Главное меню

Хомут из арматуры


Строительные хомуты из арматуры, арматурные хомуты

Арматурные хомуты

 

Арматурный хомут – важный элемент объемного арматурного каркаса. Хомуты из арматуры представляют собой гнутые дугообразные изделия прямоугольной формы из арматурной стали высокой марки. Для их производства используют рифленые стержни различного диаметра. В целостную деталь стержни соединяются путем электросварки металла. Размер строительных хомутов определяется масштабами стройки, где они используются. Их основная задача – это фиксация разных слоев поля из арматуры. Также изделия равномерно распределяют нагрузку в арматурном каркасе и берут на себя часть общего напряжения во всей строительной конструкции. Минимальный диаметр хомута зависит от диаметра продольных стержней в каркасе и от типа армирования, для большинства вариантов изделия он составляет порядка 6 мм, для соединения арматурных сеток – 5 мм и менее.

Применение хомутов

Арматурные хомуты – еобходимый соединительный элемент, который, как было сказано выше, используется при изготовлении пространственных каркасов. Без хомутов не удастся достичь идеального соединения отдельных частей пространственного каркаса и равномерного распределения нагрузки на него. К тому же, благодаря арматурным хомутам исключается наличие зон с низким уровнем прочности.

Поскольку хомуты из арматуры охватывают продольные стержни с внешней стороны, это не допускает их выпирания за пределы железобетонной конструкции. К тому же, использование готовых строительных хомутов упрощает работу по изготовлению каркасов, экономя время и трудовые ресурсы. Также за счет фабричного производства несущих элементов повышается качество армирующей конструкции. Изделия устанавливаются с определенным шагом, который рассчитывается с учетом диаметра продольной арматуры, площади армируемого фундамента будущего здания, предполагаемой нагрузки на него. Каждое изделие должно иметь крюк, которым оно завершается, а эти крюки при установке обязаны смещаться по высоте относительно друг друга. В каждом углу от выгиба хомутом можно закрепить около пяти стержней из арматуры.

Покупка хомутов от производителя

 

Хомуты из арматуры можно произвести собственными усилиями, однако покупая готовую продукцию, клиент не только экономит свои силы и время, а еще и получает гарантию качества. Ко всему прочему, покупая хомуты от производителя в большом количестве, клиент значительно экономит денежные средства. Поскольку при строительстве хомуты расходуются в крупных объемах, такое решение оказывается наиболее рациональным. Компания «3Д-Металл» занимается производством и продажей высококачественных арматурных хомутов, и всегда рада взаимовыгодному сотрудничеству. У нас есть все производственное оборудование, необходимое для изготовления хомутов повышенного качества. Вы сможете заказать хомуты любых нужных вам параметров и конфигураций. Будьте уверены, мы определенно сможем изготовить их для вас.

Для производства изделий данного вида мы используем арматурную сталь высокой прочности. Наши мастера придают ей нужную форму на специальном гибочном оборудовании европейского производства. Современные технологии и минимальное вмешательство человеческого фактора позволяет придавать арматуре безупречную форму с учетом точных размеров, углов сгиба, объема, заданных заказчиком. Мы стремимся обеспечить полное соответствие результата нашей работы требованиям к изготовлению и монтажу арматурных изделий.

Обратившись в нашу компанию, вы сможете заказать любое нужное вам количество деталей и оговорить сроки их производства. Мы умеем работать быстро и не в ущерб качеству. Разумные цены на продукцию – это еще один наш плюс. Постоянные клиенты уже успели ощутить все преимущества сотрудничества с нами, ведь им мы можем предложить особые условия и дополнительные скидки. Вы также можете стать одним из них. Доверьтесь нам раз, и вам больше не придется обращаться в другие компании.

В АО «3Д-Металл» кроме арматурных хомутов вы можете также купить арматурные уголки.

На видео-ролике ( в верхнем правом углу ) можно увидеть как в полном автоматическом режиме производится изготовление арматурных хомутов, что говорит об абсолютно одинаковых размерах производимых изделий, избегая ошибок человеческого фактора.

           E-Mail: [email protected]

Конструирование железобетона – хомуты и хомуты на кручение

Архив рассылки "Непрошеные советы" для начинающих проектировщиков. Выпуск № 11.

Доброе утро!

В очередном выпуске Непрошеных советов я хочу начать разговор о хомутах, шпильках, поддерживающих каркасах и прочих изделиях из гладкой арматуры. Думаю, что эта тема охватит несколько выпусков – настолько она обширна.

Наилучшим учебником для начинающих заслуженно является «Руководство по конструированию железобетонных конструкций», изданное в Москве в далеком 1978 году (признаюсь, до моего рождения). Хуже за эти годы оно не стало, и все также просто и ясно объясняет, где какую арматуру применять. Картинки для сегодняшней рассылки я взяла именно из этого руководства.

Гладкая арматура (класс А240С по ДСТУ 3760 или АI по ГОСТ 5781) играет незаменимую роль в конструировании. По результатам расчета мы подбираем из гладкой арматуры поперечное армирование – в виде плоских сварных каркасов, но все чаще – в виде вязаных хомутов. Но помимо этого в тени остаются многие конструктивные требования, соблюдать которые проектировщик обязан. Правильно посчитанный, но законструированный с ошибками объект может стать аварийным.

Хомуты

Во всех стержневых элементах (балки, колонны, подколонники фундаментов, монолитные пояса) может  использоваться поперечная арматура в виде вязаных хомутов.

Поперечная арматура работает против трещин. При расчете любого элемента определяется поперечная сила – вот она и воздействует на элемент так, что могут возникнуть поперечные или наклонные трещины. В зависимости от величины этой силы определяется требуемый диаметр и шаг поперечной арматуры. Но даже если сила слишком мала, хомуты все равно устанавливаются, но с максимально допустимым нормами конструирования шагом. Есть правило при армировании любого элемента: в местах установки продольной арматуры обязательна установка поперечной. Проще говоря, арматурные стержни всегда должны располагаться в виде сетки, а в местах пересечения строители свяжут перпендикулярные пруты вязальной проволокой – именно так достигается создание надежного, рабочего вязаного каркаса арматуры.

На рисунке выше изображено три разных хомута. Каждый из них важен в своем конкретном случае.

Начну с конца. На третьем рисунке изображен открытый хомут. Такие хомуты устанавливаются в изгибаемых балках (без кручения), являющихся частью монолитного ребристого перекрытия.

Второй хомут – закрытый. Это наиболее часто встречающийся хомут, используемый в любых стержневых элементах – балках, колоннах, подколонниках и т.д.

Первый хомут предназначен для работы на кручение, о нем я хочу поговорить подробнее. Его концы не просто обвязываются «узелком» вокруг углового стержня – они перенахлестываются на 30 диаметров (при диаметре хомута 8 мм величина перенахлеста 30х8=240 мм). Таким способом обеспечивается целостность хомута в любом его сечении, и при кручении балки (чаще всего такие хомуты устанавливаются именно в балках) он защитит ее от разрушения.

Часто хомуты на кручение игнорируют или вообще не знают о необходимости их использования. Запомните, всегда нужно устанавливать хомуты на кручение в крайних (или обвязочных) балках. Всегда нужно устанавливать хомуты на кручения в балках, на которые с двух сторон опираются перекрытия разных пролетов. Всегда нужно устанавливать хомуты на кручение в балках, на которые с двух сторон опираются перекрытия с разной нагрузкой. Все эти случаи объединяет одно: на балку с одной ее стороны воздействует нагрузка, вызывающая в ней крутящий момент. Особенно он усиливается у опоры балки. Бывают, конечно, случаи, когда крутящий момент слаб, и сечение бетона справляется с ним без хомутов, но эти случаи нужно выявлять расчетом.

Хочу обратить Ваше внимание еще на один момент, который я находила в справке расчетного комплекса Лира, но не находила в другой литературе. Если Вы не считаете в Лире, эта информация все равно пригодится – даже при расчете поперечной арматуры вручную. Возможно, она сложная, может, я не очень доходчиво объясняю, но я настоятельно прошу разобраться с ней, чтобы понимать суть армирования на кручение. Итак, цитирую справку Лиры:

«Результаты подбора арматуры для стержней заносятся в три строки:

СТРОКА 1 - полная арматура, подобранная по I и II группам предельных состояний; от кручения;

СТРОКА 2 – арматура, подобранная по I группе предельных состояний;

СТРОКА 3 - арматура обусловленная кручением (отмечена знаком '*' ).

* Поперечная арматура от кручения – площадь сечения замкнутого внешнего хомута.»

Решайте сами, как быть с этой информацией – я ей просто поделилась и попытаюсь объяснить на примере, в чем суть такого ограничения. Судя из фразы под звездочкой, при возникновении кручения мы должны установить в балке замкнутые внешние хомуты (охватывающие балку по периметру сечения), площадь сечения которых равна требуемой площади арматуры на кручение.

Разберем на примере, чтобы в итоге стало понятно, что я хочу донести.

Итак, в результатах расчета поперечной арматуры есть две графы: полная и кручение. Кроме того, есть результаты для вертикальной арматуры ASW1 и для горизонтальной арматуры ASW2.

Допустим, возле опоры арматура в балке сечением 400х400 мм следующая: вертикальная ASW1 = 12 см2/м, в том числе на кручение – 5,5 см2/м; горизонтальная ASW2 = 5,5 см2/м, в том числе на кручение – 5,5 см2/м. Что это значит? Сначала разберемся с полной арматурой. В такой широкой балке мы должны поставить четырехсрезный хомут: то есть два хомута – в сумме дающих четыре стержня в одном сечении балки. На рисунке дано три варианта: первый и второй – для случаев без кручения; третий – с хомутами, рассчитанными на кручение.

Если у нас требуется поперечной арматуры 12 см2/м, то принимая шаг арматуры 150 мм (семь пар хомутов на метр балки), мы получим 12/7= в сечении. Так как у нас четырехсрезный хомут, то окончательно диаметр стержня подбираем, деля нужную площадь на количество стержней: 1,72/4= 0,43 см2 – то есть, на первый взгляд, нам подходит стержень диаметром 8 мм (площадь сечения стержня 0,503 см2). Но вернемся к хомутам на кручение, при  шаге 150 мм площадь хомута в сечении требуется 5,5/7=0,785 см2. Именно площадь хомута! Мы не должны при этом делить полученную в расчете арматуру на четыре или даже на два. И это значит, что стержня диаметром 8 мм в хомутах нам не достаточно – нужен стержень диаметром 10 мм (замкнутый внешний хомут). Что же делать? Ставить два хомута из десятки – это и перерасход, и несоблюдение требования о замкнутом внешнем хомуте.

Я предлагаю в таком случае следующее решение (оно совсем не ново, и не мной придумано): установить один замкнутый внешний хомут на кручение из десятки (площадь 0,785 см2) плюс один незамкнутый хомут посередине из шестерки (площадь 0,283 см2). Проверим, удовлетворяется ли для такого варианта полная площадь сечения рабочей арматуры: 0,785*2+0,283*2=2,136 см2 > 1,72 см2 – условие выполнено. На кручение – тоже все обеспечено десяткой.

 

Теперь постараюсь объяснить, почему не достаточно было бы поставить двух хомутов из восьмерки на кручение, а нужно было ставить одну замкнутую внешнюю десятку. Почему при  расчете изгибаемого элемента в расчет идут все 4 поперечных стержня, попадающих в срез балки, а при расчете на изгиб с кручением нужно брать диаметр наружного замкнутого хомута. В «Пособии по проектированию жбк к СНиП 2.03.01-84» приведены расчеты поперечной арматуры балок, работающих как на изгиб, так и на изгиб с кручением. Так вот, если посмотреть расчет поперечной арматуры в изгибаемых балках (см. формулу 55 и чертеж 13), то поперечная арматура Аsw, участвующая в расчете равна сумме площадей всех поперечных стержней в сечении. А для расчета балки на изгиб с кручением (см. формулу 169), Аsw1 – это уже площадь сечения одного поперечного стержня. Потому что при кручении в работу включается лишь стержень, расположенный у растянутой наружной грани, в то время как при чистом изгибе работают все поперечные стержни сечения.

Надеюсь, я прояснила для Вас ситуацию с поперечной арматурой, особенно – с хомутами, работающими на кручение. В следующем выпуске я продолжу разговор о гладкой арматуре и напишу о требованиях к армированию балок и колонн.

Успешной Вам работы!

С уважением, Ирина.

class="eliadunit"> Добавить комментарий

Арматурные хомуты от производителя.. Статьи компании «ООО "ПрогрессСтрой"»

Арматурные хомуты от производителя.

Арматурные хомуты

Арматурный хомут – важный элемент объемного арматурного каркаса. Хомуты из арматуры представляют собой гнутые дугообразные изделия прямоугольной формы из арматурной стали высокой марки. Для их производства используют рифленые стержни различного диаметра. В целостную деталь стержни соединяются путем электросварки металла. Размер строительных хомутов определяется масштабами стройки, где они используются. Их основная задача – это фиксация разных слоев поля из арматуры. Также изделия равномерно распределяют нагрузку в арматурном каркасе и берут на себя часть общего напряжения во всей строительной конструкции. Минимальный диаметр хомута зависит от диаметра продольных стержней в каркасе и от типа армирования, для большинства вариантов изделия он составляет порядка 6 мм, для соединения арматурных сеток – 5 мм и менее.

Применение хомутов

Арматурные хомуты – необходимый соединительный элемент, который, как было сказано выше, используется при изготовлении пространственных каркасов. Без хомутов не удастся достичь идеального соединения отдельных частей пространственного каркаса и равномерного распределения нагрузки на него. К тому же, благодаря арматурным хомутам исключается наличие зон с низким уровнем прочности.

Поскольку хомуты из арматуры охватывают продольные стержни с внешней стороны, это не допускает их выпирания за пределы железобетонной конструкции. К тому же, использование готовых строительных хомутов упрощает работу по изготовлению каркасов, экономя время и трудовые ресурсы. Также за счет фабричного производства несущих элементов повышается качество армирующей конструкции. Изделия устанавливаются с определенным шагом, который рассчитывается с учетом диаметра продольной арматуры, площади армируемого фундамента будущего здания, предполагаемой нагрузки на него. Каждое изделие должно иметь крюк, которым оно завершается, а эти крюки при установке обязаны смещаться по высоте относительно друг друга. В каждом углу от выгиба хомутом можно закрепить около пяти стержней из арматуры.

Хомуты из арматуры можно произвести собственными усилиями, однако покупая готовую продукцию, клиент не только экономит свои силы и время, а еще и получает гарантию качества. Ко всему прочему, покупая хомуты от производителя в большом количестве, клиент значительно экономит денежные средства. Поскольку при строительстве хомуты расходуются в крупных объемах, компания ООО «ПрогрессСтрой»  изготовит по размерам заказчика арматурные хомуты, и всегда готова к взаимовыгодному сотрудничеству. У нас есть все производственное оборудование, необходимое для их изготовления, и Вы сможете заказать хомуты любых нужных вам параметров и конфигураций. 

 

Обучение с подкреплением 101. Изучите основы подкрепления… | by Shweta Bhatt

Обучение с подкреплением (RL) - одна из самых актуальных тем исследований в области современного искусственного интеллекта, и ее популярность только растет. Давайте рассмотрим 5 полезных вещей, которые нужно знать, чтобы начать работу с RL.

Обучение с подкреплением (RL) - это метод машинного обучения, который позволяет агенту учиться в интерактивной среде методом проб и ошибок, используя обратную связь от его собственных действий и опыта.

Хотя как контролируемое обучение, так и обучение с подкреплением используют сопоставление между вводом и выводом, в отличие от контролируемого обучения, где обратная связь, предоставляемая агенту, представляет собой правильный набор действий для выполнения задачи, обучение с подкреплением использует вознаграждений и наказаний в качестве сигналов для положительного и отрицательное поведение.

По сравнению с обучением без учителя, обучение с подкреплением отличается с точки зрения целей. В то время как цель обучения без учителя состоит в том, чтобы найти сходства и различия между точками данных, в случае обучения с подкреплением цель состоит в том, чтобы найти подходящую модель действий, которая максимизирует общую совокупную награду агента .На рисунке ниже показан цикл обратной связи «действие-вознаграждение» типовой модели RL.

Вот некоторые ключевые термины, которые описывают основные элементы проблемы RL:

  1. Среда - Физический мир, в котором работает агент
  2. Состояние - Текущая ситуация агента
  3. Вознаграждение - Обратная связь от среда
  4. Политика - Метод сопоставления состояния агента действиям
  5. Значение - Будущее вознаграждение, которое агент получит, выполняя действие в определенном состоянии

Проблема RL может быть лучше всего объяснена с помощью игр.Давайте возьмем игру PacMan , где цель агента (PacMan) состоит в том, чтобы съесть пищу в сетке, избегая при этом призраков на своем пути. В этом случае сеточный мир - это интерактивная среда для агента, в которой он действует. Агент получает награду за поедание еды и наказание, если его убивает призрак (проигрывает игру). Состояния - это местоположение агента в мире сетки, а общая совокупная награда - это агент, выигравший игру.

Чтобы построить оптимальную политику, агент сталкивается с дилеммой исследования новых состояний, одновременно максимизируя свое общее вознаграждение.Это называется компромиссом между и эксплуатацией . Чтобы уравновесить и то и другое, лучшая общая стратегия может включать в себя краткосрочные жертвы. Таким образом, агент должен собрать достаточно информации, чтобы принять наилучшее общее решение в будущем.

Марковские процессы принятия решений (MDP) - это математические основы для описания среды в RL, и почти все задачи RL могут быть сформулированы с использованием MDP. MDP состоит из набора конечных состояний S среды, набора возможных действий A (s) в каждом состоянии, действительной функции вознаграждения R (s) и модели перехода P (s ’, s | a).Однако в реальных условиях окружающей среды, скорее всего, не хватает каких-либо предварительных знаний о динамике окружающей среды. В таких случаях пригодятся безмодельные методы RL.

Q-Learning - это широко используемый подход без модели, который можно использовать для создания самовоспроизводящегося агента PacMan. Он вращается вокруг понятия обновления значений Q, которое обозначает значение выполнения действия a в состоянии s . Следующее правило обновления значения является ядром алгоритма Q-обучения.

Вот видео-демонстрация агента PacMan, который использует глубокое обучение с подкреплением.

Q-Learning и SARSA (State-Action-Reward-State-Action) - два широко используемых алгоритма RL без моделей. Они различаются своими стратегиями разведки, в то время как их стратегии эксплуатации схожи. В то время как Q-обучение - это метод вне политики, в котором агент изучает значение на основе действия a *, полученного из другой политики, SARSA - это метод на основе политики, при котором он изучает значение на основе своего текущего действия a , полученного из его текущая политика.Эти два метода просты в реализации, но им не хватает универсальности, поскольку они не позволяют оценивать значения для невидимых состояний.

Это можно преодолеть с помощью более продвинутых алгоритмов, таких как Deep Q-Networks (DQNs) , которые используют нейронные сети для оценки Q-значений. Но DQN могут обрабатывать только дискретные низкоразмерные пространства действий.

Глубокий детерминированный градиент политик (DDPG) - это не связанный с политикой алгоритм, не связанный с политикой, критикующий субъект, который решает эту проблему путем изучения политик в многомерных пространствах непрерывных действий.На рисунке ниже представлена ​​архитектура "актер-критик" .

Поскольку RL требует большого количества данных, поэтому он наиболее применим в областях, где смоделированные данные легко доступны, например, игровой процесс, робототехника.

  1. RL довольно широко используется при создании ИИ для компьютерных игр. AlphaGo Zero - первая компьютерная программа, победившая чемпиона мира в древней китайской игре го. Другие включают игры ATARI, Backgammon и т. Д.
  2. В робототехнике и промышленной автоматизации RL используется, чтобы позволить роботу создать для себя эффективную адаптивную систему управления, которая учится на собственном опыте и поведении.Работа DeepMind над Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Policy updates является хорошим примером того же. Посмотрите это интересное демонстрационное видео.

Другие приложения RL включают механизмы резюмирования абстрактного текста, диалоговые агенты (текст, речь), которые могут учиться на взаимодействиях с пользователем и улучшаться со временем, изучая оптимальные стратегии лечения в здравоохранении, и основанные на RL агенты для онлайн-торговли акциями.

Для понимания основных концепций RL можно обратиться к следующим ресурсам.

  1. Обучение с подкреплением - Введение , книга отца обучения с подкреплением - Ричарда Саттона и его научного руководителя Эндрю Барто . Онлайн-черновик книги доступен здесь.
  2. Учебные материалы из Дэвид Сильвер , включая видеолекции, - отличный вводный курс по RL.
  3. Вот еще один технический учебник по RL от Pieter Abbeel и John Schulman (Open AI / Berkeley AI Research Lab).

Чтобы приступить к созданию и тестированию агентов RL, могут быть полезны следующие ресурсы.

  1. Этот блог о том, как обучить агент нейронной сети ATARI Pong с градиентами политики из необработанных пикселей, автор Андрей Карпати поможет вам запустить и запустить свой первый агент глубокого обучения с подкреплением всего лишь с 130 строками кода Python.
  2. DeepMind Lab - это платформа с открытым исходным кодом, похожая на трехмерную игру, созданную для агентных исследований искусственного интеллекта в богатой моделируемой среде.
  3. Project Malmo - еще одна платформа для экспериментов с ИИ для поддержки фундаментальных исследований в области ИИ.
  4. OpenAI gym - это набор инструментов для создания и сравнения алгоритмов обучения с подкреплением.
.

std :: зажим - cppreference.com

шаблон <класс T>
constexpr const T & clamp (const T & v, const T & lo, const T & hi);

(1) (начиная с C ++ 17)

шаблон
constexpr const T & clamp (const T & v, const T & lo, const T & hi, Compare comp);

(2) (начиная с C ++ 17)

1) Если v сравнивает меньше, чем lo , возвращает lo ; в противном случае, если hi сравнивает меньше, чем v , возвращает hi ; в противном случае возвращает v .Использует operator <для сравнения значений.

2) То же, что (1), но для сравнения значений используется comp .

Поведение не определено, если значение lo больше hi

[править] Параметры

в - значение зажима
ло, привет - границы зажима v до
комп. - объект функции сравнения (т.е. объект, который удовлетворяет требованиям Compare), который возвращает истину, если первый аргумент на меньше , чем второй.

Сигнатура функции сравнения должна соответствовать следующему:

bool cmp (const Type1 & a, const Type2 & b);

Хотя подпись не обязательно должна иметь const &, функция не должна изменять переданные ей объекты и должна иметь возможность принимать все значения типа (возможно, const) Type1 и Type2 независимо от категории значения (таким образом, , Type1 & не допускается, равно как и Type1, если только для Type1 перемещение не эквивалентно копированию (начиная с C ++ 11)).
Типы Type1 и Type2 должны быть такими, чтобы объект типа T мог быть неявно преобразован в оба из них. Взаимодействие с другими людьми

Типовые требования
- T должен соответствовать требованиям LessThanComparable, чтобы использовать перегрузки (1). Однако, если исключить NaN , T может быть типом с плавающей запятой.

[править] Возвращаемое значение

Ссылка на lo , если v меньше lo , ссылка на hi , если hi меньше v , в противном случае ссылка на v .

[править] Сложность

Максимум два сравнения.

[править] Возможная реализация

Первая версия
 шаблон <класс T> constexpr const T & зажим (const T & v, const T & lo, const T & hi) { assert (! (привет  
Вторая версия
 шаблон <класс T, класс Сравнить> constexpr const T & зажим (const T & v, const T & lo, const T & hi, Сравнить comp) { assert (! comp (привет, lo)); вернуть comp (v, lo)? lo: comp (привет, v)? ВИЧ; } 

[править] Примечания

Захват результата std :: clamp по ссылке создает висящую ссылку, если один из параметров является временным и этот параметр возвращается:
 int n = -1; const int & r = std :: clip (n, 0, 255); // r болтается 

Если v сравнивает эквивалент любой границы, возвращает ссылку на v , а не границу.

[править] Пример

Возможный выход:

 .raw закреплен на int8_t зажат на uint8_t 168 127 168 128 127 128 -137 -128 0 40 40 40 -66-66 0 

[править] См. Также

возвращает меньшее из заданных значений
(шаблон функции) [править]
возвращает большее из заданных значений
(шаблон функции) [править]
.

Зажим

канала

канала

все

Эффект применяется только к этим каналам.

Если вы установите это значение, отличное от всех или ни одного, вы можете использовать флажки справа, чтобы выбрать отдельные каналы.

минимум

минимум

0

Нижнее значение зажима.По умолчанию все значения ниже этого числа устанавливаются на это значение. Например, если вы установите значение 0,2, любое значение ниже 0,2 будет равно 0,2. Это приводит к тому, что значения черного становятся серыми.

Однако, если вы отметите Enable рядом с MinClampTo, все значения, которые меньше этого числа, будут установлены в значение MinClampTo. Например, если вы установите его на 0,2, а MinClampTo на 0,4, любое значение ниже 0,2 будет установлено на 0.4.

минимум_ включить

включен

Следует ли ограничивать выбранные каналы до минимального значения.Отключение минимума и максимума эффективно отключает узел.

максимум

максимум

1

Верхнее значение зажима.По умолчанию все значения, превышающие это число, устанавливаются на это значение. Например, если вы установите его на 0,8, любое значение выше 0,8 будет установлено на 0,8. Это приводит к тому, что белые значения становятся серыми.

Однако, если вы установите флажок «Включено» рядом с MinClampTo, все значения, превышающие это число, будут установлены в значение MaxClampTo. Например, если вы установите для него значение 0,8, а для MinClampTo значение 0,6, любое значение выше 0,8 будет равно 0.6.

максимальное_ включить

включен

Следует ли ограничивать выбранные каналы до максимального значения.Отключение минимума и максимума эффективно отключает узел.

MinClampTo

MinClampTo

0

Значение, до которого ограничиваются нижние недопустимые значения при включении MinClampTo.Это устанавливает для закрепленных областей собственный цвет, что позволяет визуализировать ограниченный диапазон или создавать графические эффекты.

MinClampTo_
включить

отключен

Когда этот параметр включен, все значения ниже минимального ограничиваются значением MinClampTo.

При отключении все значения ниже минимального ограничиваются минимальным значением.

MaxClampTo

MaxClampTo

1

Значение, до которого ограничиваются высокие недопустимые значения, когда включен MaxClampTo.Это устанавливает для закрепленных областей собственный цвет, что позволяет визуализировать ограниченный диапазон или создавать графические эффекты.

MaxClampTo_
включить

отключен

Когда этот параметр включен, все значения выше максимума ограничиваются значением MaxClampTo.

При отключении все значения, превышающие максимальное значение, ограничиваются максимальным значением.

маска

НЕТ

отключен

Включает связанный канал маски справа.Отключение этого флажка равносильно установке нулевого канала.

maskChannelInput

нет

Канал для использования в качестве маски.По умолчанию ограничение ограничено не черными областями этого канала.

впрыск

впрыск

отключен

Копирует ввод маски в предопределенную маску.канал. Введение маски позволяет использовать ту же маску дальше по потоку.

инверт

инвертная маска

отключен

Инвертирует использование канала маски так, чтобы зажим ограничивался небелыми областями маски.

бахрома

бахрома

отключен

Если этот параметр включен, применить эффект только к краю маски.

При отключении эффект применяется ко всей маске.

(не) до

НЕТ

отключен

Включает связанный канал справа.Отключение этого флажка равносильно установке нулевого канала.

unpremult

нет

Изображение делится по этому каналу перед обработкой, а затем снова умножается.

Если вы используете предварительно умноженные входные изображения, вы можете проверить (отменить) предварительный вывод и выбрать здесь rgba.alpha. Это будет имитировать выполнение зажима до того, как было выполнено предварительное умножение. Это то же самое, что добавление узла Unpremult перед этим узлом и узла Premult после него, но позволяет вам работать быстрее, если вы используете только один узел правильного цвета.

Если вы используете входные изображения без предварительного умножения, вы не должны устанавливать это значение.

инверт

инвертировать_unpremult

отключен

Инвертирует использование (не) канала предварительного умножения.

смесь

смесь

1

Растворяется между исходным изображением при 0 и эффектом полного зажима при 1.

.

Арматурные колонны - Engineering Feed

Рассмотрим колонну сечением 300 × 300. Это наименьшее допустимое сечение колонны, когда требуется сейсмическое поведение. Он усилен 4-мя продольными стержнями и одним хомутом. Описанное поперечное сечение обычно не используется, но оно было выбрано в этом вводном абзаце для учебных целей.

Колонна имеет длину 2,70 м, а длина вышеуказанного стыка составляет 0,50 м (равняется высоте параллельной балки).Поперечная арматура представляет собой обычную скобу диаметром Ø10. Продольная арматура состоит из 4 стержней Ø20. Глубина прикрытия стремени 25 мм. Усиление сдвига может упоминаться под различными названиями, такими как хомуты, стяжки, арматура в виде кольца и т. Д.

Колонны являются наиболее важными конструктивными элементами, обеспечивающими требуемые сейсмические характеристики здания, а поперечная арматура является наиболее важным компонентом колонн.В каждом столбце мы определяем области с высокой потребностью в пластичности (когда применяются землетрясения), которые называются критическими, зоны с более низкой потребностью в пластичности, называемые некритическими, и площадь стыка (т. Е. Общая площадь между колонной и параллельной луч).

КОЛОННА 300 x 300 мм (с критическими и некритическими участками)

В первом случае хомуты Ø10 на расстоянии 150 мм были размещены по всей некритической области колонны.Длина этой зоны составляет 1,50 м, поэтому количество предоставленных хомутов равно 10. Это представлено как 10 Ø10 / 150.

Хомуты, размещенные в каждой из критических областей колонны, имеют диаметр 10/100, их общее количество равно 6 и, следовательно, они представлены как 6 Ø10 / 100. Хомуты, размещенные в области соединения, имеют диаметр 10/100, их общее количество равно 5 и, следовательно, они представлены как 5Ø10 / 100.

Метка детали армирования колонны содержит указания по правильному размещению арматурных стержней.

КОЛОННА 300 x 300 мм (вся длина принимается за критическую площадь)

Во втором случае вся длина колонны рассматривается как критическая зона, и мешалки диаметром 10 мм размещены на расстоянии 100 мм. Длина колонны составляет 2,70 м, следовательно, предусмотренных хомутов 27. Это представлено как 27 Ø10 / 100.

Хомуты, размещенные в области соединения, имеют диаметр 10/100, их общее количество равно 5 и, следовательно, они представлены как 5Ø10 / 100.

Крючки поперечной арматуры следует формировать в разных положениях по периметру хомутов в каждом слое, но из-за частого использования промышленных сепараторов для хомутов это невозможно.

В многоэтажных зданиях было бы идеально, если бы каждый из продольных стержней колонны мог быть размещен как единое целое по всей высоте конструкции. Однако это невозможно сделать по практическим причинам, поэтому длина продольных стержней равна высоте каждого этажа.

При притирке стальных стержней из последовательных этажей важно обеспечить правильную передачу усилий от арматурных стержней верхнего перекрытия к арматурным стержням нижележащего перекрытия.Этого можно добиться сваркой, однако этот метод имеет ряд технических трудностей и используется только в особых случаях. Обычно применяемой практикой является соединение арматуры внахлест, то есть притирка арматуры внахлест посредством контакта.

Длина размещенных стержней должна быть увеличена на дополнительную длину, называемую «длина нахлеста» , которая должна быть равной или большей длины, необходимой для притирки соответствующих стержней между двумя последовательными этажами. Эта длина равна диаметру арматуры, умноженному на «коэффициент контакта» (его значение варьируется от 45 до 60).

Важно хорошо понимать, как на практике выполняется соединение внахлестку. Всегда нужно помнить, что для того, чтобы стремена обеспечивала удержание, каждая арматура должна быть помещена внутри одного из их углов. Однако это трудно сделать в начале и в конце соединения внахлест, и это может быть достигнуто только с помощью специальных методов. В случае, если арматурные стержни соединяются вместе на объекте, соединение внахлестку обязательно должно выполняться в соответствии с первым способом, показанным на рисунке напротив.

Стартовые стержни нижнего этажа должны быть прямыми, в то время как арматурные стержни вышеупомянутого этажа должны быть согнуты в местах их соединения. Изогнутая часть должна доходить до одного или двух хомутов. Использование арматурных стержней диаметром больше Ø20 или Ø25 делает гибку на месте чрезвычайно трудной, если не практически невозможной, поэтому арматурные стержни перед их размещением необходимо согнуть с помощью гибочного станка.

«Коэффициент контакта» пропорционален пределу текучести стали и обратно пропорционален прочности бетона на сжатие [*] Примечание Для стали B500 и бетона C30 / 37 «коэффициент контакта» составляет a = 54> длины стартового стержня. lo = 54 * 20 = 1080 мм.

В следующей таблице показаны необходимые длины нахлеста в мм для трех разных диаметров арматуры в сочетании с тремя разными марками бетона.

Изогнутые арматурные стержни можно соприкасать с прямыми в любом направлении, как показано на следующих рисунках.

Рисунок 4.2.3-17: Вид сбоку трехмерных диаграмм изгибающего момента, соответствующих огибающей [M y ]

В случае отсутствия требований к сейсмостойкости и по причинам удобства эксплуатации, предпочтительно размещать больше стержней меньшего диаметра по периметру вместо меньшего количества стержней большего диаметра.Когда требуется сейсмический расчет, как, например, для колонн, упомянутых в этой книге, предпочтительно размещать арматурные стержни только внутри углов хомутов, таким образом гарантируя, что не произойдет коробление. Поэтому лучше использовать меньшее количество стержней с большим диаметром. Кроме того, конструкции, спроектированные таким образом, чтобы выдерживать сейсмическую опасность, имеют значительное количество стальной арматуры в местах соединения, поэтому небольшое количество арматурных стержней колонн обеспечивает надлежащее армирование.

В квадратном сечении 400 × 400 с хомутами, расположенными в ромбической схеме (имеющей 4 + 4 угла), общей площадью требуемой арматурной стали 3000 мм2 и использованием продольных стержней до Ø20, обычное армирование составляет 4 Ø20 + 12 Ø14 [* ] Примечание Из таблицы 1 следует, что 4 Ø20 + 12 Ø14 соответствуют 4 * 314.2 + 12 * 153,9 = 1257 + 1847 = 3104 мм². . При использовании продольных арматурных стержней до Ø25 идеальный выбор - 4 Ø25 + 4 Ø20 [*] Примечание Из той же таблицы следует, что 4 Ø25 + 4 Ø20 соответствуют 4 * 490,9 + 4 * 314,2 = 1964 + 1257 = 3221 мм².

Использование продольных стержней диаметром более Ø20 допускается только при соблюдении следующих условий:

(a) Использование высокопрочной бетонной смеси для уменьшения необходимой длины нахлеста.

(b) Обязательное использование гибочного станка для гибки продольных арматурных стержней (в зонах соединения внахлест) и, конечно же, точной детализации с точными размерами арматурных стержней.

(c) Использование крана в качестве одиночной арматуры Ø25 с длиной 4,65 м и весом около 18 кг.

Первое условие касается бетонной промышленности, а второе и третье относятся к формированию и размещению арматурной стали. Последние два условия обсуждаются ниже.

Расширенному применению высокопрочных бетонных смесей типа С30 / 37 присваивается номер

.

арматуры, состоящей из 16 стержней, 4 Ø20 + 12 Ø14

(a) Его легко производить в большинстве цементных производств.

(b) Хотя он имеет относительно более высокую стоимость по сравнению с обычными бетонными смесями, их использование позволяет использовать меньшее количество арматурной стали.

(c) Он имеет низкую пористость из-за высокого содержания цемента, что обеспечивает более длительный срок службы структурного каркаса. Это очень важно в тех случаях, когда здания находятся в неблагоприятной окружающей среде, например, на расстоянии <1 км от моря.

В большинстве стран Европы с развитой строительной промышленностью используются классы прочности бетона выше C25 / 30, даже если сейсмическая активность в них незначительна или отсутствует. В такой сейсмически активной стране, как Греция, использование бетона высоких классов прочности не только более экономично, но и технически обязательно. .

Индустриализация строительства вместе с разработкой арматуры способствует все более широкому использованию сборных каркасов для хомутов, а также сборных колонн, которые устанавливаются с помощью крана.

Сборная арматура и ее механическая реализация - это два одновременно развивающихся метода.

Сейсмостойкие колонны имеют большую массу. Например, наименьшая допустимая колонна, упомянутая ранее (хомуты и продольная арматура), имеет массу, равную 60 кг, в отличие от обычных антисейсмических колонн, масса которых намного больше. Обычная колонна 400/400 с хомутами Ø10 / 100, размещенными в ромбической схеме, и продольной арматурой 8 Ø20, весит 150 кг, а также обычная колонна 500/500, с хомутами, расположенными в поперечном расположении, и продольной арматурой 12 Ø20, вес 230 кг. .

эквивалент арматуры, состоящей из 8 стержней, 4 Ø25 + 4 Ø20

.

Смотрите также