Главное меню

Как определить объем колонны


Высота гранитной колонны равна 4 м, основание колонны — прямоугольник со сторонами 50 и 60 см. Определите объем колонны

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.
поделиться знаниями или
запомнить страничку

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Объем скважины формула: как рассчитать объем

Для заполнения паспорта изготовленной скважины используются расчетные данные источника. Например, определение объема скважины по формуле, учитывающей параметры насоса, дает возможность найти ее дебит. Эта величина, характеризующая производительность источника, позволяет узнать, способен ли он отдать на поверхность нужное количество воды.

Формула вычисления объема.

Расчет объема скважины и коммуникационного средства

Вычислить этот показатель можно по формуле:

V=πR²H,

где R — радиус внутреннего сечения обсадной трубы, а Н — высота столба воды. Поскольку эта величина для источника не является определяющей, пользуются значением дебита — главной характеристики скважин на воду.

Однако при добыче нефти и газа стволы имеют большие размеры и сложную конфигурацию. Глубина такого устройства достигает 3 км и больше. При подходе к нефтяному (газовому) горизонту для предотвращения выброса среды на поверхность скважину глушат с помощью растворов или пресной воды. Чтобы правильно рассчитать необходимое количество жидкости, нужно знать объем ствола устройства.

В связи с тем, что по высоте колонны ее диаметр неодинаков и уменьшается с глубиной, рассчитывают емкость каждого интервала изготовления шахты.

Если скважина имеет 3 участка с разными размерами, то общий объем будет равен:

Vскв=Va+Vb+Vc,

где Va, Vb, Vc — объемы соответствующих участков.

Еще одна формула вычисления объема.

Обсадные колонны, укрепляющие стенки колодца, уменьшают его емкость, что отражается на количестве жидкости необходимой для глушения.

Объем коммуникационного устройства определяется по формуле:

Vку=Vд-Vв,

где Vд — объем участка ствола, рассчитанный по диаметру долотом, а Vв — вычисленный по внутреннему диаметру обсадной колонны. Зная эти величины, можно рассчитать количество раствора для глушения на каждом интервале сверления.

Расчет объема технологических отходов бурения для скважины

Наиболее опасными видами отходов при изготовлении шахты скважины считаются отработанный промывочный раствор и буровой шлам или выбуренная порода. Они учитываются при расчете потерь промывочного раствора в процессе его очистки.

Величина технологических отходов на искомом интервале изготовления шахты вычисляется по формуле:

Vпр=0,785(αDв)²Lи,

где: Dв — внутренний диаметр обсадной трубы, опускаемой для крепления участка бурения; Lи — длина интервала бурения; α — коэффициент кавернозности породы в зоне бурения.

Данные рассчитываются для каждого участка ствола, пробуренного долотом своего диаметра. Среди значений емкости колонны на рассчитываемом интервале сверления выбирают большее. Эта величина используется для определения количества бурового раствора на каждом участке по формуле:

Vосв=kVскв,

где Vскв — максимальный объем участка бурения; k — коэффициент, учитывающий запас промывочной жидкости.

Эти величины нужны для расчета запаса технологического раствора, требуемого для безопасного проведения работ по освоению геологоразведочных либо ремонта действующих скважи.

Загрузка...

Железобетонные колонны в промышленных зданиях


Новый сервис - Строительные калькуляторы online


По положению в здании колонны подразделяются на крайние и средние.

К крайним колоннам с наружной стороны примыкают стеновые ограждения.

Для производственных зданий пролетного типа разработаны типовые колонны сплошного прямоугольного сечения (одноветвевые) и сквозного прямоугольного сечения (двухветвевые).

Колонны сплошного прямоугольного поперечного сечения подразделяют на типы:

- К – для каркасов зданий без мостовых кранов;

- КК – для каркасов зданий, оборудованных мостовыми электрическими опорными кранами;

- ККП – для каркасов зданий, оборудованных мостовыми электрическими кранами, с проходами в уровне крановых путей.

Колонны сквозного сечения подразделяют на типы:

- КД – для каркасов зданий, оборудованных электрическими опорными кранами;

- КДП – для каркасов зданий, оборудованных мостовыми опорными кранами, с проходами в уровне крановых  путей.

Колонны предназначены для применения в зданиях:

- расположенных в I–IV географических районах по скоростному напору ветра и по весу снегового покрова;

- с неагрессивной, слабо; и среднеагрессивной  газовой средой;

- отапливаемых – без ограничения расчетной зимней температуры наружного воздуха;

- неотапливаемых – при расчетной зимней температуре не ниже –40°С;

- в сейсмических районах (в зданиях с расчетной сейсмичностью 7; 8 или 9 баллов).

Для зданий с железобетонными подстропильными конструкциями высота колонн принята на 600 мм меньше, чем для зданий, в которых применяются только стропильные конструкции.

Колонны рассчитаны на вертикальные нагрузки от веса покрытия, фонарей, коммуникаций, навесных стен, собственного веса, от снега, подвесных и мостовых опорных кранов, а также на горизонтальные (ветровые, сейсмические и температурные) воздействия.

Колонны спроектированы из тяжелого бетона классов В15–В40.

Основная рабочая продольная арматура в колоннах без предварительного напряжения – стержневая из горячекатаной стали периодического профиля класса А III.

Все колонны предназначены для применения в случаях, когда верх фундамента имеет отметку – 0,150.

Во всех колоннах в местах опирания стропильных конструкций и подкрановых балок, в край­них колоннах – на уровне швов стеновых панелей, в связевых колоннах – в местах примыкания продольных связей  устраивают закладные элементы,  заанкеренные  в бетон или приваренные для фиксации положения к рабочей арматуре.

Закладные элементы в местах опирания подкрановых балок и стро­пильных конструкций состоят из стального листа с пропущенными сквозь него анкерными болтами.

Бетон под ними усиливается косвенными арми­рованными сетками.

При стальных фермах и подкрановых балках опорные закладные элементы несколько видоизменяются – лист усиливается плитой, рассчитанной на сосредоточенное давление опорных ребер, и меняется расстановка анкерных болтов.

Стальные подстропильные фермы крепятся к стальным надопорным стойкам.

Длину колонн подбирают с учетом высоты цеха и глубины заделки фундамента.

 

                                                   а                                                          б

 

Железобетонные колонны для здания высотой 10,8 – 14,4 м  без опорных кранов:

а – крайнего ряда; б – среднего ряда

 

Для соединения с фундаментом колонна заводится в стакан на глу­бину минус - 0,900 м.

Для крайних колонн принята нулевая привязка к продольной разби­вочной оси.

Все колонны имеют прямоугольное, постоянное по высоте сечение.

 

                                                         а                                                                б

 

Железобетонные колонны для зданий высотой 8,4 – 14,4 м, оборудованных опорными кранами: 

а – крайнего ряда; б – среднего ряда

 

Шаг колонн составляет 6 и 12 м.

Колонны имеют консоли для опи­рания подкрановых балок.

Они рассчитаны на нагрузки от покрытия до 700 даН/м2 мостовых кранов и ветра.

Для колонн наружных рядов с шагом 6 м принята нулевая привязка, при шаге 12 м привязка равна 250 мм.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку минус 0,150.

Колонны имеют прямоугольное поперечное сечение как в верхней (надкрановой), так и в нижней (подкрановой) части.

Для соединения с фундаментом колонна заводится в стакан на глу­бину минус 1,000 м.

 

                                                                    а                                      б

Железобетонные двухветвевые колонны:

а – колонна крайнего ряда; б – колонна среднего ряда

 

Шаг колонн по крайним рядам 6 и 12 м, по средним только 12 м.

Шаг стропильных конструкций 6 и 12 м.

Для крайних колонн при шаге 6 м; Н ≤ 14,4 м; Q ≤ 30 т принята ну­левая привязка, в остальных случаях 250 мм.

Подкрановая часть колонн двухветвевая.

Ветви связаны горизон­тальными распорками через интервал 1,5–3 м.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку минус 0,150.

Отметка головки кранового рельса рассчитана, исходя из высоты кранового рельса (с прокладкой) 150 мм и высоты подкрановых балок.

Для соединения с фундаментом колонна заводится в стакан на глу­бину минус 1,05м.

 

Железобетонные двухветвевые колонны с проходом в уровне крановых путей

Колонны применяются в случае необходимости устройства проходов для постоянного наблюдения за состоянием крановых путей при высоте здания до 14,4 м, пролете до 36 м, шаге по крайним колоннам 6 или 12 м, по средним колоннам - 12 м, грузоподъёмности опорных кранов до 30 т.

Привязка наружной грани крайних колонн к оси 500 мм, оси кранов к оси здания – 1000мм.

Для проходов в шейке колонны устроены лазы размером 400*2200 мм.

Колонна формуется из бетона марки 300-400.

Ветви ствола и шейки армируются сварными каркасами; подкрановый, промежуточные и нижний ригели – вязаной арматурой, собираемой из отдельных стержней.

Колонны снабжены закладными элементами для распалубки и крепления инвентарных монтажных приспособлений, опирания железобетонных или стальных подкрановых балок и стропильных конструкций, опирания и навески стеновых панелей и крепления стальных связей.

 

 

Двухветвевые колонны с проходом  в уровне крановых путей


 

 


Двухветвевые колонны для зданий с мостовыми кранами

Применяют в зданиях высотой более 10,8 м.

Колонны разработаны для применения в одноэтажных зданиях с пролётами 18, 24 и 30 м, высотой от 10,8 до 18 м включительно с фанарями и без фонарей, оборудованных мостовыми кранами общего назначения грузоподъёмностью 10, 20/5, 30/5 и 50/10 тонн среднего и тяжёлого режима работы.

Шаг колонн по крайним рядам 6 и 12 м, по средним только 12 м.

Шаг стропильных конструкций 6 и 12 м.

При шаге стропильных конструкций 6 м крайние колонны устанавливают подстропильные фермы.

Колонны рассчитаны на нагрузки от покрытия до 700 даН/м2., от стен, мостовых кранов и ветра.

Для крайних колонн при шаге 6 м; Н≤14,4 м; Q≤30 т принята нулевая привязка, в остальных случаях 250 мм.

Подкрановая часть колонн двухветвевая. Ветви связаны горизонтальными распорками через интервал 1,5-3м.      

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку  - 0,150.

Отметка головки кранового рельса получена исходя из высоты кранового рельса (с прокладкой) 150 мм и высоты подкрановых балок.

Колонны запроектированы в нижней части с двумя ветвями, соединёнными распорками.

Ветви, распорки и верхняя часть всех колонн имеют сплошное прямоугольное сечение.

Для соединения с фундаментом колонна заводится  в стакан на глубину -1,05 м, -0,35 м.

В двухветвевых колоннах нижняя распорка высотой 0,2 м, заводимая в стакан, имеет отверстия 0,2*0,2 м, используемые при бетонировании стыка.

При дальнейшем совершенствовании конструкции представляется целесообразным нижнюю распорку опустить на дно стакана для лучшей заделки и удобства бетонирования стыка.

 

Арматура колонн вязаная или в виде сварных каркасов

Колонны, устанавливаемые в средних продольных рядах у торцевых стен, снабжаются дополнительными закладными деталями для крепления приколонных стоек фахверка, а колонны, устанавливаемые в местах расположения вертикальных продольных связей каркаса, - закладными деталями для крепления связей.

Колонны изготовляются из бетона марок М 300, М 400. Рабочая арматура из горячекатаной стали  периодического профиля класса А-3.

По сравнению с колоннами прямоугольного сечения двухветвевые колонны имеют повышенную жёсткость, но они более трудоёмки в изготовлении.

 

 

Двухветвевые колонны для зданий с мостовыми кранами

 

Железобетонные колонны прямоугольного сечения для зданий с мостовыми кранами

Колонны предназначены для одноэтажных однопролётных и многопролётных зданий с пролётами 18 и 24 м, высотой от 8,4 до 10,8 м с фонарями и без фонарей, оборудованных мостовыми кранами общего назначения грузоподъёмностью 10-20 тонн среднего и тяжёлого режимов работы.

Шаг колонн 6 и 12 м.

Колонны имеют консоли для опирания подкрановых балок.

Колонны рассчитаны на нагрузки от покрытия до 700 даН/м2. мостовых кранов и ветра.

Для колонн наружных рядов с шагом 6 м принята нулевая привязка, при шаге 12 м привязка равна 250 мм.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку  - 0,150.

Колонны имеют прямоугольное поперечное сечение как в верхней (надкрановой), так и в нижней  (подкрановой) части.

При опирании на колонны стальных подкрановых балок и стропильных ферм применяются усиленные закладные опорные детали, обеспечивающие лучшее распределение сосредеточенных нагрузок от стальных конструкций.

Колонны внутренних и наружных рядов, устанавливаемые в местах расположения вертикальных связей, должны иметь закладные детали для крепления связей, а расположенные у торцевых стен должны иметь дополнительные закладные детали для крепления приколонных стоек фахверка.

 

 

Железобетонные колонны прямоугольного сечения для зданий с мостовыми кранами

 

Для соединения с фундаментом колонна заводится  в стакан на глубину -1,000 м.

Колонны армированы вязаными каркасами.

Колонны изготовляются из бетона марок М 200, М 300.

Рабочая арматура стержневая из горячекатаной стали  периодического профиля класса А-3.

 

Железобетонные колонны прямоугольного сечения для зданий без мостовых кранов

Колонны разработаны для одноэтажных зданий без мостовых кранов с пролётами от 6 до 36 м, с фонарями и без фонарей, при высоте от уровня чистого пола до низа стропильной конструкции от 3,6 до 9,6 м.

Шаг крайних колонн только 6 м, средних 6 и 12 м в соответствии с унифицированными габаритными схемами.

Колонны могут применяться для однопролётных и многопролётных зданий с наружным и внутренним водоотводом.

В зданиях допускается применение подвесного транспорта грузоподъёмностью до 5 тонн.

Колонны не имеют консолей.

Колонны рассчитаны на нагрузки от покрытия до 520 даН/м2.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку  - 0,150.

Для крайних колонн принята нулевая привязка к продольной разбивочной оси.

Все колонны имеют прямоугольное, постоянное по высоте сечение.

В колоннах, примыкающих к торцевым стенам, должны быть предусмотрены со стороны стен закладные детали для крепления приколонных стоек фахверка.

Для соединения с фундаментом колонна заводится  в стакан на глубину -0,900 м.

Колонны армированы сварными каркасами.

Кроме того, верхний конец колонны имеет косвенную арматуру в виде горизонтально расположенных плоских стальных стенок.

Колонны изготовляют из бетона марок М 200-М 400.

Рабочая арматура стержневая из горячекатаной стали  периодического профиля класса А-3.

 

                                

Железобетонные колонны прямоугольного сечения для зданий без мостовых кранов

 

Цилиндрические колонны из центрифугированного железобетона

Колонны из центрифугированного железобетона применяются в настоящее время в экспериментальном порядке для зданий без опорных кранов и с кранами грузоподъёмностью до 30 т.

Их внедрение позволяет по предварительным расчётам уменьшить расход бетона на 30-50% и стали – на 20-30% за счёт эффективности кольцевого сечения в статическом отношении и повышения прочности центрифугированного бетона в 1,5-2 раза по сравнению с вибрированным.

Типовое сопряжение железобетонных балок и стропильных ферм с колоннами на стальных прокладных листах, закрепляемых анкерными болтами, связано с изготовлением сложных заклодных деталей, требующих токарной обработки.

Соединение панели с железобетонной колонной без монтажной сварки производится посредством изогнутого в двух плоскостях крюка из стержня ⌀ 16 мм, заведённого в наклонное отверстие ⌀ 18-20 мм в колонне и паз в панели.

Конец крюка, заводимый в колонну, предварительно смазывается цементным раствором или клеящей мастикой.

Паз панели заполняется цементным раствором.

К стальным элементам каркаса крюк приваривается.

Колонны кольцевого сечения целесообразно устанавливать в производственных зданиях с неагрессивной средой при высоте их от пола до низа несущих конструкций  от 3,6 до 14,4 м.

Пролёты 12, 18, 24 и 30 метров. Шаг колонн 6 и 12 метров.

Наружные диаметры колонн – от 300 мм до 1000 мм (через 100 мм), толщина стенок – 50-1000 мм, масса колонн – от 1,2 до 9 т.

 

                                     

Центрифугированные колонны

 

В колоннах кольцевого сечения головки выполняют в виде колец из полосовой стали.

Колонны заделывают на глубину 450 мм при диаметре их 300 мм и 1050 мм – при больших диаметрах.

В связи с особенностями конструкций привязка крайней колонны равна радиусу цилиндра.

При ж/б подстропильных фермах оголовок снижается на 600 мм.

При шаге крайних колонн 12м. подкрановая консоль опускается на 400мм.

Колонны кольцевого сечения можно применять в зданиях с мостовыми кранами и без них.


 Новый сервис - Строительные калькуляторы online

 


Калькулятор ректификационной колонны онлайн

Расчет размера диаметра колонны основан на уравнении Шервуда, а параметры насадки и получившееся число теоретических тарелок вычисляется при помощи метода Онда. Если вы не знаете подводимую к колонне мощность (например, работаете на газу),укажите значение «мощности», приблизительно или посмотрите в паспорте на плиту. Этот калькулятор требует доработок, он не идеален, но в природе нет и идеальных колонн- учитывайте это.

Результат расчета Т.Т. (теоретических тарелок))округляется до ближней тарелки. Например, 1.45 тарелок округляется до 1, но 1.55 округляется уже до 2.

Чистота дистиллята определяется, преимущественно, по высоте колонны и по типу насадки. Качество продукта во многом зависит от коэффициента возврата флегмы. Для достижения чистоты, допустим, 80-90%, количество возврата не имеет большого значения. Здесь важна высота колонны. Но для того чтобы достичь чистоты 95%, вам нужно увеличить коэффициент возврата флегмы (флегмовое число), что увеличит время дистилляции и уменьшит скорость отбора.

Как правильно расчитать объем бетона для разных объектов

Для устройства фундамента, возведения стен и заливки пола применяются бетонные растворы. До начала мероприятий важно выбрать конструкцию фундаментного основания, правильно рассчитать общий уровень затрат и определить необходимое количество строительных материалов. Зная, как рассчитать объем бетона, можно определить сметную стоимость строительных мероприятий, точно спланировать продолжительность выполнения бетонных работ и избежать непредвиденных затрат. Остановимся детально на методике выполнения расчетов для различных видов фундаментов, а также стен и пола.

Схема ленточного фундамента

Какими методами можно рассчитать объем бетона

Выполнению строительных работ предшествует разработка проекта. На этом этапе определяется вид фундаментной базы, и рассчитывается требуемый для возведения основания объем бетонного раствора. На проектной стадии вычисляется потребность в растворе для заливки монолитных стен и бетонного пола. Определение кубатуры бетонной смеси, необходимой для выполнения работ, производится по объему бетонируемых конструкций здания.

Для выполнения расчетов используются различные методы:

Особенности при вычислении объема бетона

Для получения точного результата недостаточно учитывать только внутренний размер опалубки. Второй способ более точен, так как онлайн-калькулятор учитывает все данные: тип фундамента, сечение фундаментной базы, наличие арматурного каркаса и марку раствора.

Готовимся определить объем бетона – как посчитать без ошибок

Готовясь к выполнению расчетов, следует запомнить, что потребность в бетонной смеси определяется в кубометрах, а не в килограммах, тоннах или литрах. В результате ручных или программных расчетов будет определен объем связующего раствора, а не его масса. Одна из главных ошибок, которую допускают начинающие застройщики – выполнение расчетов до того, как будет определен тип фундаментной основы.

Решение о конструкции фундамента принимается после выполнения следующих работ:

Как рассчитать количество (объем) бетонной смеси

Легко рассчитать объем бетона, используя специальную программу или онлайн-калькулятор, которые учитывают множество факторов:

Точность, с которой посчитан объем бетона, зависит от используемых для расчета данных.

Они разные для каждого типа фундамента:

От полноты используемых для расчета данных зависит точность полученного результата.

Как рассчитать бетон в кубах для фундаментной основы

Для всех типов оснований потребность в бетоне определяется по формуле, учитывающей суммарный объем возводимых фундаментных конструкций. При этом в обязательном порядке учитывается и часть фундамента, заливаемая в грунт. Для выполнения расчетов следует руководствоваться размерами, указанными в проектной документации.

Рассмотрим, как рассчитать объем бетона для различных типов оснований:

Определение потребности в бетонном растворе для каждого вида фундаментной основы имеет свои особенности.

Как высчитать куб бетона для ленточной базы

Калькулятор ленточного фундамента

Основание ленточного типа достаточно популярно. Оно используется для строительства частных домов, хозяйственных построек и дачных строений. Конструкция представляет собой цельную ленту из бетона, армированную стальными прутками. Монолитная лента повторяет контур строения, включая внутренние перегородки.

Таблица состава и пропорций бетонной смеси

Расчет объема бетона для монолитного ленточного фундамента производится по простой формуле V = AхBхP. Расшифруем ее:

Перемножив между собой данные параметры, вычислим суммарную кубатуру бетонного раствора.

Рассмотрим алгоритм вычислений для ленточного основания с размерами 6х8 м, толщиной 0,5 м и высотой 1,2 м. Выполняйте расчет по следующему алгоритму:

  1. Рассчитайте периметр, удвоив длину сторон 2х(6+8)=28 м.
  2. Вычислите площадь сечения, перемножив толщину и высоту ленты 0,5х1,2=0,6 м2.
  3. Определите объем, перемножив периметр на площадь сечения 28х0,6=16,8 м3.

Полученный результат имеет небольшую погрешность, связанную с тем, что не учитывается железобетонная арматура и усадка смеси во время вибрационного уплотнения.

Схема ленточного фундамента

Как вычислить куб бетона для основания свайного типа

Основание в виде бетонных колонн является одним из наиболее простых. Оно представляет собой железобетонные опоры, равномерно расположенные по контуру здания, в том числе по углам строения, а также в местах пересечения внутренних перегородок со стенами. Часть опорных элементов расположена в грунте и передает нагрузку от массы строения на почву. Алгоритм расчета предусматривает определение суммарной потребности в бетоне путем умножения объема отдельных колонн на их количество.

Для вычислений используйте формулу – V=Sхn, которая расшифровывается следующим образом:

На примере требований проекта, предусматривающего установку 40 свай диаметром 0,3 м и общей длиной 1,8 м, вычисляем требуемое количество бетона:

  1. Рассчитайте площадь сваи, умножив коэффициент 3,14 на квадрат радиуса – 3,14х0,15х0,15=0,07065 м2.
  2. Вычислите объем одной опоры, умножив ее площадь на длину – 0,07065х1,8=0,127 м3.
  3. Определите необходимые количество смеси, перемножив объем одной сваи на общее количество опор 0,127х40=5,08 м3.
Как рассчитать куб бетона

 

При прямоугольном сечении опорных колонн, для расчета поперечного сечения необходимо перемножить ширину и толщину элемента.

Как посчитать бетон для столбчатой основы с железобетонным ростверком

Для повышения прочностных характеристик столбчатой основы выступающие части опор объединяют железобетонной конструкцией, которая называется ростверком. Он выполняется в виде цельной железобетонной ленты или плиты, в которой забетонированы оголовки колонн.

Решая, как рассчитать бетон в кубах для ростверка, необходимо выполнить следующие операции:

Как рассчитать объем бетона для строительства ленточного фундамента и свай
  1. Определить площадь сечения ростверка, умножив его толщину на высоту;
  2. Рассчитать объем ростверка, перемножив площадь сечения на длину конструкции.

Полученное значение соответствует потребности в бетонной смеси для бетонирования ростверковой основы.

Вычисляем объем бетона для фундамента в виде цельной плиты

Основание плитного типа применяется на сложных грунтах с повышенной концентрацией влаги. На нем возводят здания без подвального помещения. Эта конструкция позволяет равномерно распределить нагрузку от массы строения на почву и обеспечить повышенную жесткость и устойчивость возводимого объекта. Применение арматуры позволяет повысить прочность плитного фундамента. Конструкция представляет собой железобетонную плиту в форме прямоугольного параллелепипеда.

Как высчитать куб бетона для такой конструкции? Это довольно просто, используя следующую формулу – V=SхL.

Как рассчитать объем бетона

Расшифровка обозначений:

Для фундамента длиной 12 м, шириной 10 м и толщиной 0,5 м рассмотрим алгоритм вычислений:

  1. Определите площадь, перемножив ширину плиты на ее толщину 10х0,5=5 м2.
  2. Вычислите объем основы, умножив длину конструкции на площадь 12х5=60 м3.

Полученное значение соответствует потребности в бетонной смеси. Если плитный фундамент имеет сложную конфигурацию, то его следует разбить на плане на более простые фигуры, а затем вычислить для каждой площадь и объем.

Как правильно рассчитать куб бетона для возведения стен

Калькулятор расчета количества бетона на ленточный фундамент на сайте

Для постройки массивных зданий сооружают прочные коробки из бетона, усиленного стальной арматурой. Для определения потребности в стройматериале, перед строителями возникает задача рассчитать объем бетона для таких конструкций. Для выполнения вычислений используйте следующую формулу – V=(S-S1)хH.

Расшифруем входящие в формулу обозначения:

При выполнении расчетов общая площадь проемов определяется путем суммирования отдельных проемов. Алгоритм расчета напоминает определение потребности в бетоне для плитного основания и легко может быть выполнен самостоятельно с использованием калькулятора.

Как посчитать куб бетона для заливки пола

Как рассчитать объем бетона для пола

Для повышения нагрузочной способности пола и обеспечения его плоскостности выполняется бетонная стяжка. После застывания бетона такая поверхность служит основой для укладки напольных покрытий или керамической плитки. Для предотвращения растрескивания толщина формируемой бетонной стяжки составляет 5–10 см. Это связано с тем, что более тонкий материал растрескивается в процессе эксплуатации. Важно правильно рассчитать куб бетона, чтобы сформированная стяжка была прочной и имела предусмотренную проектом толщину.

Формула для определения количества раствора V=Sxh расшифровывается легко:

Разберемся, как выполнить вычисления для помещения с размерами 6х8 м и толщиной бетонной основы 0,06 м:

  1. Определите площадь напольной поверхности, перемножив длину и ширину помещения – 6х8=48 м2.
  2. Вычислите объем заливаемого бетонного состава для формирования стяжки, умножив площадь на толщину слоя – 48х0,06=2,88 м3.

Руководствуясь приведенным алгоритмом, можно легко определить количество бетонного состава для бетонирования пола. Возникают ситуации, когда черновая поверхность имеет уклон. В этом случае формируемая стяжка имеет разную толщину по площади помещения. В данной ситуации можно использовать усредненную толщину слоя, что снижает точность вычислений.

Заключение – для чего необходимо знать, как рассчитать куб бетона

Занимаясь строительством и планируя самостоятельно изготавливать бетонный раствор или приобретать его на предприятиях железобетонных изделий в необходимом количестве, важно знать, как рассчитать объем бетона. Это позволит спрогнозировать сумму предстоящих расходов, своевременно приобрести стройматериалы, и выполнить работы в запланированные сроки. Произвести расчеты можно как вручную на калькуляторе, так и с помощью программных средств. Главное – овладеть методикой вычислений и использовать для определения количества бетона достоверные данные.

Нагрузка от собственного веса железобетонной колонны. Прочие нагрузки воздействующие на крышу деревянного дома

Пример 3.1. Плотность железобетона р = 2500 кг/м 3 , определить удельный вес железобетона.

Решение.

1. Вычисляем удельный вес железобетона y = pg « 2500-10 = = 25000 Н/м 3 = 25 кН/м 3 .

Пример 3.2. Определить нагрузку от собственного веса желе­зобетонной колонны по следующим данным: сечение колонны bh= 300x300 мм, высота / = 4,5 м.

Решение.

1. Находим объем колонны К=Ш = 0,3-0,3-4,5 = 0,405 м 3 .

2. Принимая плотность железобетона из примера 3.1, на­ходим нормативную нагрузку от собственного веса колонны N„= Ку = 0,405-25= 10,125 кН.

3. Определяем расчетную нагрузку от собственного веса колон­ны, принимая коэффициент надежности по нагрузке y f = 1,1 (табл. 1 СНиП 2.01.07-85*), N=N„y f ~ 10,125-1,1« 11,138 кН.

Нагрузку от собственного веса сборных железобетонных кон­струкций можно определить, пользуясь массами этих конструк­ций, которые указаны в каталогах.

Пример 3.3. В соответствии с данными каталога сборная желе­зобетонная балка имеет массу т= 1,5 Т, определить нагрузку от собственного веса балки.

Решение.

1. Определяем нормативную нагрузку 7V„ = mg- 1,5-10 = 15
кН (если вместо тонн подставить килограммы, то получим нью­
тоны).

2. Определяем расчетную нагрузку N= N„y f = 15 1,1 = 16,5 кН.
Для определения нагрузки от собственного веса стальных

конструкций учитывают, что плотность стали принимается р = 7850 кг/м\ или пользуются массами погонного метра проката, которые приводятся в сортаменте прокатных элементов (см. При­ложение 1).

Пример 3.4. Определить нагрузку от собственного веса равно-полочного уголка 50 х 50 х 5, длиной /= 5,0 м. Решение.

1. В соответствии с сортаментом уголков масса 1 м длины G= 3,77 кг/м. Нормативная нагрузка от уголка N„= Ggl~ 3,77 10 ■ 5,0 = = 188,5 Н = 0,1885 кН.

2. Расчетная нагрузка от собственного веса уголка N= N„ y f = = 0,1885-1,05 « 0,198 кН.

При определении нагрузок от часто встречающихся стандарт­ных плит перекрытия нормативная нагрузка, приходящаяся на 1 м 2 , определяется заранее и выписывается в таблицу, так же по­ступают с рулонными и листовыми материалами (табл. 3.2).

Временные нагрузки на перекрытия зданий различного назначе­ния, как уже отмечалось, принимают по табл. 3 СНиП 2.01.07-85* (табл. 3.3 учебника). В таблице дается полное и пониженное зна­чение нагрузки, пониженное значение нагрузки соответствует длительной части временной нагрузки.

Пример 3.5. Определить временную нагрузку на перекрытие квартир жилых зданий. Решение.

1. Выписываем из табл. 3.3 нормативные значения временных нагрузок. Полное нормативное значение соответствует кратков­ременной нагрузке на перекрытие квартиры р„ = 1,5 кПа; пони­женное значение р" = 0,3 кПа - длительная часть временной нор­мативной нагрузки.

2. Расчетное значение временных нагрузок, соответственно полное значение и пониженное:

p = p п у f = 1,5-1,3= 1,95 кПа;

p, = py f = 0,3 -1,3 = 0,39 кПа.

При определении нагрузок на 1 м 2 от конструкций (или эле­ментов), расположенных с определенным шагом, необходимо на­грузки от собственного веса одного метра конструкции разделить на шаг конструкций.

Пример 3.6. Определить нагрузку на 1 м 2 от веса деревянных лаг, расположенных с шагом а = 0,4 м. Сечение лаг bh = 50 х 50 мм; плотность древесины р = 500 кН/м 3 .

Решение.

1. Определяем удельный вес древесины у = pg= 500-10 = 5000 Н/м 3 = = 5,0 кН/м\

2. Находим нормативную нагрузку на 1 м 2 от веса лаг cf = bhj/a = = 0,05 0,05 ■ 5,0/0,4 = 0,031 кПа.

3. Определяем расчетную нагрузку на 1 м 2 q = q"y f = 0,031 1,1 = = 0,034 кПа.

Сбор нагрузок на конструкции обычно выполняется последо­вательно сверху вниз. Нагрузки на 1 м 2 удобней собирать в табличной форме (см. пример 3.7 сбора нагрузок). После определе­ния нагрузок на 1 м 2 нагрузки собираются на рассчитываемый эле­мент (конструкцию).


Нагрузка на рассчитываемый элемент передается с площади, которая называется грузовой, - А гр. Определение грузовой площа­ди рассмотрим на примере 3.7 (рис. 3.3). Для определения грузо­вой площади необходимо мысленно представить, как и через ка­кие конструкции передаются нагрузки на элемент, на который производится сбор нагрузок.

Так, в осях А-Б 3-4 плана здания нагрузки на стены переда­ются от перекрытия через железобетонные плиты (которые на пла­не не показаны). Мы можем представить, что с половины длины плиты нагрузка передается на наружную стену по оси А, а с дру­гой половины - на внутреннюю стену (ось Б). Учитывая, что при расчете фундамента под стены условно «вырезается» и рассчиты­вается один погонный метр фундамента, принимаем ширину гру­зовой площади 1 м и определяем длину грузовой площади /, р. Для стены по оси А она будет / ф, = 3,0 м. На стену по оси Б нагрузка передается с двух сторон, и длина грузов

Как рассчитать объем пустого столбца в столбце? - WKB48971

ЦЕЛЬ или ЦЕЛЬ

Определите объем пустой колонки.

ОКРУЖАЮЩАЯ СРЕДА

ПРОЦЕДУРА

  1. Использовать объем = pi x радиус 2 x длина
  2. пи = 3.14
  3. r 2 и длину необходимо преобразовать в сантиметры
  4. Диаметр колонны, деленный на 2 = радиус
  5. радиус x радиус = r 2
  6. 3,14 x r 2 x L = Объем в см 3
  7. см 3 = 1 мл

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Объем пустой колонки 4,6 мм x 150 мм составляет 2,5 мл.

пи = 3,14

4,6 мм становится 0.46 см и 150 мм становятся 15 см.

0,46 см разделить на 2 = радиус 0,23 см

0,23 см x 0,23 см = 0,0529 см 2

3,14 x 0,0529 см 2 x 15,0 см = 2,49 см 3

См. Также -> Как определить объем пустот в колонке?

.

Как определить объем пустот в колонке? - WKB28079

ОКРУЖАЮЩАЯ СРЕДА

ОТВЕТ

Для колонок с полностью пористой насадкой используйте формулу pi * (r) 2 * L * 0,66.

Для колонок с поверхностно пористыми насадками используйте формулу pi * (r) 2 * L * 0,49.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Эта информация полезна для методов хроматографии, использующих механизм удержания, такой как обращенная фаза или нормальная фаза.

Формулы, показанные выше, просто отражают оценку пустотного объема насадочной колонки (промежуточный объем плюс объем пор).

Чтобы понять, каков фактический объем пустот в конкретной колонке, установленной в конкретной системе, необходимо сделать инъекцию соединения, которое не удерживается на упаковочном материале. После введения пика маркера пустот вы можете использовать следующую формулу для определения пустотного объема колонки:

Время удерживания пустого пика (V o ) * Скорость потока

Пример: если пик ацетона сохраняется на 2.32 мин, а расход 0,85 мл / мин, то:

V o = 2,32 мин * 0,85 мл / мин

V o = 1,972 мл

См. Также -> Как рассчитать объем пустого столбца в столбце?

.

Калькулятор объема

Ниже приводится список калькуляторов объема для нескольких распространенных форм. Заполните соответствующие поля и нажмите кнопку «Рассчитать».

Калькулятор объема сферы


Калькулятор объема конуса


Калькулятор объема куба


Калькулятор объема цилиндра


Калькулятор объема прямоугольного резервуара


Калькулятор объема капсулы


Калькулятор объема сферической крышки

Для расчета укажите любые два значения ниже.


Калькулятор объема конической ствола


Калькулятор объема эллипсоида


Калькулятор объема квадратной пирамиды


Калькулятор объема трубки


Калькулятор площади сопутствующих поверхностей | Калькулятор площади

Объем - это количественная оценка трехмерного пространства, которое занимает вещество.Единицей измерения объема в системе СИ является кубический метр, или м 3 . Обычно объем контейнера определяется его вместимостью и тем, сколько жидкости он может вместить, а не объемом пространства, которое фактически вытесняет контейнер. Объемы многих форм можно рассчитать с помощью четко определенных формул. В некоторых случаях более сложные формы могут быть разбиты на более простые совокупные формы, а сумма их объемов используется для определения общего объема. Объемы других, еще более сложных фигур можно рассчитать с помощью интегрального исчисления, если существует формула для границы фигуры.Помимо этого, формы, которые нельзя описать известными уравнениями, можно оценить с помощью математических методов, таких как метод конечных элементов. В качестве альтернативы, если плотность вещества известна и однородна, объем можно рассчитать, используя его вес. Этот калькулятор вычисляет объемы для некоторых из наиболее распространенных простых форм.

Сфера

Сфера - это трехмерный аналог двумерного круга. Это идеально круглый геометрический объект, который математически представляет собой набор точек, которые равноудалены от данной точки в ее центре, где расстояние между центром и любой точкой на сфере составляет радиус r .Вероятно, самый известный сферический объект - это идеально круглый шар. В математике существует различие между шаром и сферой, где шар представляет собой пространство, ограниченное сферой. Независимо от этого различия, шар и сфера имеют одинаковый радиус, центр и диаметр, и расчет их объемов одинаков. Как и в случае с кругом, самый длинный отрезок, соединяющий две точки сферы через ее центр, называется диаметром d . Уравнение для расчета объема шара приведено ниже:

EX: Клэр хочет заполнить идеально сферический воздушный шар с радиусом 0.15 футов с уксусом, чтобы использовать его в борьбе с ее заклятым врагом Хильдой на воздушных шарах в ближайшие выходные. Необходимый объем уксуса можно рассчитать с помощью приведенного ниже уравнения:

объем = 4/3 × π × 0,15 3 = 0,141 фута 3

Конус

Конус - это трехмерная форма, которая плавно сужается от своего обычно круглого основания к общей точке, называемой вершиной (или вершиной). Математически конус образован так же, как круг, набором отрезков прямых, соединенных с общей центральной точкой, за исключением того, что центральная точка не входит в плоскость, содержащую круг (или другую основу).На этой странице рассматривается только случай конечного правого кругового конуса. Конусы, состоящие из полуосей, некруглых оснований и т. Д., Которые простираются бесконечно, не рассматриваются. Уравнение для расчета объема конуса выглядит следующим образом:

, где r - радиус, а h - высота конуса

EX: Би полна решимости выйти из магазина мороженого, не зря потратив свои с трудом заработанные 5 долларов. Хотя она предпочитает обычные сахарные рожки, вафельные рожки, несомненно, больше.Она определяет, что на 15% предпочитает обычные сахарные рожки вафельным рожкам, и ей нужно определить, превышает ли потенциальный объем вафельного рожка на ≥ 15% больше, чем у сахарного рожка. Объем вафельного рожка с круглым основанием радиусом 1,5 дюйма и высотой 5 дюймов можно рассчитать с помощью следующего уравнения:

объем = 1/3 × π × 1,5 2 × 5 = 11,781 дюйм 3

Беа также вычисляет объем сахарного рожка и обнаруживает, что разница составляет <15%, и решает купить сахарный рожок.Теперь все, что ей нужно сделать, это использовать свой ангельский детский призыв, чтобы заставить посох выливать мороженое из контейнеров в ее конус.

Куб

Куб является трехмерным аналогом квадрата и представляет собой объект, ограниченный шестью квадратными гранями, три из которых пересекаются в каждой из его вершин, и все они перпендикулярны своим соответствующим смежным граням. Куб - это частный случай многих классификаций геометрических фигур, в том числе квадратный параллелепипед, равносторонний кубоид и правый ромбоэдр.Ниже приведено уравнение для расчета объема куба:

объем = 3
где a - длина ребра куба

EX: Боб, который родился в Вайоминге (и никогда не покидал штат), недавно посетил свою исконную родину, Небраску. Пораженный великолепием Небраски и окружающей средой, непохожей на какие-либо другие, с которыми он когда-либо сталкивался, Боб знал, что должен привезти с собой домой часть Небраски. У Боба есть чемодан кубической формы с длиной по краям 2 фута, и он рассчитывает объем почвы, который он может унести с собой домой, следующим образом:

объем = 2 3 = 8 футов 3

Цилиндр

Цилиндр в его простейшей форме определяется как поверхность, образованная точками на фиксированном расстоянии от данной прямой оси.В обычном использовании, однако, «цилиндр» относится к правильному круговому цилиндру, где основания цилиндра представляют собой окружности, соединенные через их центры осью, перпендикулярной плоскостям его оснований, с заданной высотой h и радиусом r . Уравнение для расчета объема цилиндра показано ниже:

объем = πr 2 ч
где r - радиус, а h - высота резервуара

EX: Кэлум хочет построить замок из песка в гостиной своего дома.Поскольку он является твердым сторонником рециркуляции, он извлек три цилиндрических бочки с незаконной свалки и очистил бочки от химических отходов, используя средство для мытья посуды и воду. Каждая бочка имеет радиус 3 фута и высоту 4 фута, и Кэлум определяет объем песка, который каждая может вместить, используя следующее уравнение:

объем = π × 3 2 × 4 = 113.097 футов 3

Он успешно строит замок из песка в своем доме и в качестве дополнительного бонуса экономит электроэнергию на ночном освещении, так как его замок из песка светится ярко-зеленым в темноте.

Прямоугольный бак

Прямоугольный резервуар - это обобщенная форма куба, стороны которого могут иметь различную длину. Он ограничен шестью гранями, три из которых пересекаются в его вершинах, и все они перпендикулярны своим соответствующим смежным граням. Уравнение для расчета объема прямоугольника показано ниже:

объем = длина × ширина × высота

EX: Дарби любит торт. Она ходит в спортзал по 4 часа в день, каждый день, чтобы компенсировать свою любовь к торту.Она планирует отправиться в поход по тропе Калалау на Кауаи, и, хотя она в очень хорошей форме, Дарби беспокоится о своей способности пройти тропу из-за отсутствия торта. Она решает упаковать только самое необходимое и хочет набить свою идеально прямоугольную упаковку длиной, шириной и высотой 4 фута, 3 фута и 2 фута соответственно тортом. Точный объем торта, который она поместит в свою упаковку, рассчитан ниже:

объем = 2 × 3 × 4 = 24 фута 3

Капсула

Капсула - это трехмерная геометрическая форма, состоящая из цилиндра и двух полусферических концов, где полусфера - это полусфера.Отсюда следует, что объем капсулы можно рассчитать, объединив уравнения объема для сферы и правого кругового цилиндра:

объем = πr 2 ч + πr 3 = πr 2 ( р + з)

, где r - радиус, а h - высота цилиндрической части

EX: Имея капсулу радиусом 1,5 фута и высотой 3 фута, определите объем растопленного молочного шоколада, который Джо может унести в капсуле времени, которую он хочет похоронить для будущих поколений на пути к самопознанию. Гималаи:

объем = π × 1.5 2 × 3 + 4/3 × π × 1,5 3 = 35,343 фута 3

Сферический колпачок

Сферический колпачок - это часть сферы, которая отделена от остальной сферы плоскостью. Если плоскость проходит через центр сферы, сферическая крышка называется полусферой. Существуют и другие различия, в том числе сферический сегмент, где сфера сегментирована двумя параллельными плоскостями и двумя разными радиусами, где плоскости проходят через сферу. Уравнение для вычисления объема сферической крышки выводится из уравнения для сферического сегмента, где второй радиус равен 0.Относительно сферической крышки, указанной в калькуляторе:

Имея два значения, калькулятор вычисляет третье значение и объем. Уравнения для преобразования между высотой и радиусом показаны ниже:

Для r и R : h = R ± √R 2 - r 2

Для R и h : r = √2Rh - h 2
где r - радиус основания, R - радиус сферы, а h - высота сферической крышки.

EX: Джек действительно хочет победить своего друга Джеймса в игре в гольф, чтобы произвести впечатление на Джилл, и вместо того, чтобы тренироваться, решает саботировать мяч для гольфа Джеймса.Он отрезает идеальную сферическую крышку от верхней части мяча для гольфа Джеймса и должен рассчитать объем материала, необходимый для замены сферической крышки и перекоса веса мяча для гольфа Джеймса. Учитывая, что мяч для гольфа Джеймса имеет радиус 1,68 дюйма, а высота сферической крышки, которую срезал Джек, составляет 0,3 дюйма, объем можно рассчитать следующим образом:

объем = 1/3 × π × 0,3 2 (3 × 1,68 - 0,3) = 0,447 дюйма 3

К несчастью для Джека, за день до игры Джеймс получил новую партию мячей, и все усилия Джека оказались напрасными.

Коническая Frustum

Усеченный конус - это часть твердого тела, которая остается, когда конус рассекается двумя параллельными плоскостями. Этот калькулятор рассчитывает объем специально для правильного кругового конуса. Типичные конические усики, встречающиеся в повседневной жизни, включают абажуры, ведра и некоторые стаканы для питья. Объем усеченного правого конуса рассчитывается по следующей формуле:

объем = πh (r 2 + rR + R 2 )

где r и R - радиусы оснований, h - высота усеченного конуса

EX: Би успешно приобрела мороженое в сахарном рожке и только что съела его так, что мороженое остается упакованным внутри рожка, а поверхность мороженого находится на уровне и параллельно плоскости отверстия рожка.Она собирается начать есть свой рожок и оставшееся мороженое, когда ее брат хватает ее рожок и откусывает часть дна конуса, которая идеально параллельна ранее единственному отверстию. Теперь у Би есть усеченная пирамида правой конической формы, из которой вытекает мороженое, и ей нужно рассчитать объем мороженого, который она должна быстро съесть, учитывая высоту усеченной кости 4 дюйма с радиусом 1,5 дюйма и 0,2 дюйма:

объем = 1/3 × π × 4 (0,2 2 + 0,2 × 1,5 + 1,5 2 ) = 10.849 из 3

Эллипсоид

Эллипсоид является трехмерным аналогом эллипса и представляет собой поверхность, которую можно описать как деформацию сферы посредством масштабирования элементов направления. Центр эллипсоида - это точка, в которой пересекаются три попарно перпендикулярные оси симметрии, а отрезки линии, ограничивающие эти оси симметрии, называются главными осями. Если все три имеют разную длину, эллипсоид обычно называют трехосным.Уравнение для расчета объема эллипсоида выглядит следующим образом:

, где a , b и c - длины осей

EX: Хабат любит есть только мясо, но его мать настаивает на том, что он ест слишком много, и позволяет ему есть столько мяса, сколько он может уместить в булочке в форме эллипса. Таким образом, Хабат выдалбливает булочку, чтобы максимально увеличить объем мяса, который он может уместить в своем сэндвиче. Учитывая, что его булочка имеет длину оси 1,5 дюйма, 2 дюйма и 5 дюймов, Хабат рассчитывает объем мяса, который он может уместить в каждой полой булочке, следующим образом:

объем = 4/3 × π × 1.5 × 2 × 5 = 62,832 дюйма 3

Квадратная пирамида

Пирамида в геометрии - это трехмерное твердое тело, образованное путем соединения многоугольного основания с точкой, называемой его вершиной, где многоугольник - это форма на плоскости, ограниченная конечным числом отрезков прямой. Существует много возможных многоугольных оснований пирамиды, но квадратная пирамида - это пирамида, в которой основание представляет собой квадрат. Другое отличие пирамид заключается в расположении вершины. У правых пирамид есть вершина, которая находится прямо над центром тяжести ее основания.Независимо от того, где находится вершина пирамиды, если ее высота измеряется как перпендикулярное расстояние от плоскости, содержащей основание, до ее вершины, объем пирамиды может быть записан как:

Объем обобщенной пирамиды:

.

Исчисление I - Объемы вращающихся тел / Метод колец

Онлайн-заметки Павла

Примечания Быстрая навигация Скачать

.

р - Как рассчитать объем под поверхностью, определенной по дискретным данным?

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
.

cassandra - Astyanax: Как определить тип динамического столбца для десериализации

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
.

Смотрите также