение по своему спектру приближается к дневному солнечному свету. Знание физических характеристик светового потока позволяет правильно выбрать и разместить источники этого вида излучения для обеспечения комфортной среды обитания.

Видео

Расчет освещенности помещений врукопашную / Хабр

Постараюсь очень кратко и просто изложить метод ручного расчета освещения в помещениях, которому меня научили на курсе «Расчет освещения» школы светодизайна LiDS.

Какой должна быть освещенность
При планировании освещения, в первую очередь нужно определить соответствующую нормам целевую освещенность и посчитать общий световой поток, который должны давать светильники в помещении.
С нормативами определиться просто – либо ищем свой тип помещения в таблицах СанПиН 2.21/2.1.1/1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» и СП 52.13330.2011 «Естественное и искусственное освещение», либо соглашаемся с основным требованием по освещенности жилых помещений – 150лк или офисных помещений с компьютерами – 400лк.

Грубая оценка необходимого светового потока
По умолчанию расчет освещенности делается в программе Dialux. Но результат хотя бы приблизительно нужно знать заранее, чтобы сверить данные с оценкой «на глазок».
Как написано даже в Википедии, средняя освещенность поверхности — это отношение падающего на нее светового потока к площади. Но в реальном помещении часть светового потока светильника рабочих плоскостей не достигает, пропадая на стенах. Освещенность в помещении – это отношение общего светового потока светильников к площади помещения с поправочным коэффициентом «η».

Долю света «η», который доходит до рабочих поверхностей, можно оценить на глазок. В самом общем приближении для некоего очень среднего помещения с какими-то там светильниками до рабочих поверхностей доходит примерно половина света, а значит для очень грубой оценки можно использовать коэффициент η = 0,5.
Например, в комнате площадью 20м2 светильник со световым потоком 700лм (эквивалент лампы накаливания 60Вт) создаст освещенность Е = 0,5 × 700лм / 20м2 = 18лк. А это значит, что для достижения норматива в 150лк, нужно F = 700лм × (150лк / 18лк) =5800лм, или эквивалент 8-ми лампочек накаливания по 60Вт!
(Полкиловатта ламп накаливания на небольшую комнату! Понятно, почему нормы освещенности для жилых помещений гораздо ниже, чем для учреждений, и почему учреждения уже давно никто лампами накаливания не освещает.)

Более точный метод ручного расчета
Но так как помещения бывают с разными стенами, разной формы, с высокими или низкими потолками, поправочный коэффициент не обязательно равен 0,5 и для каждого случая свой: на практике, от 0,1 до 0,9. При том, что разница между η = 0,3 и η = 0,6 уже означает разбег результатов в два раза.
Точное значение η нужно брать из таблиц коэффициента использования светового потока, разработанных еще в СССР. В полном виде с пояснениями таблицы привожу в отдельном документе. Здесь же воспользуемся выдержкой из таблиц для самого популярного случая. Для стандартного светлого помещения с коэффициентами отражения потолка стен и пола в 70%, 50%, 30%. И для смонтированных на потолок светильников, которые светят под себя и немного вбок (то есть имеют стандартную, так называемую, «косинусную» кривую силы света).


Табл. 1 Коэффициенты использования светового потока для потолочных светильников с косинусной диаграммой в комнате с коэффициентами отражения потолка, стен и пола – 70%, 50% и 30% соответственно.

В левой колонке таблицы указан индекс помещения, который считается по формуле:

, где S — площадь помещения в м2, A и B — длина и ширина помещения, h — расстояние между светильником и горизонтальной поверхностью, на которой рассчитываем освещенность.
Если нас интересует средняя освещенность рабочих поверхностей (стола) в комнате площадью 20м2 со стенами 4м и 5м, и высоте подвеса светильника над столами 2м, индекс помещения будет равен i = 20м2 / ( ( 4м + 5м ) × 2,0м ) = 1,1. Удостоверившись, что помещение и лампы соответствуют указанным в подписи к таблице, получаем коэффициент использования светового потока – 46%. Множитель η = 0,46 очень близок к предположенному навскидку η = 0,5. Средняя освещенность рабочих поверхностей при общем световом потоке 700лм составит 16лк, а для достижения целевых 150лк, потребуется F = 700лм × ( 150лк / 16лк ) = 6500лм.
Но если бы потолки в комнате были выше на полметра, а комната была не «светлым», а «стандартным» помещением с коэффициентами отражения потолка, стен и пола 50%, 30% и 10%, коэффициент использования светового потока η составил бы (см. расширенную версию таблицы) η = 0,23, и освещенность была бы ровно вдвое меньше!

Проверяем расчеты в диалюксе
Построим в диалюксе комнату 4 × 5м, высотой 2,8м, с высотой рабочих поверхностей 0,8м и теми же коэффициентами отражения, что и при ручном счете. И повесим 9шт мелких светильников с классической косинусной диаграммой по 720лм каждый (6480лм на круг).


Рис. 1 Взятый для примера светильник Philips BWG201 со световым потоком 720лм, и его классическое «косинусное» светораспределение

Получится ли у нас средняя освещенность рабочих поверхностей в 150лк, как мы оценили вручную? Да, результат расчета в Dialux – 143лк (см. рис2), а в пустой комнате без мебели и человеческой фигуры – 149лк. В светотехнике же значения, различающиеся менее чем на 10% считаются совпадающими.


Рис. 2 Результат расчета в диалюксе – средняя освещенность рабочей поверхности (при коэффициенте запаса 1,0) составила 143лк, что соответствует целевому значению 150лк.


Рис. 3 Красивые картинки, в которые верят люди.

Заключение:
На грубую оценку примитивным методом по формуле E = 0.5 × F / S потребуется 1 минута времени, на уточнение коэффициента использования по таблицам – еще 3 минуты, на проект в диалюксе после некоторого обучения – около 20 минут и еще 20 минут, если хочется «навести красоту». Диалюкс выдает очень красивые картинки (см. рис. 3), которые стоят потраченного труда, потому что в них верят люди. Но по соотношению эффективности и трудозатрат оценка освещенности врукопашную вне конкуренции. Ручной счет прост, надежен и эффективен как саперная лопатка, дает уверенность и понимание.

РАСЧЕТ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК МЕТОДАМИ КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ СВЕТОВОГО ПОТОКА И УДЕЛЬНОЙ МОЩНОСТИ

⇐ ПредыдущаяСтр 3 из 6Следующая ⇒

 

Цель занятия

Ознакомиться с последовательностью рассмотрения вопросов и получить практические навыки расчета осветительных установок методами коэффициента использования светового потока и удельной мощности.

 

Теоретические положения

Определение мощности лампы

 

Мощность лампы, которую необходимо установить в выбранный светильник, определяется светотехническим расчётом освещенности.

 

1. Метод коэффициента использования светового потока осветительной установки.

Данный метод применяется для расчёта общего равномерного освещения горизонтальных поверхностей, равновеликих к полу, при светильниках любого типа.

Потребный поток ламп в каждом светильнике находится по формуле:

Фл = (3.1)

где Ен - нормируемое значение освещенности, лк; Кз - коэффициент запаса; S - освещаемая площадь, м; z = Есрмин; Еср, Емин - среднее и минимальное значения освещенности, лк; N - число светильников; N=na×nв, UОУ - коэффициент использования светового потока.

Коэффициент z характеризует неравномерность освещения. В наибольшей степени z зависит от отношения расстояния между светильниками к расчётной высоте (L/h). При L/h, не превышающем рекомендуемых значений (L£0,5h), принимается z=1,15 для ЛН и ДРЛ и z = 1,10 для люминесцентных ламп при расположении светильников в виде светящихся линий. Для отраженного освещения полагается z=1,0; при расчёте на среднюю освещенность z не учитывается.

Под коэффициентом использования светового потока UОУ понимают отношение светового потока, падающего на расчётную плоскость, к световому потоку источников света. Коэффициент UОУ зависит от светораспределения светильников и их размещения в помещениях; от размеров освещаемого помещения и отражающих свойств его поверхностей; от отражающих свойств рабочей поверхности.

Соотношение размеров освещаемого помещения и высоты подвеса светильников в нем характеризуется индексом помещения.

, (3.2)

 

где - длина помещения, м; - его ширина; h - расчётная высота подвеса светильников.

Коэффициенты отражения поверхностей помещения: потолка rп и стен rс - оцениваются с помощью таблицы П.3.30. Коэффициент отражения расчётной поверхности или пола в большинстве случаев принимается rр = 0,1.

По найденным значениям индекса помещения iп и коэффициентов отражения rп, rс и rр для выбранного типа светильников определяется коэффициент использования светового потока UОУ. Значения коэффициентов использования светового потока для светильников с типовыми КСС приведены в табл. П3.29.

Порядок расчёта электрического освещения методом коэффициента использования следующий: 1) определяется h, тип и число светильников N в помещении, как указывалось выше; 2) по таблицам находятся коэффициент запаса Кз; поправочный коэффициент z; нормированная освещенность Ен; 3) вычисляется индекс помещения iп по формуле 3.2.; 4) определяется коэффициент использования светового потока ламп UОУ; 5) по формуле 3.1. находится необходимый поток ламп в одном светильнике; 6) выбирается лампа с близким по величине световым потоком.

Световой поток светильника при выбранных лампах не должен отличаться от Фл больше чем на величину (-10 ¸ +20)%. Должно выполняться следующее условие: £ . При невозможности выбора ламп с таким приближением корректируется число светильников N либо высота подвеса светильников h.

Суммарная длина N светильников сопоставляется с длиной помещения, причем возможны следующие случаи:

1. Суммарная длина светильников превышает длину помещения: необходимо или применить более мощные лампы (у которых световой поток на единицу длины больше), или увеличить число рядов, или компоновать ряды из сдвоенных, строенных светильников.

2. Суммарная длина светильников равна длине помещения: задача решается установкой непрерывного ряда светильников.

3. Суммарная длина светильников меньше длины помещения: принимается ряд с равномерно распределенными вдоль него разрывами l между светильниками.

Из нескольких возможных вариантов на основе технико-экономических соображений выбирается наилучший.

Рекомендуется, чтобы l не превышала 0,5 расчётной высоты (кроме многоламповых светильников в помещениях общественных и административных зданий).

При заданном потоке ряда светильников Фл формула (3.1) решается относительно N.

Пример 3.1. В помещении площадью 200 м2 и с индексом iп=1,25 светильниками типа НПП 05-100 требуется обеспечить Ен=30лк при Кз=1,3. Задано rп=50%, rс = 30%, rр=10%, z=1,15.

По таблице 5.9. данный тип светильника имеет КСС типа М. По таблице П.3.29. для iп = 1,25 и КСС типа М определяется коэффициент UОУ=45%=0,45.

В светильнике применена лампа типа БК215-225-100 с Фл=1500 лм. (см. табл. П3.1.)

Необходимое число светильников может быть определено в соответствии с формулой :

 

N = (3.3)

 

в данном случае:

 

 

Пример 3.2. В том же помещении установлено три продольных ряда светильников ЛСПО2 (КСС типа Д-2) с лампами ЛБ и требуется обеспечить Е = 300 лк при Кз=1,5. В таблице П3.29 этим условиям соответствует UОУ=0,52. Поток ламп одного ряда

 

 

Если применить светильники с лампами типа ЛБ-40 2х40 Вт (с общим потоком 6400 лм), то в ряду необходимо установить 63 460:6400»11 светильников: если же светильники с лампами типа ЛБ-65 2х65 Вт (с потоком 9600 лм), в ряду необходимы 6 светильников. Так как длина помещения не менее 20 м, то в обоих случаях светильники вмещаются в один ряд. Некоторые преимущества имеет первый вариант, при котором разрывы между светильниками меньше.

 

2. Метод удельной мощности

Этот метод является упрощением метода коэффициента использования светового потока. Метод рекомендуется для расчёта электрического освещения второстепенных помещений, а также для расчёта осветительной нагрузки, когда расчёт освещения не входит в задание проекта.

Удельной мощностью называют частное от деления общей мощности установленных в помещении ламп на площадь помещения (Вт/м2)

, (3.4)

 

где Рл - мощность одной лампы, Вт; N - число ламп; S - площадь помещения, м2.

В таблице П3.33¸41 приводятся данные об удельной мощности для светильников прямого света с типовыми КСС.

Удельная мощность является важнейшим энергетическим показателем осветительной установки, широко используемым для оценки экономичности решений и для предварительного определения осветительной нагрузки на начальных стадиях проектирования.

Таблицами удельной мощности необходимо пользоваться в пределах данных, для которых они составлены.

К учитываемым параметрам относятся:

1. тип КСС светильника,

2. нормируемая освещенность,

3. коэффициент запаса. Если коэффициент запаса, принятый для расчёта, отличается от указанных в таблице, то допускается пропорциональный перерасчёт удельной мощности,

4. коэффициент отражения ограждающих поверхностей помещения. При более светлых или более темных поверхностях допускается соответственно уменьшать или увеличивать на 10 % удельной мощность,

5. расчётная высота,

6. площадь помещения,

7. коэффициент z,

8. напряжение лампы накаливания,

(Табличные значения удельной мощности для ЛН соответствуют напряжению 220 В; при напряжении 127 В значение удельной мощности, взятое из таблиц, должно быть умножено на 0,86)

9. КПД светильников. В таблицах приведены мощности W для условного КПД = 100%; расчётное значение W для освещенности 100 лк от реально применяемых светильников определяется делением табличного значения W100% на выраженный в долях единицы КПД светильников.

10. коэффициент использования.

Необходимо отметить прямую пропорциональность между Е и W для люминесцентных ламп. Приводимые в таблицах W для Е=100 лк изменяются пропорционально при рассчитываемых Ен.

Таблицы П3.33¸41 рассчитывались для светильников прямого света при отношении расстояний между ними или между их рядами к высоте подвеса L:h=0,4 для КСС типов Г-3, К-1, К-2; L:h=1,0 для КСС типов Д-3, Г-1, Г-2 и L:h=1,5 для КСС типов Д-1, Д-2, а также при полном совпадении данных, для которых составлены эти таблицы.

Порядок расчёта по удельной мощности при лампах накаливания и лампах типа ДРЛ:

1) определяется h, тип и число светильников N в помещении;

2) по таблицам находится нормированная освещенность для данного вида помещений Ен;

3) по соответствующей таблице находится удельная мощность W;

4) определяется мощность лампы по формуле:

 

Рл = WS/N (3.5)

 

и подбирается ближайшая стандартная лампа.

Если расчётная мощность лампы оказывается большей, чем в принятых светильниках, следует определить необходимое число светильников, приняв мощность лампы, приемлемую для данного светильника.

При люминесцентных лампах сохраняется прежний порядок расчёта освещения помещений, включая определение числа рядов светильников N и спектрального типа лампы; по соответствующей таблице находится удельная мощность W для ламп данной мощности или нескольких возможных к применению мощностей; для тех же ламп определяется необходимое число светильников в ряду:

 

N=WS/Рл (3.6)

 

и осуществляется компоновка ряда, как рассмотрено выше.

ПримерВ помещении площадью S = х = 16 х 10 = 160 м2 с rп=0,5; rс=0,3; rр=0,1 на расчётной высоте h=3,2 м предполагается установить светильники типа ЛСПО2-2 Х 40-10 (КСС типа Д-3, КПД=60%) с ЛЛ типа ЛБ. Определить число светильников, необходимое для создания освещенности Е=300 лк при коэффициенте запаса Кз = 1,8 и коэффициенте неравномерности z=1,1.

По таблице П3.39 находится W100% = 2,9 Вт/м2. Но так как в таблице Е=100 лк; Кз=1,5 и КПД=100%, пропорциональным перерасчётом определяется значение:

 

Число светильников:

N=WS/Pл=(17,4×160)/80»35 шт.

 

Таким образом, предусматривается 3 ряда по 12 светильников в каждом.

 

Задача 3

Для помещения определить нормируемую освещенность, коэффициент запаса, количество, тип и мощность применяемых источников света, установленную мощность осветительной установки.

Исходные данные для решения задачи принять по таблице 3.1. в соответствии с заданным вариантом. Задачу решить:

а) методом коэффициента использования светового потока;

б) методом удельной мощности.

 

Таблица 3.1. Исходные данные к задаче 3.

Вариант Тип помещения Длина и ширина помещения, м Расчетная высота подвеса светильни-ков, м Тип и количество светиль-ников, рядов  
Камера трансформаторов 12х8 4,5 ЛСП13-2х65, 2 ряда  
Помещение главных щитов 15х8 4,0 ЛСО05-2х40, 3 ряда  
Операторская 8х6 3,5 ЛПО33-2х58, 2 ряда  
Диспетчерская 10х6 3,5 ЛСО05-2х40, 2 ряда  
Помещение КТП 16х10 4,5 ЛСП13-2х65, 3 ряда  
Электромашинное помещение с периодическим пребыванием людей 20х12 5,0 НСП17-1000, 15 шт.  
Помещение насосов 18х10 4,0 НСП17-500, 15 шт.  
Коридор 8х3 2,8 ЛПО33-1х36, 1 ряд  
Отделение ремонта трансформаторов 20х10 4,5 РСП13-400-002,10 шт.  
Электрощитовая 4х2 3,0 ЛСПО2-2х40, 1 ряд  
Кузнечный участок 12х6 4,0 ЛСП18-2х58, 2 ряда  
Продолжение таблицы 3.1.  
Отделение ремонта аппаратов и приборов 8х6 3,5 ЛСПО2-2х65, 3 ряда  
Сборочный и монтажный участок 16х10 4,0 РСП13-700-002, 8 шт.  
Сварочный участок 16х8 4,0 ГСП15-400, 10 шт.  
Помещение трубопроводов 15х7 3,5 НСП11-200, 10 шт.  
Слесарно-механический участок 12х8 4,0 ГСП15-400, 8 шт.  
Склад лакокрасочных материалов 6х4 2,8 ВЗГ200АМ, 6 шт.  
Помещение зарядных агрегатов 8х6 2,8 НЧТ4Л1х65, 2 ряда  
Отделение ремонта и технического обслуживания автомобилей 10х4 3,5 НСП11-500, 6 шт.  
Препараторская 5х3 3,0 ЛСПО2-2х65, 1 ряд  
Сборочный участок 12х6 4,0 РСП18-700-002, 6 шт.  
Участок пропитки и сушки 10х6 4,0 ЛСП18-2х65, 3 ряда  
Хлораторная 8х4 3,5 ВЗГ200АМ, 6 шт.  
Сборочный участок 12х8 4,0 РСП08-250Г, 8 шт.  
Испытательная станция 8х6 3,5 ЛСПО2х2х65, 2 ряда  
Электрощитовая 4х2 3,0 ЛСПО2-2х40, 1 ряд  

 

 



Читайте также:

 

Универсальная методика расчета коэффициента использования светового потока осветительных приборов - Журнал «Известия ТУСУРа»

Скачать статью в формате PDF

Авторов: Гончаров А.Д., Туев В.И.

Аннотация: Разработан универсальный метод расчета коэффициента использования светового потока и оценки эффективности светораспределения осветительных приборов как для внутреннего, так и для наружного освещения.Получены аналитические выражения для зависимости коэффициента использования светового потока от индекса помещения. Предложена структурная схема измерительного оптико-электронного комплекса, рассчитывающего этот коэффициент при обследовании осветительных установок. На основе разработанной методики разработан калькулятор освещения.

Ключевые слова: оптоэлектронные устройства, кривая силы света, коэффициент использования светового потока

.

% PDF-1.5 % 2 0 obj > endobj 4 0 obj > поток 2017-07-20T09: 29: 12 + 08: 002018-03-23T17: 47: 23 + 08: 00doPDF Ver 7.3 Build 398 (Windows 7 Ultimate Edition (SP 1) - Версия: 6.1.7601 (x64)) application / pdfuuid: 043b811f-ace7-4c5b-80fa-cd19984a7a21uuid: 30c33cd0-7342-4963-a94b-5c740515abc2 конечный поток endobj 21 0 объект > поток x ^} M8 = ~ E (oH h ٵع n {) 1 ݋ E.{O_npwmM3Q (+6۱ ( МЫ + (e} idn_Swz>, og0H), F79o> 2H! E-) sBxZ $ [e6AfE} O0Z6IW @ kQrW (M1% OˠLe # @ "B) _ Ւ kGbd ؆ D, 2Q bhm / W4qXo٥7, Mx ߔ lX h & l [TlҰ} ] h` & JQtUҴM_} yl, oIq% U + {wzA & q0

0ц / hiV Se: xvw7 # {v. ڟ T @ (oyPpu # Tx \} 4 \ TVwPZG1 $ Xz7D514 * m.VǦQU> fmnA + jEZ $ C .

Общие сведения о световом потоке (люмен) и освещенности (люкс) _ YUJILEDS

Мы часто видим данные о световом потоке или освещенности на упаковке лампочек или других ламп. Возможно, вы знаете, что эти два параметра используются для описания яркости света. Но каковы конкретные определения светового потока и освещенности? В чем разница между ними?

Что такое световой поток?

Световой поток - это мера общего количества видимого света, излучаемого лампой.Он отличается от лучистого потока. Поток излучения - это измерение всего испускаемого электромагнитного излучения (включая инфракрасное, ультрафиолетовое и видимое), которое представляет собой общее количество света объектива. Световой поток - это количество света, которое воспринимает человеческий глаз. Он отражает чувствительность человеческого глаза путем взвешивания каждой длины волны с функцией яркости. Таким образом, это взвешенная сумма всех длин волн мощности в диапазоне видимого света, исключая инфракрасный и ультрафиолетовый.

Что такое функция яркости?

Функция яркости описывает относительную чувствительность глаз человека к свету с разной длиной волны путем субъективной оценки яркости света разных цветов.Его не следует считать совершенно точным, но он дает хорошее представление о зрительной чувствительности человеческого глаза и является ценным исходным показателем для экспериментальных целей.

Рисунок 1: Фотопическая (черная) и скотопическая (зеленая) функции светимости

Единица светового потока - Люмен

Единицей светового потока в системе СИ является люмен (лм). Люмен определяется по отношению к канделе, которая является единицей силы света, как

1 лм = 1 кд sr

То есть, когда световой угол источника света составляет один телесный угол, а световой поток составляет 1 люмен, его сила света составляет 1 канделу.Когда световой поток источника света также составляет 1 люмен, но световой угол становится 1/2 телесного угла, сила света этого источника света считается равной 2 канделам.

И наоборот, когда сила света точечного источника света, излучающего свет во всех направлениях, равна 1 канделе, поскольку полная сфера имеет телесный угол 4π стерадиан, световой поток этого источника света составляет 4π люмен или 12,56 люмен.

Рисунок 2: Графическое представление 1 стерадиана.

Что такое освещенность?

В фотометрии освещенность - это полный световой поток света, падающий на единицу площади. Другими словами, световой поток представляет собой общее количество света, излучаемого источником, в то время как освещенность относится к общему количеству света, получаемого объектом.

Связь между освещенностью и световым потоком аналогична соотношению между энергетической яркостью и потоком излучения, то есть потоком излучения, принимаемым на единицу площади.Однако освещенность взвешивается в соответствии с чувствительностью человеческих глаз к свету с разными длинами волн, что представляет собой интенсивность света, воспринимаемого человеческими глазами.

Единица освещенности - люкс

Единица освещенности в системе СИ - люкс (лк). Он равен одному люмену на квадратный метр.

1 люкс = 1 лм / м2 = 1 кд · ср / м2.

В фотографии есть и неметрическая единица освещенности - фут-свеча.Фут-свеча означает «свечение источника свечи на поверхности на расстоянии одного фута». Таким образом, одна фут-свеча равна одному люмену на квадратный фут или примерно 10 люксам.

И расстояние, и наклон влияют на освещение

Освещенность - это количество люмен на квадратный метр. Это означает, что когда источник света в 1000 люмен освещает площадь в 1 квадратный метр, освещенность в этой плоскости составляет 1000 лк. Когда источник света в 1000 люмен освещает площадь в 10 квадратных метров, освещенность на плоскости становится 100 лк.

Поэтому, покупая лампочки, мы не должны выбирать их только по количеству люмен. Это связано с тем, что, когда в гостиной и туалете устанавливаются лампы с одинаковым световым потоком, из-за разного размера комнат различие в освещенности, которое может восприниматься глазами, может быть значительным.

.

Световой поток

Световой поток (Φ v ) - это энергия в единицу времени (dQ / dt), которая излучается источником в видимых длинах волн. Более конкретно, это энергия, излучаемая на длинах волн, чувствительных к человеческому глазу, примерно от 330 до 780 нм. Таким образом, световой поток представляет собой средневзвешенное значение лучистого потока в видимой области спектра. Это средневзвешенное значение, поскольку человеческий глаз не реагирует одинаково на все видимые длины волн.

Чувствительность глаза достигает пика при 555 нм и падает примерно до 10 -4 при 380 и 750 нм.Это диапазон чувствительности к дневному свету или фотопического зрения. Ночная чувствительность глаза, называемая скотопическим зрением, смещается в сторону синего конца видимого диапазона, достигая максимума при 507 нм и снижаясь до 10 -4 при 340 и 670 нм. Этот весовой коэффициент или световая отдача (V λ ) позволяет преобразовывать лучистый поток в световой поток на любой длине волны. В фотопической области пику при 555 нм соответствует значение преобразования 683 люмен на ватт. Люмен - это единица светового потока, которая определяется в канделах, базовой единице СИ, такой как метр или секунда.1 люмен определяется как 1 / 4π кандела, основная единица измерения силы света в системе СИ.

Поскольку глаз не видит все длины волн одинаково хорошо, кривая эффективности - очень важный способ определения светового потока от источника. Световой поток от монохроматического источника, излучающего свет с одной длиной волны, определить проще всего.

Φ v = Φ * V λ * (683 лм / Вт)

Например, лазерная указка мощностью 5 мВт, использующая длину волны 680 нм, дает

.005 Вт * 0,017 * 683 лм / Вт = 0,058 лм

В то время как лазерная указка мощностью 5 мВт на длине волны 630 нм дает

0,005 Вт * 0,265 * 683 лм / Вт = 0,905 лм, значительно больший световой поток.

Сложнее определить световой поток от источника, излучающего по спектру. Необходимо определить спектральное распределение мощности для конкретного источника. Как только это будет сделано, необходимо рассчитать световой поток на каждой длине волны или через равные промежутки времени для непрерывных спектров.Суммирование потока на каждой длине волны дает общий поток, создаваемый источником в видимом спектре.

С некоторыми источниками это сделать проще, чем с другими. Стандартная лампа накаливания излучает непрерывный спектр в видимом диапазоне, и для определения светового потока необходимо использовать различные интервалы. Однако для таких источников, как ртутная лампа, это немного проще. Меркурий излучает свет в основном линейчатым спектром. Он излучает лучистый поток на 6 основных длинах волн. Это упрощает определение светового потока этой лампы по сравнению с лампой накаливания.

Как правило, самостоятельно определять световой поток не нужно. Обычно это значение указывается для лампы на основании лабораторных испытаний во время производства. Например, световой поток лампы накаливания мощностью 100 Вт составляет примерно 1700 лм. Мы можем использовать эту информацию для экстраполяции на аналогичные лампы. Таким образом, средняя световая отдача лампы накаливания составляет около 17 лм / Вт. Теперь мы можем использовать это как приближение для аналогичных источников накаливания при различных мощностях.Часто производитель указывает «начальные люмены» в своих данных для лампы. Это световой поток лампы. Он указан таким образом, потому что по мере старения лампы ее распределение мощности немного меняется и больше не излучает точно те длины волн, которые были в то время, когда она была новой. Однако для всех намерений и целей «начальные люмены» могут использоваться для светового потока для любых необходимых вычислений.

Индекс

Концепции фотометрии

Концепции зрения

.

Что такое световой поток?

Световой поток (сила света) - это мера (воспринимаемой) мощности света. Он настраивается с учетом чувствительности человеческого глаза к световым волнам различной длины. Таким образом, световой поток отличается от лучистого потока, поскольку лучистый поток является мерой полной мощности излучаемого света независимо от длины волны.

Что такое единица СИ для светового потока?

Единицей измерения светового потока является люмен (лм).Один люмен - это количество света, которое дает одну канделу интенсивности на телесном угле в один стерадиан. Некоторые системы единиц измерения мощности связывают с просветом. Для таких измерений один люмен равен 1,46 милливатт мощности излучения при измерении на длине волны 555 нм (середина видимого спектра света).

Когда используется световой поток?

Световой поток обычно используется для измерения полезной световой мощности, излучаемой источником света, например лампочкой.В последние годы потребители использовали световой поток в качестве сравнительного измерения для ламп накаливания, к ним относятся люминесцентные лампы и лампы накаливания. Измерение не зависит от яркости источника света, так как это функция расстояния человека или средств обнаружения от источника света.

Как преобразовать силу света в люмены

Шаг 1 - Рассчитайте расстояние между источником света и местом в люменах. Переменная «r» представляет собой расстояние между этими двумя точками.

Шаг 2 - Вычислите площадь, которую свет будет покрывать на расстоянии, рассчитанном на первом шаге. Если источник света имеет заявленный «угол луча», его можно использовать для определения ширины света, который проходит на расстоянии.

Шаг 3 - Вычислите площадь освещенной области, разделенную на квадрат расстояния, который также называют «телесным углом», и его единица измерения - стерадианы (ср).

Шаг 4 - Умножьте результат на силу света, измеренную в канделах.Люмен = телесный угол * канделы.

.

Узнайте, как измерить световой поток и мощность излучения (ЖУРНАЛ)

  • Справочник отрасли
  • Стратегии в свете
  • Награды
  • 40 До 40 лет
  • HortiCann
  • Реклама
  • Подписка
  • Журнал
  • Исследования