Что значит снять усиление шва
что значит снять и обозначение
Сварка — надежный метод соединения, но иногда сварочным швам нужно дополнительно усиление, чтобы сделать их прочнее и устойчивее. А метод укрепления будет зависеть от того, какого типа наплав сделан, поэтому при наработке навыка сварки важно одновременно учиться усиливать его, где бы он ни находился и какой величины ни был. Подробнее о том, что такое усиление сварного шва, а также о том, как его правильно реализовать, рассказывается далее.
Особенности усиления сварных швов
Сделать укрепление обычной сварки не так трудно, но когда дело касается угловых соединений, им потребуется особый подход.
Задача будет осложнена тем, что нередко при усилении шва с помощью увеличения его длины приходится использовать дополнительные наплавы, ребра, накладки и другие конструкции. А подбираются они индивидуально под размер области варки, ее расположения, материала, который сваривали, характеристик катета и т. д.

Схема изображения сварного шва с усилением и без него
Термин усиление шва снять что значит?
По названию сложно сразу понять, что это значит — «усиление шва». Так, в специальной литературе этот термин расшифровывается, как часть наплавленного металла, образующая выпуклость.
А вот обозначение на чертеже «усиление шва снять» (незакрашенный круг на горизонтальной линии, ГОСТ 2.312-72 ЕСКД) предполагает, что этот самый бугорок нужно устранить. Чаще всего он зачищается болгаркой. Но стоит не забывать, что усиления на угловых и стыковых сварных областях нужно снимать не одним и тем же способом. На угловых, к примеру, должен остаться катет, хотя на стыковых наплавах предполагается снятие всего, что выступает над поверхностью соединяемых материалов.
Обозначение снятия усиления сварного шва
Снятие усиления сварного соединения может маркироваться также маленькими буквами английского алфавита, где:
- a — это увеличение длины, предполагающее лобовое наложение части.
- b — обозначает увеличение рабочей длины (или высоты) у катета, при котором располагается угловой шов.
- с — это внутреннее угловое наплавление, измеряющееся по высоте с учетом наличия дополнительных технологических элементов, наплавки или особых параметров лобовых частей.
Система обозначений позволяет лучше понять не только особенности варки, но также материалов, а также конструкций из них, с которыми предстоит работать.

Снятие сварного шва: 1 — свариваемые детали; 2 — сварной шов; 3 — материал, удаляемый при обработке
Технология усиления сварного шва
Сам принцип усиления варки понять не трудно, производиться он будет постепенной и послойной наплавкой, где каждый слой будет составлять примерно 2 мм в высоту. Обработка начинается с самых сложных мест, то есть в тех зонах, где есть какие-либо дефекты — кратеры, подрезы, наплывы.
Для электродов, которые будут использоваться в процессе, есть стандарт ГОСТ, предполагающий диаметр в 4 мм.
Каждый слой обрабатывается только после того, как предыдущий остывает до 100 °C. Постепенно сварочный след удлиняется, потом немного расширяется, благодаря этому как раз получается усиливающий эффект.
Важно помнить о превышениях рабочих высот катетов, которых нужно избегать, а также не проводить усиление поперечных компонентов под нагрузкой.
Это может привести к порче всего сварного соединения, а значит всей конструкции, где он использовался.
Говоря о катетах соединений, то здесь после наплавления усиливающего слоя высота самого катета должна быть меньше, чем толщина полки со стороны пера, а также меньше толщины полки профиля, если смотреть со стороны обушка. Во втором случае, высота катета должна быть не просто меньше толщины, а меньше полутора толщин.
Обработка уголкового профиля осуществляется только в том направлении, которое было выбрано изначально. Менять его не рекомендуется, так как можно создать излишнее напряжение в месте соединения.
Усиление стыковых швов
Усиление стыковой сварки осложнено тем, что чаще всего его усиление может привести к порче места соединения. К примеру, если стыковой шов сделан во всю длину или высоту металлических компонентов, то никакого укрепления и вовсе делать нельзя. Наплавка создаст излишнюю концентрацию в месте плавления, из-за чего наплав может не только испортиться, но также вовсе разрушиться. Все дело в том, что высота таких сварных швов определяется только по стыкуемым элементам и при учете строения валика самого соединения. Этот валик и есть выступ.
Если же стыковую варку все же нужно обработать, то предварительно нужно снять напряжение абразивными инструментами. После этого рассчитывается площадь накладок, с помощью которых предстоит усилить шов.
Усиление угловых швов
Здесь усиление сварных соединений будет осуществляться путем увеличения длины или толщины сварных наплавов. Первый вариант применяется чаще, так как лучше увеличивать площадь и распределять напряжение по ней, а не концентрировать его.
Длина и толщина созданных сварных швов, а также толщина самого усиливающего слоя рассчитывается математически. Так, определить их можно по разности между расчетным усилием в сварном соединении и несущей способностью этого наплава. Здесь важно учесть, что на расчетное усилие всегда будет действовать его смещение относительно центра тяжести сечения элемента.
Все формулы, обозначения к ним и таблицы с подходящими значениями есть в ГОСТах, потому в большинстве случаев можно рассчитать все с максимальной точностью. А точность расчетов позволит сделать точнее усиление сварных швов.
Иногда усиление сварных угловых соединений происходит с введением дополнительных деталей, но это не обязательно. Такой метод будет оправдан только в том случае, если есть место для наложения новых слоев. В основном же используется стандартное сварочное оборудование с верно подобранными по диаметру электродами.
Если увеличивать соединения путем увеличения их длины, то здесь нагрузка на сварные крепления не должна превышать расчетного сопротивления. Так прочность наплавов увеличится пропорционально увеличению длины и толщины соединения.
Этот способ подойдет для любых угловых швов, кроме поперечных.
Также для того, чтобы сделать сварную область длиннее, можно применять фасонки, что привариваются к основным элементам с помощью стыковых сварных соединений.
Важно быть внимательными с формированием обратной стороны шва, так как если подача тепла будет неравномерной, появятся непровары, которые негативно скажутся на характеристиках детали.
Но основной дефект, появляющийся в таких ситуациях, называется «превышение выпуклости», то есть избыток наплавленного металла на лицевой стороне материалов. Это превышение выпуклости возникает чаще всего из-за несоблюдения техники самой варки и большой скорости подачи присадочной проволоки. Он исправляется зашлифовкой или прокаткой роликами.
Превышение усиления сварного шва
Сделать сварной шов безупречным — задача невозможная, но стремиться к этому можно всегда. Поэтому нужно не просто обладать хорошими навыками работы со сваркой, но и понимать небольшие, но важные нюансы сварочного процесса. Как раз таким будет способность сделать качественное усиление уже сделанного соединения.
Усиление сварного шва наплавкой для стыковых и угловых швов
Нередко в процессе проведения сварочных мероприятий, требуется провести усиление сварного шва, который позволит придать прочности действующему сварному соединению. Сам процесс усиления предусматривает удлинение действующего размера и расширение размеров действующих сварных соединений. В данном случае запрещено производит усиление стыковых швов, так как это вызвано тем, что высота определяется только за счёт стыкуемых элементов, а также за счёт конструкционного строения валика шва, который в свою очередь имеет выступ от поверхности рабочего элемента и соединения. Если мы будем производить технологическую операцию именно стыкового контакта, то возрастает напряжённость в местах соединения, что чревато неминуемому появлению дефектов, представляющие опасность для дальнейшей эксплуатации металлической конструкции.
Особенности усиления швов для различных систем
Для режима усиления сварного шва при рад сварке, необходимо уделить внимание на угловые соединения швов. В данном случае происходит увеличение длины конструкционного соединения, за счёт внедрения дополнительных лобовых швов, допускается проведение высоты усиления сварного шва за счёт приварки дополнительных параметров рёбер, накладок, а также иных конструкционных частей и элементов, в том числе имеющие характеристики катета. В данном случае, для снятия усиления сварного шва для напряжений, рекомендуется брать в качестве расчётных параметров единицы расчёта в пределах 40 мм, но не менее этого значения.
Объяснение технической литературы
Если мы обратимся к технической литературе, то там идёт следующая трактовка усиление сварного шва снять что это такое: часть наплавленного металла, который образует условную выпуклость. Рабочая выпуклость имеет только размер по высоте, и при расчёте параметров швов не ведётся учет данного фактора. Обозначение снять на чертеже усиление сварного шва маркируется литерами английского алфавита в малом регистре- a,b,c.
Причём данные значения могут иметь следующее объяснение:
- a – рабочее увеличение длины, за счёт лобового наложения части.
- b – увеличение рабочей длины или высоты катетов расположения угловых швов.
- с – внутреннее угловое наплавление, измерение по высоте, при этом учитывается следующие факторы:
- по существующим технологическим элементам.
- по дополнительным параметрам лобовых частей.
- по имеющейся дополнительной наплавке.

Пример усиления сварного шва
Объяснение единых регламентных стандартов
Общий принцип усиления сварных швов наплавкой производится постепенно, послойно, размером примерно по 2мм. Места обработки начинаются с дефектов, в виде подрезов, кратеров, а также в виде возможного наплыва. Согласно ГОСТ усиление сварного шва допускается при помощи электродов, диаметром в 4 мм. Каждый слой необходимо усиливать после того как произойдёт остывание предыдущего до +100 С. Для рабочей высоты катета наплавления необходимо соблюдать следующие условия, нельзя превышения высоты по толщине рабочей полки со стороны пера, и полуторного размера толщины, со стороны условной территории участка обушки.
Определение высоты усиления шва
Запрещено под нагрузкой проводит усиление поперечных компонентов, так это ведёт к разрушению конструкционного элемента в принципе. Для уголкового профиля процесс необходимо осуществлять только в том направлении, который был предусмотрен изначально, менять направление в другую сторону не рекомендуется, иначе может возникнуть резкое разряжение напряжения в местах соединения. В целом, чтобы понять какое изменение размера усиления сварного шва, достаточно понять одну истину – как на угловых, так и на стыковых участках снятие происходит неравномерно. На стыковым шве снимается только то, что имеет форму выступа, на угловых частях для придания прочности конструкции оставляют только катет.
Усиление для стыковых швов
Если стыковой компонент выполнен на всю длину или высоту соединяемых компонентов металла, технологическое изменение не предусматривается в принципе. Наплавка создаёт излишнюю концентрацию в месте наплавления, а это ведёт в своё очередь к появлению эффекта напряжения и дальнейшего разрушения. Снятие напряжения при необходимости осуществляют доступным абразивным инструментом, причём заподлицо.
Далее берём для расчёта площадь накладок и известную вам длину параметров угловых сварных узлов по одной стороне расчёта. Определение ведётся по формуле:
При этом значения:
- N- известная величина несущая способность накладки, измерение в МН.
- N = АнRуrс,
- Здесь параметр Ан, это известная расчётная площадь накладки, м2.
- с≤ 1.
- Аw фактическая площадь существующего расчётного параметра нашего стыкового узла, м2, определение производится при помощи регламентного положения 11.1* СНиП II-23.
- Rwy = 0,85Ry0 известное расчётное сопротивление стыкового компонента, МПа, определяется по таблице 3 СНиП II-23.
Усиление для угловых стыковочных швов
Принцип усиления производится за счёт увеличения длины и известной толщины сварных швов. Для увеличения фасонки наплавления, необходимо рассчитать нагрузку на площадь будущего технологического процесса. Предпочтительнее осуществлять увеличение длины узла, так как на малых площадях есть риск возникновения напряжения, а это ведёт в свою очередь к разрушению места соединения.
Длина, а также возможная толщина, должны определиться за счёт возможного расчётного усилия непосредственно в сварном соединении, учитывая при этом расчётную нагрузку. Которая должна действовать после выполнения операции, а также после расчёта необходимых данных расчётной способности существующего соединения. При расчёте потребуется учитывать тот факт, что будет смещён центр тяжести нагрузки.
Допускается усиление питьём введения дополнительных деталей и конструкционных частей, так и при помощи стандартного сварочного оборудования. При выборе сварки, обязательно уделяем внимание диаметру электродов, которые используются в данном процессе.
«Важно!
В качестве рабочего регламента ГОСТ используют версию 2.301.»
Для некоторых соединений используем регламентные положения дополнительного ГОСТ 2.601-84 Сварка металлов. В любом случае, специалисты предлагают осуществлять усиление соединения путём зачистки заподлицо, но не для всех технологических операций и задач сварочных мероприятий. Основной трудностью проведения сварочных работ, является формирование обратной стороны шва. При недостаточном обеспечении режима подачи тепла формируется непроплавления или непровары, а это в свою очередь приводит к образованию напряжения, которое негативно сказывается на технических характеристиках конструкционной детали.
Идеального качества сварного соединения добиться практически невозможно. Опытному мастеру необходимо время и даже немалое время, чтобы добиться желаемого эффекта качественного образования усиление сварного компонента. В некоторых случаях потребуется хорошая практика для того, чтобы можно было получить идеальные параметры соединения. В конечном итоге, усиление позволит улучшить технические и физические параметры металлоконструкций, обеспечивая высокий ресурс технологической эксплуатации в будущем. Рекомендуется в качестве нормативных положений использовать действующие ГОСТ и СНИП, где указаны основные моменты проведения сварочных работ, для усиления швов на стыках и соединений.
Шов после кесарева: восстановление, правила ухода и методы устранения рубца
Вполне осязаемое напоминание о кесаревом сечении остается с мамой еще надолго — тот самый рубец в нижней части живота. Но кто сказал, что это будет огромный уродливый шрам, каким себе его часто представляют? На самом деле, это последнее, чего стоит опасаться мамам, которым «светит» операция. Обсудим вопросы, связанные с последствиями операции. Как долго заживает шов после кесарева? Насколько болезненным будет послеоперационный период? И самое главное — как потом избавиться от рубцов?
Какие разрезы делают при кесаревом сечении
Кесарево сечение уже давно перестало быть рискованным хирургическим вмешательством — техника отлажена до мелочей и постоянно совершенствуется. Если совсем коротко, то весь процесс можно описать так: врач разрезает брюшную стенку и матку женщины, достает ребенка и плаценту, зашивает места надрезов. Кесарево проходит под общим наркозом или местной анестезией.
Существует несколько видов разрезов. От того, какая именно методика будет выбрана, во многом зависит и скорость заживления тканей, и вид самого рубца после операции.

Разрезы при кесаревом сечении
Продольный разрез
Вот этим как раз и пугают впечатлительных мам — внушительным шрамом от пупка до лобковой области. Рубец действительно очень заметен, долго заживает и склонен к уплотнению.
Избавиться от вертикального шрама сложно, не всегда помогает даже пластика, поскольку он с годами становится толще.
Но есть хорошая новость — такой тип разреза врачи сейчас практически не используют. Исключения составляют только экстренные операции — обильная кровопотеря у беременной или острая гипоксия плода.

Продольный разрез при кесаревом сечении
Делая вертикальный разрез, врач получает полный доступ к брюшной полости пациентки, что в ряде случаев спасает сразу две жизни — матери и ребенка. Долгий процесс заживления ран в этом случае беспокоит меньше всего, главное — быстро извлечь малыша и помочь роженице.
Поперечный разрез
Такие операции сейчас — обычная практика в роддомах. Аккуратный шов в нижней части живота. Но не только в эстетике дело. Поперечный разрез позволяет сократить время операции, при этом пациентка теряет меньше крови, а процесс заживления рубцов на коже и в матке идет гораздо быстрее. Поперечные разрезы бывают нескольких типов.
Наиболее аккуратный шов — буквально тонкая ниточка длиной 10-15 см прямо над лобком — дает техника Пфанненштиля. После кесарева, если все прошло без осложнений и соблюдены правила послеоперационного периода, шрама практически не видно, а со временем он может и вовсе «исчезнуть». Дело в том, что на этом участке кожа, мышцы и матка плотно примыкают друг к другу. Врач, делая всего один надрез сразу получает доступ к плоду. Операция менее травматична, соответственно, и раны заживают быстрее.

Поперечный разрез
Но в российских роддомах чаще применяется другой поперечный разрез — лапаротомия по Джоэл-Кохину. После кесарева остается рубец длиной до 20 см на 5-7 см ниже пупка. В этом случае врач рассекает верхнюю часть маточной полости. Чтобы «замаскировать» шрам, придется либо носить высокое белье, либо прибегать к методам пластической хирургии.
Но примечательно, что при этом виде разреза послеоперационный период проходит менее болезненно, чем при технике Пфанненштиля. Это можно объяснить тем, что в области пупка больше жировой прослойки под верхним слоем эпидермиса, что «смягчает» боль.
Почему болит шов после кесарева
Боль в нижней части живота — первое, что чувствует мама после того, как наркоз сошел на «нет». И неважно, был ли он общим или местным.
Как говорят врачи, болезненные ощущения на протяжении первых недель (и даже месяцев) после операции — вполне нормальное явление. Тревогу эти симптомы вызывать не должны, если, конечно, не сопровождаются другими «сбоями» в заживлении ран.
Болит даже мелкая царапина на коже. Стоит ли тогда удивляться неприятным ощущениям после серьезного хирургического вмешательства, которым и является кесарево сечение? Врач делает надрезы, а потом зашивает их, что травмирует все типы тканей в этой области — покровные, мышечные и жировые. Для полного восстановления придется ждать, пока затянутся две раны: на матке и на коже. Для сшивания разрезов используются «особые» швы и материалы. Тут работу врачей можно сравнить с настоящим искусством.

Шов после кесарева
Что касается длительности болезненного синдрома, во многом это зависит от шва и, конечно, от соблюдения врачебных рекомендаций на послеоперационный период. Вертикальный шов, как правило, беспокоит около двух месяцев, а поперечный — не более 1,5 месяцев. Но вот «тихие» тянущие боли в области надреза мама может ощущать вплоть до года.
Для облегчения состояния роженицы в больнице ей вкалывают обезболивающие препараты. Их могут прописать и после выписки, если неприятные симптомы не отступают. О ситуации «сам себе врач» стоит забыть! Обезболивающие препараты должен назначать только специалист, учитывая, что у многих мам грудное вскармливание.
Особенности восстановительного периода после кесарева
Что считается нормой?
Итак, боли не должны вызывать особого беспокойства. Они скоро пройдут при соблюдении правил гигиеничного ухода и рекомендаций гинеколога.
Нормой после кесарева считается еще уплотнение шва и области вокруг него. Ткани заживают медленно, и эти симптомы — естественный процесс постепенного стягивания раны. При поперечном рассечении шов становится мягким через год. А при вертикальном процесс более долгий — 1,5-2 года.
Но даже уплотнение рубца не пугает так сильно, как выделение из разреза небольшого количества сукровицы и прозрачной жидкости. И это тоже норма. Причин для беспокойства быть не должно, если это не гной и не сгустки крови. Впрочем, можете проконсультироваться с врачом, чтобы снять лишний стресс — он сейчас определенно лишний.
Xерез 2-3 недели после кесарева начинается зуд. Тут тоже без паники. Заживление тканей всегда сопровождается такими симптомами. Процесс долгий — шов может чесаться вплоть до года.
Может ли шов разойтись?
Самый главный страх будущих рожениц, которым показано кесарево сечение, — расхождение швов. На самом деле, такие осложнения встречаются очень редко. При качественно проведенной операции, хорошем состоянии здоровья мамы и соблюдении ею врачебных рекомендаций, процесс заживления ран идет «по плану».
И тем не менее, важно учесть факторы риска. Почему шов может разойтись:
- ошибка врача при сшивании разрезов;
- поднятие тяжестей;
- развитие инфекции;
- раннее снятие шовного материала;
- несоблюдение правил личной гигиены и обработки шва.
Пропустить тревожные симптомы расхождения шва сложно. Место разреза сильно болит и опухает, наблюдается покраснение в этой области, из раны сочится гной и кровь, которые неприятно пахнут, ухудшается общее самочувствие (вплоть до высокой температуры и тошноты).
Самостоятельно с проблемой не справиться. Да и не нужно. Сразу к врачу! На ранних стадиях расхождения шва можно обойтись консервативным лечением: промыванием раны, антибиотиками, компрессами с мазями. Когда шов разошелся, и меры были приняты поздно, могут потребоваться дополнительные исследования — УЗИ или рентген, бактериальный посев. А далее, если воспалительный процесс успел распространиться по близрасположенным тканям, потребуется глубокое промывание раны и даже еще одно ее сшивание.
Kакие еще бывают осложнения после кесарева?
Расхождение швов — не единственное возможное отклонение в послеоперационном периоде. Чтобы свести риски к минимуму, важно следить за состоянием места разреза.
Самый распространенный тип осложнения после кесарева — развитие воспалительного процесса в тканях. Сам шов при этом не обязательно расходится, но тем не менее, опухает и краснеет. Процесс сопровождается острыми болезненными ощущениями и выделением неестественных жидкостей из раны, высокой температурой. Воспаление на месте шва, как правило, происходит из-за несоблюдения правил его обработки. Не исключена и врачебная ошибка. В любом случае, при появлении хотя бы одного неприятного симптома нужно обратиться к врачу.
Возможно еще одно отклонение от нормы после кесарева — так называемый лигатурный свищ. Это осложнение позднего периода. Появляется даже тогда, когда кажется, что все «ужасы» операции уже позади — через 1-2 месяца после кесарева. В этом случае ткани рубцуются неравномерно, и на отдельном участке шва видно, что он разошелся — появляется тот самый свищ. Через него на поверхность выходит некротическая жидкость. Свищ самостоятельно не вылечить. Срочно к врачу!
Уплотнение в брюшной полости может свидетельствовать о развитии грыжи. Такие отклонения встречаются, в основном, после двух и более операций кесарева сечения. В остальных случаях — большая редкость. Если заметили уплотнение, даже если оно размером с виноградину, нужно пройти обследование.
Как обрабатывать швы после кесарева
Сейчас процесс заживления ран после операции происходит очень быстро. Все благодаря современным материалам и отлаженной технологии проведения кесарева сечения.
Маму выписывают уже на 5-10-й день. На 6-8-й день можно снимать швы, а саморассасывающиеся «исчезают» сами через 1-2 месяца.
В больнице за женщиной, перенесшей кесарево, наблюдают врачи — важно убедиться, что заживление швов на матке и коже идет «по плану». На рану сразу после операции накладывают стерильную повязку, которая заменяется каждый день. Сам шов обрабатывается антисептиками для предотвращения развития инфекций.
После выписки из больницы обрабатывать шов придется уже маме. И в целом, тут такие же правила, как и в больнице, — ежедневная смена повязки, регулярные обработки раны антисептиком. Чтобы шов не разошелся и не воспалился, необходимо только соблюдать правила гигиены и следить за процессом рубцевания тканей.

Шов после кесарева сечения
Обрабатывать рану рекомендуется после принятия душа. Водные процедуры (но только не принятие ванны!) разрешены уже на 5-6-й день после кесарева, когда снимают швы. Их не нужно бояться, ведь раны быстрее заживают на чистой коже. Особенно тревожные мамы неделями не принимают душ, боясь «потревожить» рану. От этого больше вреда, чем пользы — несоблюдение правил гигиены может спровоцировать развитие воспалительного процесса. Шов, как правило, обрабатывается сначала перекисью, а потом зеленкой по краю. Но врач может порекомендовать и другие препараты для обработки разреза, например специальные кремы.
Через 10-15 дней, когда швы уже сняты, и если заживление разреза проходит без отклонений, обработку раны можно прекратить. Но наблюдать за состоянием кожи в этой области придется еще долго. Сам шов полностью затягивается, покрываясь «молодой» кожей, через 4-8 недель. При наличии осложнений процесс затягивается до полугода.
Образ жизни после кесарева
Чтобы шов не разошелся и не появились другие неприятные симптомы при заживлении разрезов после операции, придется пересмотреть свой образ жизни. Особенно в первые месяцы после кесарева. Важные условия:
- В течение двух месяцев не поднимать более 3-4 кг.
- Первые 3-6 месяцев не принимать горячую ванну.
- На полгода под запретом сауны, а также сеансы массажа спины и живота, усиленный фитнес.
- Как минимум полгода носить удобное белье из натуральных материалов. Важно, чтобы края трусов не касались шва.
- Пока рана не зажила, не допускается ее расчесывать. Даже если она сильно чешется в период заживления. Сюда же можно отнести правило — не тереть кожу мочалкой в душе.
- Скорее всего, пару месяцев после операции придется носить бандаж.
Не помешает и продумать рацион питания. Во-первых, поступление в организм витаминов и минералов с пищей ускорит процесс рубцевания тканей. А во-вторых, правильное меню только на пользу ребенку при грудном вскармливании.
Степень заживления, а соответственно, и снятие различных запретов, определяет лечащий врач.
Как убрать шрам после кесарева сечения
Полностью избавиться он внешнего шрама не получится и с целым арсеналом специальных мазей и кремов. Даже если начать применять их, пока шов еще «молодой». Так устроены ткани человека — глубокие разрезы на коже бесследно не исчезают. Да, шрам со временем может стать меньше, но все равно будет заметен.
Разрез после кесарева первые полгода немного красный, а потом начинает постепенно белеть. Это нормальный процесс. Если врач делал надрез над лобковой областью, шрама и вовсе не будет видно, если надеть «правильное» белье. А вот шрам под пупком скрыть сложно. Особенно, если на месте разреза образовался келоидный рубец – плотный, белый, широкий.
Полностью убрать шрам помогут только косметические процедуры и пластические операции.
Пластика — это иссечение кожи на месте образования рубца. Грубый коллаген «вырезается», а края эпидермиса сшиваются особым способом. Процедура недолгая и несложная, а самое главное — не отличается сильно болезненным послеоперационным периодом.
Если «под нож» ложиться страшно, остаются только процедуры в косметическом салоне, например, глубокий пилинг, лазерная шлифовка или микродермабразия.
Как заживает шов на матке
Не забываем, что на матке после кесарева тоже остаются швы. Разрез, естественно, зашивают саморассасывающимися нитками. За его состоянием следит врач, периодически проводя пациентке УЗИ. Как и в случае с внешним швом важно следить, чтобы внутренний не разошелся и рубцевался правильно.
Не существует каких-либо специфических способов лечения и обработки рубцов на матке. Чтобы заживление внутреннего разреза шло быстрее, в послеоперационный период медики могут порекомендовать проведение спринцеваний специальными растворами. И конечно, интимная гигиена на первом месте — в целях не допустить нарушение микрофлоры, которое в ряде случаев приводит к нежелательным последствиям при заживлении внутренних швов. Нехарактерные выделения из влагалища должны стать поводом для обращения к врачу.
Женщине, перенесшей кесарево сечение, рекомендуется планировать следующую беременность не раньше, чем через 2 года. Этот период считается оптимальным для стабилизации рубца на матке.
Норм по состоянию внутреннего шва тоже нет. Обычно врач оценивает его толщину и динамику состояния тканей после операции.
Есть мнение, что первое кесарево — верный путь к еще одному кесареву во второй беременности. Но это не всегда верно. В ряде случаев после операции женщина во второй раз рожает уже естественным путем.
Способ родоразрешения во многом зависит от состояния рубцовой зоны и протекания беременности. Но риски для вынашивания все равно существуют: разрыв «старого» шва или врастание в него плаценты.
Чтобы снизить риски при заживлении рубцов на матке и следующей беременности, важно регулярно посещать гинеколога.
Усиление шва, влияние на прочност
Ударная вязкость, сопротивление сварных соединений с дефектами ударным нагрузкам 51, 53, 54, 63 Усиление шва, влияние на прочность [c.332]Следовательно, в стыковых соединениях низкоуглеродистой стали все дискретные шлаковые включения (см. табл. 2) при наличии усиления шва и проплава влияния на прочность не оказывают. Шлаковые включения, так же как и поры, начинают снижать выносливость при коэффициенте концентрации формы шва /Сф == 1, т. е. в стыковых швах, у которых полностью снято усиление шва [c.169]
Расчет сварных швов при статическом нагружении. Материал сварного шва работает на растяжение (сжатие) в стыковых швах, либо на срез в угловых, тавровых и швах внахлестку. На прочность сварных швов оказывает влияние концентрация напряжений в местах усиления швов, нарушающая плавность силового потока, что учитывается при выборе допускаемых напряжений. Расчет на прочность стыкового шва (см. рис. 4.2, а) производится по формуле [c.403]
Рассмотренный расчет на прочность по методу предельного состояния [88, 89] не учитывает возможной неравномерности в распределении напряжений и концентрации напряжений в сварной трубе вследствие отклонения сечения от правильной геометрической формы [60] из-за наличия усиления сварного шва, смещения кромок в нем, овальности и т. п. Предполагается, что если указанные зоны концентрации напряжений возникают в стенках трубы, то они сглаживаются за счет местной пластической деформации, и это не отражается на общей несущей способности трубы, которая определяется ее прочностью на разрыв от воздействия внутреннего статического давления. Указанное положение об отсутствии влияния концентрации напряжений на несущую способность труб при статическом нагружении было проверено рядо.м экспериментальных исследований. [c.140]
Поверхность сварного шва основной группы образцов снималась резцом заподлицо с основным металлом. У части образцов усиление шва не снималось для выявления влияния этого усиления и концентрации остаточных напряжений на усталостную прочность. [c.31]
Результаты исследования (см. табл. 3) свидетельствуют также о том, что остаточными напряжениями, не оказывающими заветного влияния на сопротивление усталости сварных соединений, в нашем случае являются напряжения 3—4 кгс/мм . Остаточные напряжения, достигающие 10—12 кгс/мм, могут снижать предел выносливости на 10—15%, а напряжения 20—30 кгс/мм на 20— 40%. Снижение усталостной прочности возрастает при наличии концентраторов напряжений (усиление шва, структурная неоднородность и т. п.). [c.39]
Испытания на длительную прочность при изгибе могут проводиться не только на трубчатых, но и на образцах другой формы сплошных цилиндрических (рис. 79, б) или плоских (рис. 79, в). В последнем случае толщина образца может быть принята равной толщине стенки, а усиление шва оставлено, что позволяет оценить влияние концентратора в вершине шва. Испытания проводятся либо на специальных установках, либо на обычных машинах на растяжение с использованием приспособления типа, показанного на рис. 81 [27]. Для цилиндрических образцов [c.136]
Под влиянием дефектов сварки произошло снижение усталостной прочности на 25—60%. Масштабный эффект для сварных деталей с концентрацией напряжений (усиление шва, подрез, резкий обрыв шва и др.) проявляется в большей степени, чем для деталей с устраненными концентраторами напряжений. [c.55]
Рис. 37. Влияние угла 0 усиления шва на прочность стыковых соединений с прокатной окалиной ( ) и без нее (2) |
Однако наружные дефекты также оказывают серьезное влияние на работоспособность сварных конструкций. Опасным наружным дефектом является подрез. Он не допускается в конструкциях, работающих на выносливость. Подрезы небольшой протяженности, ослабляющие сечение не более чем на 5 % в конструкциях, работающих под действием статических нагрузок, на прочность конструкций не оказывают заметного влияния. Однако суммарное влияние подреза и увеличения растягивающих остаточных напряжений может привести к снижению предела выносливости вдвое. Усиление шва не снижает статическую прочность, но сильно влияет на вибрационную прочность сварного соединения. Чем больше усиление шва, а следовательно, меньше угол перехода от основного металла к наплавленному, тем сильнее снижается предел выносливости. Поэтому чрезмерное усиление сварного шва может привести к ликвидации тех преимуществ, которые получены от оптимизации технологического процесса по улучшению качества наплавляемого металла в сварных соединениях, работающих ири динамических, вибрационных нагрузках. Наплывы также снижают выносливость конструкций, являясь концентраторами напряжений. Наплавы большой протяженности нередко сопровождаются непроварами. [c.242]
Усиление сварного шва и качество обработки поверхности шва. Изучение усталостных разрушений поперечных стыковых соединений показывает, что геометрическая форма усиления сварного шва оказывает существенное влияние на сопротивление усталости. Если в стыковом соединении углеродистой стали не имеется значительных дефектов, то при удалении усиления сварного шва можно ожидать повышения предела выносливости соединения, что подтверждается большинством испытаний. Однако количественное значение повышения прочности при удалении усиления зависит от качества сварки. [c.143]
Усиление шва оказывает одинаковое влияние на вибрационную прочность при растяжении стыковых соединений без дефектов из низкоуглеродистой стали и стали ЗОХГСНА (без термической обработки после сварки), р=1,6-1-1,7. При симметричном изгибе чувствительность несколько выше (р = 2). С уменьшением толщины соединяемых листов влияние усиления шва проявляется в меньшей степени ( 3= 1,4 1,5). [c.59]
Исследованиями подтверждено также, что пористость в стыковых соединениях с неснятым усилением, характер которой изменяется в достаточно широких пределах (от единичных и групповых пор и до их расположения в виде цепочки внутри шва и на поверхности), не оказывает резкого влияния на снижение вибрационной прочности. [c.11]
С непроваром снижается не пропорционально изменению глубины непровара (рис. 2, кривая 2). В этом случае непровар необходимо рассматривать не только как фактор, уменьшающий сечение шва, но и как концентратор напряжений, влияние которого на прочность соединений, как будет показано ниже, не может быть скомпенсировано полностью увеличением усиления шва и проплава. Чувствительность или отсутствие чувствительности сварных соединений к дефектам по предлагаемой методике будет зависеть также от соотношения между прочностью металла шва ((т , а ) и основного металла. [c.155]
Влияние вольфрамовых включений на выносливость исследовали на сварных образцах из алюминиевых сплавов А1—Mg—Мп (МР5/60) сечением 6,3 х 32 мм с усилением и 6,3 X 22 мм без усиления шва. Испытания проводили при аксиальном пульсирующем растяжении на базе 5 10 циклов (г = 0) с частотой 1000 цикл/мин. При оценке влияния внутренних вольфрамовых включений на усталостную прочность учитывали суммарную вели- чину площади включений, определяемую по рентгеновским снимкам. [c.64]
Усиление шва заметно не влияет на статическую прочность. Усиление шва любых размеров, как правило, не снижает статической прочности, однако сильно влияет на предел выносливости сварных соединений. Чем больше усиление шва и, следовательно, чем меньше угол перехода от основного металла к наплавленному, тем больше его влияние на предел выносливости. [c.69]
Большое влияние на предел выносливости оказывает очертание поверхности швов. У выпуклых стыковых швов он более низкий, чем у гладких весьма хорошие результаты получаются при снятии усилений стыковых швов или при их обработке, обеспечивающей плавный переход от шва к основному металлу. Получить соединения с хорошей прочностью можно не только при сварке прокатных элементов, но и при сварке литых деталей или прокатных с литыми. [c.139]
Непровар в середине стыкового шва (рис. 4) оказывает меньшее влияние на прочность соединения, чем непровар корня. Это можно установить при сопоставлении результатов испытания образцов с непроваром корня шва (рис. 3) с результатами, полученными Е. К. Орленковым (МВТУ) при испытании плоских стыковых образцов без усиления с непроваром в середине шва на низкоуглеродистой стали, сваренной под флюсом ОСЦ-45 проволокой Св. 08А. Сварка по указанной технологии позволила получить наплавленный металл с rj =50 кГ/мм и 0 =30 кГ/мм при механических характеристиках основного металла Од =40 кГ1мм и аг=19 кГ1мм . При непроваре до 50 [c.50]Усталостная прочность сварных соединений. Усталостная прочность сварных соединений опреде 1яется глaвньJM образом тремя факторами конструктивным оформлением сварного соединения, качеством металла шва и околошовной зоны и наличием сварочных напряжений. Фактор конструктивного оформления—общий для сплавов различной основы, поэтому его влияние подобно влиянию на а сварных соединений стальных или алюминиевых конструкций. Исследованием усталостной прочности металла шва и околошовной-зоны установлена большая ее зависимость от качества присадочного материала, тщательности защиты от поглощения газов из воздуха расплавленным и нагретым металлом во время процесса сварки, наличия в сварном шве различного рода дефектов (непроваров, пористости и пр.) [ 148]. При определении пределов выносливости сварного соединения усиление шва механически удаляли, чтобы.в чистом виде вьшвить усталостную прочность сварного соединения по сравнению с таковой основного металла. [c.156]
Поэтому в соединениях большой толщины (втавр, а такн[c.226]
По экспериментальным данным сопоставлена чувствительность сварных стыковых соединений из низкоуглеродистой стали, сталей Х18Н9Т, ЗО.ХГСНА и сплава Д16Т к технологическим концентраторам (непровару, усилению шва) при стат (ческих и вибрационных нагрузках. Показано влияние вида нагружения (растяжение, изгиб) и расположения концентратора (непровара) в сварном шве на прочность и пластичность стыковых соединений. Таблиц 4, иллюстраций 15, библиографий 6. [c.262]
Аналогичные данные о преобладающей роли формы сварного стыкового шва при оценке влияния пористости на прочность сварных соедипспий прь псроленных нагрузках получали при испытании плоских стыковых образцов с порами в середине шва и без пор из низкоуглеродистой стали (см. рис. 38). Разрушение соединений во всех случаях происходило по границе перехода от усиления шва к основному металлу. [c.63]
На сварных образцах из стали Х15Н9Ю в зоне термического влияния обнаружено интенсивное межкристаллитное разрушение. У сварных образцов из листов толщиной 10 мм наблюдалось усиленное разрушение основного материала на расстоянии 3— 5 мм от металла шва. На сварных образцах, подвергнутых термической обработке (нормализации при 950—975° С, обработке холодом и старению при 350—400° С), не обнаружено преимущественного разъедания в какой-либо зоне сварного соединения. Этот режим термической обработки обеспечивает также высокую коррозионную стойкость основного материала и совпадает с режимом, рекомендованным для получения высокой прочности стали марки Х15Н9Ю. [c.568]
А. А. Россошинский и Б. С. Касаткин исследовали влияние никеля, хрома, марганца и кремния на механические свойства сварных швов при автоматической сварке и установили, что введение от 1 до 2% никеля повышает прочность при сохранении пластичности и снижает температурный порог хладноломкости металла швов. Введение никеля свыше 2% сопровождается резким усилением дендритной неоднородности, снижением пластичности и ударной вязкости. Хром снижает пластичность и ударную вязкость металла шва. [c.493]
Исследовано влияние непровара на предел выносливости сварных образцов с усилением из стали СтЗ при пульсирующем цикле растяжение-сжатие. Непровары в центре Х-образного шва создавали ручной сваркой пластин без зазора с большим притуплением стыкуемых кромок. Непровары в корне У-образ-ного шва имитировали прорезами различной глубины. Непровары сильно снижают предел выносливости сварных швов У-образной формы. Непровары в центре Х-образного шва глубиной 20 —50% снижают предел выносливости на величину, составляющую до 20% прочности бездефектного шва. [c.48]
Способы и технология для снятия напряжение металла после сварки
Автор perminoviv На чтение 4 мин. Опубликовано
Участки свариваемых деталей, расположенные в зоне и вокруг шва, подвергаются неравномерным температурным перепадам — моментально нагреваются до состояния плавления и интенсивно остывают. Вследствие таких процессов металл сначала начинает расширяться. Он оказывает воздействие на ближайшие зоны, имеющие совсем другую температуру. Влияние расширяющейся стали будет выше, чем меньше теплопроводность металла. В результате возникает мощные напряжения, приводящие к деформации материала. Они негативно влияют на результат работы, поэтому необходимо понимать, каким образом снять напряжение металла после сварки.
Остаточные напряжения
В металле напряжения возникают во время сварки и по завершению процесса. В последнем случае они формируются по мере охлаждения детали и называются остаточными. Такие напряжения практически во всех конструкционных материалах присутствуют в течение всего эксплуатационного периода. Они представляют наибольшую опасность для изделий, так как являются причиной изменения габаритов и формы деталей. Поэтому так важно снять напряжение в металле после сварки. Это позволит исключить вероятность изменения внешнего вида изделия и уменьшить степень снижения его эксплуатационных характеристик. Если же остаточные напряжения в материале слишком большие, то существует вероятность, что деталь невозможно будет использовать.
Формоизменение изделий, изготовленных с помощью сварки, происходит из-за перемещения соединенных элементов, так как в каждой точке металла появляются деформации. Существуют несколько видов изменения формы:
- продольные укорочения, образующиеся в результате усадки в одноименном направлении;
- изгиб плоскости;
- поперечные укорочения; возникающие тоже в результате усадки в соответствующем направлении;
- угловые деформации, когда выполняются тавровые и стоковые сочленения;
- формоизменения балочных конструкций, происходящие из-за деформации поперечных и продольных сварочных швов (в редких случаях происходит закручивание балок).
Чтобы избежать изменения формы изделия любого типа нужно конкретно знать, как снять напряжение в металле после сварки. Существует несколько способов. Приемы применяются одновременно или по отдельности.
Термообработка
Одним из вариантов снятия напряжения является высокотемпературный отпуск. Техническое мероприятие применяется во время сочленения углеродистых сплавов. Оно осуществляется за счет нагрева до 630-650 °C. После выдержки температуры, длящейся 2-3 минуты на 1 мм толщины стали, деталь охлаждается.
Снижение температуры изделия проводят медленно. Это позволяет избежать повторного образования напряжения. Скоростной параметр зависит от состава металла. Он уменьшается с увеличением в сплаве элементов, влияющих на его закалку.
Аргонодуговой прием
Смысл аргонодуговой обработки состоит в расплавление участка, находящегося между сварным швом и основным металлом. Процесс выполняется неплавящимся электродным стержнем в аргоновой среде. Такое воздействие позволяет избавиться от напряжений в переходной зоне. Однако в дальнейшем происходит кристаллизация, в результате которой они снова появляются. Величина вновь появившихся напряжений существенно меньше начальных значений. Разница достигает 70%.
Совет! Используя такой прием можно не только уменьшить напряжение, но и получить плавный переход на участке, расположенным между швом и металлом конструкции. Благодаря этому у металлоконструкции повышается прочностная характеристика.
Проковка сварочного шва
Технологическая операция проводится с целью создания дополнительных деформаций. Они позволяют полностью избавиться от остаточных напряжений. Проковка осуществляется, когда сочленение остывает. Мероприятие проводится, если температура превышает 450 °C. Проковывать соединение также можно при температурном режиме меньше 150 °C. В других случаях процесс не выполняется, так как существует риск появления надрывов.
Операция проводится ручным методом при использовании молотка. Его масса составляет в среднем 1000 г. Разрешено применять пневматический молоток. Когда осуществляется проковка многослойных сочленений, мероприятие не проводится для 1-го и последнего слоя, так как существует большая вероятность образование трещин. Способ позволяет избавиться от напряженного состояния во время устранения дефектов и при создании замыкающего сочленения.
Механическая правка шва
Сваривая металл толщиной до 3 мм, правка осуществляется ручным способом при использовании молотка. Для стали, имеющей большую толщину, применяется пресс. Механическая правка используется крайне редко. Вместо нее чаще применяют термический способ.
Особенностью механической правки является появление на металле налета. У обработанного участка возрастает текучесть, и снижается пластичность металла. Изменения свойств стали приводят к уменьшению прочности конструкции.
Термическая правка
Этот метод подразумевает под собой нагрев сочленения при использовании газового пламени. Может также применяться электродуга, образующаяся от неплавящегося электродного стержня. Нагрев материала осуществляется до 750-850 °C. Затем происходит быстрое расширение сплава. Однако рядом расположенные слои не дают металлу расширяться. Из-за этого возникает пластическая деформация нагретой зоны. Когда происходит охлаждение, предварительно нагретый участок начинает сжиматься. В итоге деформация полностью или частично устраняется.
Зная, как снять напряжение металла после сварки, удастся уменьшить вероятность снижения прочности сварных конструкций. Это особенно важно в условиях, которые способствуют появлению хрупкого разрушения шва. Используя вышеописанные методы, удается избежать дефектов при эксплуатации сварной металлоконструкции.
https://www.youtube.com/watch?v=peJ5NMXYuKg
Обозначение сварных швов | Сварка и сварщик
Сварные конструкции характеризуются широким диапазоном применяемых толщин, форм и размеров соединяемых элементов, а также многообразием взаимного расположения свариваемых деталей. В зависимости от взаимного расположения свариваемых деталей различают пять типов сварных соединений (согласно ГОСТ 5264-80 "Швы сварных соединений, ручная дуговая сварка" и ГОСТ 14771-76 "Швы сварных соединений, сварка в защитных газах"):
- стыковое – "С"
- торцевое – "С"
- нахлесточное – "Н";
- тавровое – "Т";
- угловое – "У".
В стыковом (С) сварном соединение поверхности свариваемых элементов располагаются в одной плоскости или на одной поверхности, а сварка выполняется по смежным торцам.
Стыковое соединение обеспечивает наиболее высокие механические свойства сварной конструкции, поэтому широко используется для ответственных конструкций. Однако, оно требует достаточно точной подготовки деталей и сборки.
Торцовое (С) соединение сваривается по торцам соединяемых деталей, боковые поверхности которых примыкают друг к другу.
Такие соединения используют, как правило, при сварке тонких деталей во избежание прожога.
В нахлесточном (Н) сварном соединении поверхности свариваемых элементов располагаются параллельно так, чтобы они были смещены и частично перекрывали друг друга.
Нахлесточные соединения менее чувствительны к погрешностям при сборке, но хуже чем стыковые работают при нагрузках, особенно знакопеременных.
Тавровое (Т) сварное соединение получается, когда торец одной детали под прямым или любым другим углом соединяется с поверхностью другой.
Тавровые соединения обеспечивают высокую жесткость конструкции, но чувствительны к изгибающим нагрузкам.
Угловым (У) называют соединение, в котором поверхности свариваемых деталей располагаются под прямым, тупым или острым углом и свариваются по торцам.
Все сварные соединения могут быть выполнены:
односторонними (SS)*, когда источник нагрева перемещается с одной стороны соединения; | |
двусторонними (BS)*, когда источник нагрева перемещается с двух сторон соединения. В таком сварном соединении корень стыкового шва находится внутри сечения. |
* - обозначения, принятые в международных стандартах.
При сварке плавлением для обеспечения необходимой глубины проплавления выполняют разделку кромок. Форма разделки кромок, а также размеры параметров разделки (угол раскрытия кромок, величина зазора, притупление и др.) зависит от материала, толщины, способа сварки. На рисунке ниже приведены примеры некоторых разделок кромок.
Условное изображение сварных швов на чертежах согласно ГОСТ 2.312-72 "Условные изображения и обозначения швов сварных соединений"
В соответствии со стандартом ГОСТ 2.312-72 для условного изображения сварного шва независимо от способа сварки используется два типа линий: сплошная, если шов видимый или штриховая, если шов невидимый.
На линию шва указывает односторонняя стрелка.
Стрелка может выполняться с полкой для размещения условного обозначения шва и при необходимости вспомогательных знаков. Условное обозначение размещают над полкой, если стрелка указывает на лицевую сторону сварного шва (т.е. если он видимый), или под полкой, когда шов расположен с обратной стороны (т.е. если шов невидим). При этом, за лицевую сторону одностороннего шва сварного соединения принимают сторону, с которой производят сварку. За лицевую сторону двухстороннего шва сварного соединения с несимметрично подготовленными кромками принимают сторону, с которой производят сварку основного шва. За лицевую сторону двухстороннего шва сварного соединения с симметрично подготовленными кромками может быть принята любая сторона.
Вспомогательные знаки.
На приведенной ниже схеме показана структура условного обозначения стандартного сварного шва.
Буквенно–цифровое обозначение шва по соответствующему стандарту представляет собой комбинацию состоящую из буквы определяющей тип сварного соединение и цифры указывающей вид соединения и шва, а также форму разделки кромок. Например: С1, Т4, Н3.
Для обозначения сварных соединений используются следующие буквы:
- С – стыковое;
- У – угловое;
- Т – тавровое;
- Н – нахлесточное;
- О – особые типы, если форма шва не предусмотрена ГОСТом.
Условные обозначения швов для некоторых способов сварки представлены в таблице:
Стандарт | Соединение | Условные обозначения швов |
---|---|---|
ГОСТ 5264-80. Швы сварных соединений, ручная дуговая сварка | Стыковое | С1 - С40 |
Тавровое | Т1 - Т9 | |
Нахлесточное | Н1 - Н2 | |
Угловое | У1 - У10 | |
ГОСТ 14771-76. Швы сварных соединений, сварка в защитных газах | Стыковое | С1 - С27 |
Тавровое | Т1 - Т10 | |
Нахлесточное | Н1 - Н4 | |
Угловое | У1 - У10 |
Обозначения способа сварки (А, Г, УП и другие) указывается в стандарте, по которому выполняется указанный на чертеже процесс сварки.
Условные обозначения некоторых способов сварки представлены ниже, например:
- А – автоматическая сварка под флюсом без применения подкладок и подушек и подварочного шва;
- Аф – автоматическая сварка под флюсом на флюсовой подушке;
- ИН – сварка в инертных газах вольфрамовым электродом без присадочного металла;
- ИНп – сварка в инертных газах вольфрамовым электродом, но с присадочным металлом;
- ИП – сварка в инертных газах плавящимся электродом;
- УП – сварка в углекислом газе плавящимся электродом.
Примеры обозначения сварных швов.
Пример 1.
Форма поперечного сечения шва | а) стрелка указывает на лицевую сторону шва | б) стрелка указывает на обратную сторону шва |
Шов стыкового соединения с криволинейным скосом одной кромки, двусторонний выполняемый дуговой ручной сваркой (С13 по ГОСТ 5264 - 80) при монтаже изделия (). Усиление снято с обеих сторон (). Параметр шероховатости поверхности шва: с лицевой стороны – Rz 20 мкм; с оборотной стороны - Rz 80 мкм.
Пример 2.
![]() | ||
Форма поперечного сечения шва | а) стрелка указывает на лицевую сторону шва | б) стрелка указывает на обратную сторону шва |
Шов углового соединения без скоса кромок, двусторонний (У2 по ГОСТ 11533–75) выполняемый автоматической дуговой сваркой под флюсом (А по ГОСТ 11533–75) по замкнутой линии.
Пример 3.
Форма поперечного сечения шва | а) стрелка указывает на лицевую сторону шва | б) стрелка указывает на обратную сторону шва |
Шов стыкового соединения без скоса кромок, односторонний, на остающейся подкладке (C3 по ГОСТ 16310–80), выполняемый сваркой нагретым газом с присадкой (Г по ГОСТ 16310–80).
Пример 4.
Шов таврового соединения без скоса кромок, двусторон-ний прерывистый с шахматным расположением (Т3 по ГОСТ 14806-80) выполняемый дуговой ручной сваркой в защитных газах неплавящимся металлическим электродом (РИНп по ГОСТ 14806-80). Катет шва 6 мм (Δ6 ), длина провариваемого участка 50 мм, шаг 100 мм (Z).
t ш - длинна провариваемого участка шва
t пр - длинна участка шага прерывистого шва
Пример 5.
Шов соединения внахлестку без скоса кромок, односторонний (Н1 по ГОСТ 14806-80), выполняемый дуговой сваркой в защитных газах плавящимся электродом (ПИП по ГОСТ 14806-80). Шов по незамкнутой линии (). Катет шва 5 мм (?5).
Пример 6.
Шов соединения внахлестку без скоса кромок, односторонний (Н1 по ГОСТ 14806-80), выполняемый дуговой полуавтоматической сваркой в защитных газах плавящимся электродом (ПИП по ГОСТ 14806-80) . Шов по замкнутой линии (круговой шов ). Катет шва 5 мм (?5).
При наличии на чертеже нескольких одинаковых швов условное обозначение шва указывается только у одного из них, а применительно к остальным одинаковым швам указывается только их порядковые номера (на месте где должно быть расположено условное обозначение шва). При этом, на линии выноске, имеющей полку с нанесенным обозначением шва также, допускается указывать количество одинаковых швов (26, как показано на этом примере).
Швы считаются одинаковыми, если:
- одинаковы их типы и размеры конструктивных элементов в поперечном сечении;
- к ним предъявляются одни и те же технические требования.
Если для шва сварного соединения установлен контрольный комплекс или категория контроля шва, то их обозначение допускается помещать под линией выноской.
Обозначение чистоты механически обработанной поверхности шва (шероховатости) наносят после условного обозначения шва, или приводят в технических требованиях чертежа.
![]() | |
а) стрелка указывает на лицевую сторону шва | б) стрелка указывает на обратную сторону шва |
Шов, размеры конструктивных элементов которого стандартами не установлены (нестандартный шов), изображают с указанием размеров конструктивных элементов, необходимых для выполнения шва по данному чертежу.
В результате неравномерного нагрева сварного соединения при сварке возникает остаточная пластическая деформация укорочения, приводящая к образованию остаточных напряжений. Характер распределения этих напряжений зависит от многих факторов (геометрических размеров сварного соединения, режима сварки и др.). В зависимости от толщины свариваемых элементов в сварном соединении может иметь место плоское или объемное напряженное состояние.
При сварке небольших толщин, как правило, имеет место плоское напряженное состояние. Принято компоненты такого напряженного состояния называть продольными (действующими вдоль оси шва) и поперечными (действующими перпендикулярно оси шва).
Ниже рассмотрены эпюры распределения остаточных напряжений в типовых сварных соединениях. При сварке встык достаточно широких небольшой толщины пластин характер распределения остаточных напряжений представлен на рисунке справа. Как это видно, остаточные продольные напряжения распределены в поперечном сечении по ширине неравномерно. В сварном шве и прилегающей к нему зоне действуют напряжения растяжения, а в остальной части сечения действуют напряжения сжатия. Причем, как правило, максимальные напряжения в зоне сварного шва достигают значения, равного значению предела текучести (σт) металла. Таким образом, в продольном направлении в стыковом сварном соединении можно выделить две зоны: зона действия напряжений растяжения и зона действия напряжений сжатия.
Поперечные напряжения также распределены неравномерно. Срединная часть испытывает напряжения растяжения, а концевые участки - напряжения сжатия. Величина максимальных напряжений σу зависит от длины шва и, как правило, не превышает значения 0,3 σт. Поэтому их не всегда принимают во внимание.
При сварке встык пластин большой толщины имеет место объемное напряженное состояние.
Как показали исследования и опыт эксплуатации сварных конструкций при действии остаточного напряжения остаточные сварочные напряжения не оказывают влияния на прочность, если материал изделия достаточно пластичный, что является характерным для большинства металлов. При действии переменных нагрузок остаточные сварочные напряжения сжатия повышают усталостную прочность, а напряжения растяжения, складываясь с рабочими напряжениями в месте их концентрации, существенно снижают сопротивляемость усталостному разрушению.
Поскольку напряжения не являются физической величиной непосредственное их определение не возможно. Их можно определить через измерение какой-либо физической величины, которая связана с напряжением расчетной зависимостью. Такой величиной может быть упругое линейное изменение, т.е. деформация. Связь между напряжениями и упругими деформациями описывается законом Гука. Таким образом, под термином измерение напряжений следует понимать его определение путем измерения деформации (это так называемый механический метод. Существуют и другие методы, например, оптический, магнито-упругий, ультразвуковой и т.д.). Следовательно, все сводится к измерению упругой деформации в направлениях соответствующего вида напряженного состояния. Линейное - в одном направлении, плоское - в двух, объемное - в трех.
ИЗМЕНЕНИЕ МОРЕ | Определение
в кембриджском словаре английского языка Эта счастливая ситуация продолжалась до 1960-х годов, когда произошло изменение официального отношения к этим больницам. Возникшая роль «учителя музыкальных технологий», похоже, потребовала море изменения в поведении и отношении учителей.Эти примеры взяты из корпусов и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или ее лицензиаров.
Еще примеры Меньше примеров
Это море Изменение в полевых условиях произошло, несмотря на продолжающийся эмпирический успех старых подходов.В него он включает alma mater (фраза, используемая для описания старой школы или колледжа), hoi polloi и претерпевает море изменение . Когда мы являемся сообществом, а не изолированными конкурентами, море изменение отношения.Результатом стало море изменение политического баланса. .Что такое обучение с подкреплением? Полное руководство
При предполагаемом размере рынка в 7,35 миллиарда долларов США искусственный интеллект растет не по дням, а по часам. McKinsey прогнозирует, что методы искусственного интеллекта (включая глубокое обучение и обучение с подкреплением) потенциально могут приносить от 3,5 до 5,8 трлн долларов в год в девяти бизнес-функциях в 19 отраслях.
Хотя машинное обучение рассматривается как монолит, эта передовая технология диверсифицирована с различными подтипами, включая машинное обучение, глубокое обучение и современные технологии глубокого обучения с подкреплением.
Что такое обучение с подкреплением?
Обучение с подкреплением - это обучение моделей машинного обучения принятию последовательности решений. Агент учится достигать цели в неопределенной, потенциально сложной среде. При обучении с подкреплением искусственный интеллект сталкивается с игровой ситуацией. Компьютер пытается найти решение проблемы методом проб и ошибок. Чтобы заставить машину делать то, что хочет программист, искусственный интеллект получает либо вознаграждение, либо штрафы за свои действия.Его цель - максимизировать общую награду.
Хотя дизайнер устанавливает политику вознаграждения, то есть правила игры, он не дает модели никаких подсказок или предложений о том, как решить игру. Модель должна выяснить, как выполнить задачу, чтобы получить максимальную награду, начиная с совершенно случайных испытаний и заканчивая сложной тактикой и сверхчеловеческими навыками. Используя возможности поиска и множество испытаний, обучение с подкреплением в настоящее время является наиболее эффективным способом продемонстрировать творческие способности машины.В отличие от людей, искусственный интеллект может собирать опыт из тысяч параллельных игровых процессов, если алгоритм обучения с подкреплением запускается на достаточно мощной компьютерной инфраструктуре.
Примеры обучения с подкреплением
В прошлом применение обучения с подкреплением ограничивалось слабой компьютерной инфраструктурой. Однако по мере того, как суперпользователь ИИ в нарды Джерарда Тезауро развивался в шоу 1990-х годов, прогресс все же произошел. Этот ранний прогресс сейчас быстро меняется с появлением новых мощных вычислительных технологий, открывающих путь совершенно новым вдохновляющим приложениям.
Обучение моделей, управляющих автономными автомобилями, является отличным примером потенциального применения обучения с подкреплением. В идеальном случае компьютер не должен получать инструкции по вождению автомобиля. Программист избегал бы жесткой привязки всего, что связано с задачей, и позволял машине учиться на собственных ошибках. В идеальной ситуации единственным жестко закрепленным элементом была бы функция вознаграждения.
- Например, , в обычных обстоятельствах нам необходимо, чтобы автономное транспортное средство ставило безопасность на первое место, минимизировало время поездки, уменьшало загрязнение, предлагало пассажирам комфорт и соблюдало нормы закона.С другой стороны, в случае с автономным гоночным автомобилем мы уделяем больше внимания скорости, чем комфорту водителя. Программист не может предсказать все, что может случиться в дороге. Вместо того, чтобы строить длинные инструкции «если-то», программист подготавливает агент обучения с подкреплением, чтобы он был способен учиться на системе вознаграждений и штрафов. Агент (другое название алгоритмов обучения с подкреплением, выполняющих задачу) получает вознаграждение за достижение определенных целей.
- Другой пример: deepsense.ai принял участие в проекте «Учимся бегать», целью которого было обучить виртуального бегуна с нуля. Бегуна является передовой и точной моделью опорно-двигательного аппарата разработана биомеханика лаборатории Стэнфордский Нейромускульной. Обучение агента бегу - это первый шаг к созданию нового поколения протезов ног, которые автоматически распознают характер ходьбы людей и подстраиваются под себя, чтобы сделать передвижение проще и эффективнее. Хотя это возможно и было сделано в лабораториях Стэнфорда, жесткая привязка всех команд и прогнозирование всех возможных моделей ходьбы требует большой работы от высококвалифицированных программистов.
Чтобы узнать больше о реальных приложениях обучения с подкреплением, прочтите эту статью.
Проблемы с обучением с подкреплением
Основная проблема в обучении с подкреплением заключается в подготовке среды моделирования, которая в значительной степени зависит от выполняемой задачи. Когда модель должна стать сверхчеловеческой в играх Chess, Go или Atari, подготовка среды моделирования относительно проста. Когда дело доходит до создания модели, способной управлять автономным автомобилем, создание реалистичного симулятора имеет решающее значение, прежде чем позволить автомобилю ездить по улице.Модель должна понять, как затормозить или избежать столкновения в безопасных условиях, где даже тысяча автомобилей принесет в жертву минимальные затраты. Перенос модели из тренировочной среды в реальный мир - вот где все усложняется.
Масштабирование и настройка нейронной сети, управляющей агентом, - еще одна проблема. Нет другого способа общаться с сетью, кроме как через систему вознаграждений и штрафов. Это, в частности, может привести к катастрофическому забыванию , когда приобретение новых знаний приводит к удалению некоторых старых из сети (читать дальше этот выпуск, см. этот документ, опубликованный во время Международной конференции по машинному обучению).
Еще одна проблема - достижение локального оптимума, то есть агент выполняет задачу как есть, но не оптимальным или требуемым образом. «Прыгун», прыгающий, как кенгуру, вместо того, чтобы делать то, что от него ожидалось, - ходьбу, - отличный пример, который также можно найти в нашем недавнем сообщении в блоге.
Наконец, есть агенты, которые оптимизируют приз без выполнения той задачи, для которой он был разработан. Интересный пример можно найти в видео OpenAI ниже, где агент научился получать награды, но не завершал гонку.
Чем отличается обучение с подкреплением от глубокого и машинного обучения?
На самом деле не должно быть четкого разделения между машинным обучением, глубоким обучением и обучением с подкреплением. Это похоже на отношение параллелограмм - прямоугольник - квадрат, где машинное обучение является самой широкой категорией, а глубокое обучение с подкреплением - самой узкой.
Точно так же обучение с подкреплением - это специализированное приложение методов машинного и глубокого обучения, предназначенное для решения проблем определенным образом.
Хотя идеи кажутся разными, между этими подтипами нет резкого разделения. Более того, они объединяются в рамках проектов, так как модели созданы не для того, чтобы придерживаться «чистого типа», а для выполнения задачи наиболее эффективным способом. Итак, «что именно отличает машинное обучение, глубокое обучение и обучение с подкреплением» - на самом деле сложный вопрос.
- Машинное обучение - это форма ИИ, в которой компьютерам дается возможность постепенно улучшать выполнение конкретной задачи с помощью данных без прямого программирования (это определение Артура Ли Самуэля.Он ввел термин «машинное обучение», которое бывает двух типов: машинное обучение с учителем и без учителя.
Машинное обучение с учителем происходит, когда программист может предоставить метку для каждого обучающего ввода в систему машинного обучения.
- Пример - путем анализа исторических данных, взятых с угольных шахт, deepsense.ai подготовил автоматизированную систему для прогнозирования опасных сейсмических событий за 8 часов до их возникновения. Записи сейсмических событий были взяты на 24 угольных шахтах, которые собирали данные в течение нескольких месяцев.Модель смогла определить вероятность взрыва, проанализировав показания за предыдущие 24 часа.

Некоторые шахты можно точно определить по их основным значениям рабочей высоты. Чтобы затруднить идентификацию, мы добавили гауссовский шум
С точки зрения ИИ, одна модель выполняла одну задачу с уточненным и нормализованным набором данных. Чтобы узнать больше об этой истории, прочитайте наш блог.
Обучение без учителя происходит, когда модели предоставляются только входные данные, но нет явных меток.Он должен копаться в данных и находить скрытую структуру или взаимосвязи внутри. Дизайнер может не знать, что это за структура или что найдет модель машинного обучения.
- В качестве примера мы использовали прогноз оттока. Мы проанализировали данные о клиентах и разработали алгоритм для группировки похожих клиентов. Однако мы не сами выбирали группы. Позже мы смогли определить группы высокого риска (с высоким уровнем оттока клиентов), и наш клиент знал, к каким клиентам им следует обратиться в первую очередь.
- Другой пример обучения без учителя - обнаружение аномалии, когда алгоритм должен определить элемент, который не вписывается в группу. Это может быть некорректный продукт, потенциально мошенническая транзакция или любое другое событие, связанное с нарушением нормы.
Глубокое обучение состоит из нескольких уровней нейронных сетей, предназначенных для выполнения более сложных задач. На создание моделей глубокого обучения вдохновил дизайн человеческого мозга, но в упрощенном виде.Модели глубокого обучения состоят из нескольких слоев нейронной сети, которые в принципе отвечают за постепенное изучение более абстрактных функций конкретных данных.
Хотя решения для глубокого обучения способны давать потрясающие результаты, по масштабу они не подходят человеческому мозгу. Каждый уровень использует результат предыдущего в качестве входных данных, и вся сеть обучается как единое целое. Основная концепция создания искусственной нейронной сети не нова, но только недавно современное оборудование обеспечило достаточную вычислительную мощность для эффективного обучения таких сетей на достаточном количестве примеров.Расширенное внедрение привело к появлению таких фреймворков, как TensorFlow, Keras и PyTorch, которые сделали создание моделей машинного обучения намного более удобным.
- Пример: deepsense.ai разработал модель на основе глубокого обучения для Национального управления океанических и атмосферных исследований (NOAA). Он был разработан для распознавания китов по аэрофотоснимкам, сделанным исследователями. Для получения дополнительной информации об этом исчезающем виде и работе deepsense.ai с NOAA прочтите нашу запись в блоге.С технической точки зрения распознавание конкретного экземпляра китов по аэрофотоснимкам - это чистое глубокое обучение. Решение состоит из нескольких моделей машинного обучения, выполняющих отдельные задачи. Первый отвечал за поиск головы кита на фотографии, в то время как второй нормализовал фотографию, вырезая и поворачивая ее, что в конечном итоге обеспечивало единый вид (фотография на паспорт) одного кита.
Третья модель отвечала за распознавание определенных китов по фотографиям, которые были подготовлены и обработаны ранее.Сеть, состоящая из 5 миллионов нейронов, располагалась на кончике капота. Более 941000 нейронов искали голову и более 3 миллионов нейронов были использованы для классификации конкретного кита. Это более 9 миллионов нейронов, выполняющих задачу, что может показаться большим количеством, но бледнеет по сравнению с более чем 100 миллиардами нейронов, работающих в человеческом мозгу. Позже мы использовали аналогичное решение на основе глубокого обучения для диагностики диабетической ретинопатии с использованием изображений сетчатки глаза пациентов.
Обучение с подкреплением , как указано выше, использует систему вознаграждений и штрафов, чтобы заставить компьютер решить проблему самостоятельно.Участие человека ограничивается изменением окружающей среды и настройкой системы вознаграждений и штрафов. Поскольку компьютер максимизирует вознаграждение, он склонен искать неожиданные способы сделать это. Вовлеченность человека направлена на то, чтобы не допустить использования системы и побудить машину выполнять задачу ожидаемым образом. Обучение с подкреплением полезно, когда нет «правильного способа» выполнить задачу, но есть правила, которым модель должна следовать, чтобы правильно выполнять свои обязанности. Возьмем, к примеру, дорожный кодекс.
В частности, если искусственный интеллект будет управлять автомобилем, обучение игре на некоторых классических играх Atari можно считать значимым промежуточным этапом. Возможное применение обучения с подкреплением в автономных транспортных средствах - это следующий интересный случай. Разработчик не может предсказать все будущие дорожные ситуации, поэтому позволить модели тренироваться с системой штрафов и вознаграждений в разнообразной среде, возможно, является наиболее эффективным способом для ИИ расширить опыт, который он имеет и собирает.
Заключение
Ключевым отличительным фактором обучения с подкреплением является то, как обучается агент. Вместо того чтобы проверять предоставленные данные, модель взаимодействует с окружающей средой, ища способы максимизировать вознаграждение. В случае глубокого обучения с подкреплением нейронная сеть отвечает за хранение опыта и, таким образом, улучшает способ выполнения задачи.
Является ли обучение с подкреплением будущим машинного обучения?
Хотя обучение с подкреплением, глубокое обучение и машинное обучение взаимосвязаны, никто из них не собирается заменять другие.Ян ЛеКун, известный французский ученый и руководитель отдела исследований в Facebook, шутит, что обучение с подкреплением - это вишенка на большом торте искусственного интеллекта с машинным обучением самого пирога и глубоким обучением глазури. Без предыдущих итераций вишня ничего бы не увенчала.
Во многих случаях использования классических методов машинного обучения будет достаточно. Чисто алгоритмические методы, не связанные с машинным обучением, как правило, полезны при обработке бизнес-данных или управлении базами данных.
Иногда машинное обучение только поддерживает процесс, выполняемый другим способом, например, ища способ оптимизации скорости или эффективности.
Когда машине приходится иметь дело с неструктурированными и несортированными данными или с различными типами данных, нейронные сети могут быть очень полезны. Как машинное обучение улучшило качество машинного перевода, было описано в The New York Times.
Сводка
Обучение с подкреплением, несомненно, является передовой технологией, которая может изменить наш мир. Однако его не нужно использовать в каждом случае. Тем не менее, обучение с подкреплением кажется наиболее вероятным способом сделать машину творческой, поскольку поиск новых, инновационных способов выполнения ее задач на самом деле является творчеством.Это уже происходит: теперь знаменитая AlphaGo от DeepMind выполняла движения, которые сначала считались ошибками специалистами-людьми, но на самом деле обеспечила победу над одним из сильнейших игроков-людей, Ли Седолом.
Таким образом, обучение с подкреплением может стать революционной технологией и следующим шагом в развитии ИИ.
I. Обдумайте свои ответы на следующие
1. Что означает v / e, когда мы говорим, что идиома имеет «двойное» значение?
2. Почему так важно осторожно использовать идиомы? Следует ли их использовать студентам, изучающим иностранные языки? Обоснуйте свой ответ.
3. Термин «фразеологизм» используется большинством российских ученых. Какие еще термины используются для описания тех же групп слов?
4. Как вы можете показать, что «свобода» свободных групп слов относительна и произвольна?
5.Каковы два основных критерия различения фразеологизмов и свободных групп слов?
6. Как бы вы объяснили термин «грамматическая неизменность» фразеологизмов?
7. Чем пословицы отличаются от фразеологизмов?
8. Можно ли рассматривать пословицы как подразделение фразеологизмов? Обоснуйте свой ответ.
II. Каков источник следующих идиом? В случае сомнений обратитесь к справочникам.
Троянский конь, Ахиллесова пята, подвиг Геракла, яблоко раздора, запретный плод, змей на дереве, гадкий утенок, пятая колонна, чтобы спрятать голову в песок.
III. Вместо слов, выделенных курсивом, замените фразеологические единицы существительным «сердце». В чем разница между двумя предложениями?
1. Он не тот человек, который показывает свои чувства открыто.2. Она может показаться холодной, но у нее искренние, добрые чувства. 3.1 выучил этот стих наизусть. 4. Когда я думаю о завтрашнем экзамене, я чувствую отчаяние. 5. Когда я услышал этот странный крик в темноте, я, , ужасно испугался. 6. Это была работа, которая мне очень понравилась. 7. 1 не выиграл приз, но я не обескуражен.
IV. Покажите, что вы понимаете значение следующих фразеологизмов, используя каждый из них в предложении.
1. Между дьяволом и морем; 2. иметь сердце в сапогах; 3. иметь сердце в нужном месте; 4. носить сердце на рукаве; 5. в блюзе; 6. однажды в синюю луну; 7. ругаться черное есть белое; 8. Совершенно неожиданно; 9. говорить, пока все не станет синим; 10. говорить себе посинее.
V. Замените выделенные курсивом фразеологизмы, включающие названия цветов.
1. Я чувствую довольно жалкий сегодня. 2. Он тратит все свое время на бюрократических дел. 3. Такое случается очень редко. 4. Ты можешь говорить , пока он тебе не надоест , но я тебе не поверю. 5. Эта новость была для меня большим потрясением. Это совершенно неожиданно . 6.1 не поверю, пока не увижу в письменной форме. 7. Никогда нельзя поверить в то, что он говорит, он ругается во всем, если это соответствует его цели.
VI. Прочтите следующие анекдоты. Почему маленькие дети часто неправильно понимают фразеологизмы? Объясните, как возникает недопонимание в каждом конкретном случае.
1. «Теперь, мои маленькие мальчики и девочки, - сказал учитель. «Я хочу, чтобы вы были очень неподвижны, чтобы вы могли слышать, как падает булавка». На минуту все было тихо, а затем вскрикнул маленький мальчик; "Пусть она упадет".
2. «Ты, должно быть, очень сильный», - сказал шестилетний Вилли молодой вдове, которая пришла к его матери.
"Сильный? Почему ты так думаешь?"
«Папа сказал, что любого мужчину в городе можно обернуть вокруг мизинца».
3. m: Что бы вы сделали на моем месте?
Тим: Отполируйте их!
4. Маленькая девочка: О, мистер Спроулер, наденьте коньки и покажите мне забавные фигурки, которые вы можете сделать.
Мистер Спраулер: Моё дорогое дитя, я только новичок. Я не могу подсчитать.
Маленькая девочка: Но мама сказала, что ты вчера каталась на коньках и у тебя смешная фигура.
VII. Прочтите следующие анекдоты. Объясните, почему выделенные курсивом группы слов не являются фразеологизмами.
Предупреждение
Маленький мальчик, чей отец был , поглощен чтением газеты на скамейке в городском парке, воскликнул:
«Папа, смотри, самолет!»
Его отец, все еще читая газету, сказал: «Хорошо, не трогай его."
Великое открытие
Ученый ворвался в операционную в центре управления космическими полетами: «Вы знаете тот новый гигантский компьютер, который должен был стать мозгом проекта? Мы всего лишь сделали великое открытие!»
"Какое открытие?"
"Не работает!"
VIII. Объясните, являются ли семантические изменения в следующих фразеологизмах полными или частичными.Перефразируйте их.
Носить сердце на рукаве; волк в овечьей шкуре; разозлиться; придерживаться своего слова; закадычный друг; болтовня; перед свиньями лить жемчуг; чтобы ходить вокруг да около; подлить масла в огонь; заболеть; влюбиться; плавать под ложным флагом; быть в море.
.
способов обнаружения и удаления выбросов | Наташа Шарма
Что вы ищете, работая над проектом Data Science? Что является наиболее важной частью фазы EDA? Есть определенные вещи, которые, если они не будут выполнены на этапе EDA, могут повлиять на дальнейшее статистическое моделирование / моделирование машинного обучения. Один из них - поиск «выбросов». В этом посте мы попытаемся понять, что такое выброс? Почему важно идентифицировать выбросы? Какие есть методы для выбросов? Не волнуйтесь, мы не будем проходить только теоретическую часть, но мы также сделаем кодирование и построение графиков данных.
Определение Википедии,
В статистике выброс - это точка наблюдения, удаленная от других наблюдений.
Приведенное выше определение предполагает, что выброс - это что-то отдельное / отличное от толпы. Многие мотивационные видео предлагают отличиться от толпы, особенно Малькольма Гладуэлла. Что касается статистики, это тоже хорошо или нет? мы собираемся найти это в этом посте.
Google Image - WikihowВы видите что-нибудь по-другому на изображении выше? Все числа в диапазоне 30, кроме числа 3.Это наш выброс, потому что он не где-то рядом с другими числами.
Теперь мы знаем, что такое выброс, но задаетесь ли вы вопросом, как выброс представил население?
Проект Data Science начинается со сбора данных, и именно тогда выбросы впервые представлены населению. Однако на этапе сбора данных о выбросах вы вообще не узнаете. Выбросы могут быть результатом ошибки во время сбора данных или могут быть просто признаком расхождения в ваших данных.
Давайте посмотрим на несколько примеров. Предположим, вас попросили понаблюдать за выступлениями индийской команды по крикету, т. Е. Пробегом каждого игрока, и собрать данные.
Собранные данныеКак вы можете видеть из собранных выше данных, все остальные игроки набрали 300+, кроме Игрока 3, который набрал 10. Эта цифра может быть просто ошибкой ввода или дисперсией в ваших данных и указанием, что Player3 работает очень плохо, поэтому требует улучшений.
Теперь, когда мы знаем, что выбросы могут быть либо ошибкой, либо просто отклонением, как бы вы решили, важны они или нет. Что ж, это довольно просто, если они являются результатом ошибки, тогда мы можем их игнорировать, но если это просто расхождение в данных, нам нужно подумать немного дальше. Прежде чем мы попытаемся понять, игнорировать выбросы или нет, нам нужно знать способы их выявления.
Большинство из вас может подумать: «О! Я могу просто получить пик данных, чтобы найти выбросы, как мы это сделали в ранее упомянутом примере крикета.Давайте представим файл с 500+ столбцами и 10k + строками. Как вы думаете, выбросы можно найти вручную? Чтобы облегчить обнаружение выбросов, у нас есть множество методов статистики, но мы будем обсуждать только некоторые из них. В основном мы будем стараться рассматривать методы визуализации (самые простые), а не математические.
Итак, приступим. Мы будем использовать набор данных Boston House Pricing Dataset, который включен в API набора данных sklearn. Мы загрузим набор данных и разделим функции и цели.
boston = load_boston ()Boston Housing Data
x = boston.data
y = boston.target
columns = boston.feature_names # создать фрейм данных
boston_df = pd.DataFrame (boston.data)
boston_df.columns = columns
boston_df.head ()
Характеристики / независимая переменная будет использоваться для поиска любых выбросов. Глядя на данные выше, кажется, что у нас есть только числовые значения, то есть нам не нужно выполнять какое-либо форматирование данных. (Вздох!)
Есть два типа анализа, которым мы будем следовать, чтобы найти выбросы - Uni-variate (анализ выбросов с одной переменной) и многомерный (анализ выбросов с двумя или более переменными).Не запутайтесь, когда вы начнете кодировать и строить график данных, вы сами убедитесь, насколько легко было обнаружить выброс. Для простоты мы начнем с основного метода обнаружения выбросов и постепенно перейдем к более продвинутым методам.
Обнаружение выбросов с помощью инструментов визуализации
Коробчатая диаграмма-
Определение Википедии,
В описательной статистике прямоугольная диаграмма - это метод графического изображения групп числовых данных через их квартили.Коробчатые диаграммы также могут иметь линий, идущих вертикально на из прямоугольников ( усов, ) , указывающих на изменчивость , за пределами верхнего и нижнего квартилей, отсюда термины прямоугольная диаграмма и прямоугольная диаграмма. Выбросы могут быть , нанесенными на график как отдельных точек.
Приведенное выше определение предполагает, что если есть выброс, он будет отображаться как точка на прямоугольной диаграмме, а другая совокупность будет сгруппирована вместе и отображаться в виде прямоугольников.Давайте попробуем и увидим сами.
import seaborn as snsBoxplot - Distance to Employment Center
sns.boxplot (x = boston_df ['DIS'])
На графике выше показаны три точки от 10 до 12, это выбросы, поскольку они не включены в рамку другое наблюдение, т. е. не где-то рядом с квартилями.
Здесь мы проанализировали однозначный выброс, т.е. мы использовали столбец DIS только для проверки выброса. Но мы также можем проводить многомерный анализ выбросов. Можем ли мы провести многомерный анализ с помощью прямоугольной диаграммы? Ну, это зависит от того, если у вас есть категориальные значения, вы можете использовать их с любой непрерывной переменной и выполнять многомерный анализ выбросов.Поскольку у нас нет категориальной ценности в нашем наборе данных Boston Housing, нам, возможно, придется забыть об использовании ящичной диаграммы для многомерного анализа выбросов.
Диаграмма рассеяния -
Определение в Википедии
Диаграмма рассеяния - это тип графика или математической диаграммы, использующей декартовы координаты для отображения значений обычно двух переменных для набора данных. Данные отображаются в виде набора из точек , каждая из которых имеет значение , одна переменная , определяющая положение на горизонтальной оси , , и значение , другая переменная , определяющая положение на вертикальной оси , . .
Как следует из определения, диаграмма рассеяния - это набор точек, который показывает значения двух переменных. Мы можем попытаться построить диаграмму рассеяния для двух переменных из нашего набора данных о жилищном строительстве.
fig, ax = plt.subplots (figsize = (16,8))Точечная диаграмма - Доля некоммерческих коммерческих площадей на город по сравнению с полной стоимостью налога на недвижимость
ax.scatter (boston_df ['INDUS'], boston_df ['TAX'])
ax.set_xlabel ('Доля акров, не связанных с розничной торговлей на город ')
ax.set_ylabel (' Полная ставка налога на имущество на $ 10 000 ')
plt.show ()
На графике выше мы видим, что большинство точек данных находятся внизу слева, но есть точки, которые далеки от населения, например, в правом верхнем углу.
Обнаружение выбросов с помощью математической функции
Z-Score-
Определение Википедии
Z-score - это стандартное отклонение со знаком, на которое значение наблюдения или точки данных превышает среднее значение того, что наблюдается или измеряется.
Интуиция, стоящая за Z-оценкой, заключается в описании любой точки данных путем нахождения их взаимосвязи со стандартным отклонением и средним значением группы точек данных.Z-оценка находит распределение данных, где среднее значение равно 0, а стандартное отклонение равно 1, то есть нормальное распределение.
Вам должно быть интересно, как это помогает в выявлении выбросов? Итак, при вычислении Z-оценки мы повторно масштабируем и центрируем данные и ищем точки данных, которые слишком далеки от нуля. Эти точки данных, которые слишком далеки от нуля, будут рассматриваться как выбросы. В большинстве случаев используется порог 3 или -3, то есть, если значение Z-оценки больше или меньше 3 или -3 соответственно, эта точка данных будет идентифицирована как выбросы.
Мы будем использовать функцию Z-score, определенную в библиотеке scipy, для обнаружения выбросов.
из scipy import statsZ-score of Boston Housing Data
import numpy as npz = np.abs (stats.zscore (boston_df))
print (z)
Глядя на код и выходные данные выше, трудно сказать какая точка данных является выбросом. Давайте попробуем определить порог для выявления выброса.
порог = 3
печать (np.where (z> 3))
Это даст результат, как показано ниже -
Точки данных, где Z-оценка больше 3Результаты не могут вас смутить.Первый массив содержит список номеров строк, а второй массив номеров соответствующих столбцов, что означает, что z [55] [1] имеют Z-оценку выше 3.
print (z [55] [1]) 3.375038763517309
Итак , точка данных - 55-я запись в столбце ZN является выбросом.
Оценка IQR -
График в виде прямоугольников использует метод IQR для отображения данных и выбросов (форма данных), но для того, чтобы получить список идентифицированных выбросов, нам нужно будет использовать математическую формулу и получить выброс данные.
Определение Википедии
Межквартильный диапазон ( IQR ), также называемый средним или средним 50% , или технически H-разбросом , является мерой статистической дисперсии, равной разница между 75-м и 25-м процентилями или между верхним и нижним квартилями, IQR = Q 3 - Q 1.
Другими словами, IQR - это первый квартиль, вычитаемый из третьего квартиля; эти квартили можно четко увидеть на прямоугольной диаграмме данных.
Это мера дисперсии, аналогичная стандартному отклонению или дисперсии, но гораздо более устойчивая к выбросам.
IQR в некоторой степени похож на Z-оценку с точки зрения определения распределения данных и последующего сохранения некоторого порога для выявления выброса.
Давайте узнаем, что мы можем использовать коробчатый график с использованием IQR и как мы можем использовать его для поиска списка выбросов, как мы это делали при вычислении Z-показателя. Сначала мы рассчитаем IQR,
Q1 = boston_df_o1.quantile (0.25)
Q3 = boston_df_o1.quantile (0,75)
IQR = Q3 - Q1
print (IQR)
Здесь мы получим IQR для каждого столбца.
IQR для каждого столбцаПоскольку теперь у нас есть оценки IQR, пора зафиксировать выбросы. Приведенный ниже код даст результат с некоторыми истинными и ложными значениями. Точка данных, где у нас есть False, означает, что эти значения действительны, тогда как True указывает на наличие выброса.
print (boston_df_o1 <(Q1 - 1.5 * IQR)) | (boston_df_o1> (Q3 + 1.5 * IQR))Обнаружение выбросов с помощью IQR
Теперь, когда мы знаем, как обнаруживать выбросы, важно понимать, нужны ли они быть удаленным или исправленным.В следующем разделе мы рассмотрим несколько методов удаления выбросов и, при необходимости, подстановки новых значений.
Во время анализа данных, когда вы обнаруживаете выброс, одним из самых сложных решений может быть то, как поступить с выбросом. Должны ли они их удалить или исправить? Прежде чем мы поговорим об этом, мы рассмотрим несколько методов удаления выбросов.
Z-Score
В предыдущем разделе мы видели, как можно обнаружить выбросы, используя Z-оценку, но теперь мы хотим удалить или отфильтровать выбросы и получить чистые данные.Это можно сделать с помощью всего одного строчного кода, поскольку мы уже рассчитали Z-оценку.
boston_df_o = boston_df_o [(z <3) .all (axis = 1)]С и без размера выброса набора данных
Итак, приведенный выше код удалил около 90+ строк из набора данных, т.е. выбросы были удалены.
Оценка IQR -
Так же, как Z-оценка, мы можем использовать ранее рассчитанную оценку IQR, чтобы отфильтровать выбросы, сохраняя только действительные значения.
boston_df_out = boston_df_o1 [~ ((boston_df_o1 <(Q1 - 1.5 * IQR)) | (boston_df_o1> (Q3 + 1.5 * IQR))). Any (axis = 1)] boston_df_out.shape
Приведенный выше код удалит выбросы из набора данных.
Существует несколько способов обнаружения и удаления выбросов, но методы, которые мы использовали для этого упражнения, широко используются и просты для понимания.
Следует ли удалять выбросы. Эти мысли могут возникать у каждого аналитика / специалиста по данным хоть раз при каждой проблеме, над которой он работает. Я нашел несколько хороших объяснений -
https: // www.researchgate.net/post/When_is_it_justifiable_to_exclude_outlier_data_points_from_statistical_analyses
https://www.researchgate.net/post/Which_is_the_best_method_for_removing_outliers_in_a_best_method_for_removing_outliers_in_a_a_data_set 9000-data_set 9000-data_set
000-data_set 9000-0003Подводя итог их объяснения - неверные данные, неправильные вычисления, их можно определить как выбросы, и их следует отбросить, но в то же время вы можете захотеть исправить и их, поскольку они изменяют уровень данных i.е. означают, что вызывает проблемы при моделировании данных. Например, 5 человек получают зарплату 10К, 20К, 30К, 40К и 50К, и вдруг один из людей начинает получать зарплату 100К. Рассмотрим эту ситуацию, поскольку, если вы являетесь работодателем, новое обновление зарплаты может быть воспринято как необъективное, и вам может потребоваться увеличить зарплату и другим сотрудникам, чтобы сохранить баланс. Итак, может быть несколько причин, по которым вы хотите понять и исправить выбросы.
На протяжении этого упражнения мы видели, как на этапе анализа данных можно столкнуться с некоторыми необычными данными i.е выброс. Мы узнали о методах, которые можно использовать для обнаружения и удаления этих выбросов. Но был поднят вопрос о том, можно ли удалить выбросы. Чтобы ответить на эти вопросы, мы нашли дополнительные материалы для чтения (эти ссылки упоминаются в предыдущем разделе). Надеюсь, этот пост помог читателям узнать о выбросах.
Note- Для этого упражнения использовались инструменты и библиотеки, указанные ниже.
Framework- Jupyter Notebook, Language- Python, Libraries - библиотека sklearn, Numpy, Panda и Scipy, Plot Lib- Seaborn и Matplot.
.
- Boston Dataset
- Github Repo
- Выбросы KDNuggets
- Обнаружение выбросов
▷ Микрочипирование человека, преимущества и недостатки
- Вам больше никогда не придется беспокоиться о потере кошелька
- В экстренных случаях медицинский персонал получит легкий доступ к данным о вашем здоровье
- Вы сможете автоматически контролировать многие ваших устройств
- Чипы могут сделать нас главными целями для людей с плохими намерениями
- Нам нужно подумать о том, кому действительно выгодны человеческие микрочипы
Было предсказано, что это год, в котором мы станем свидетелями начала человеческий микрочип.Эта технология позволяет, среди прочего, мгновенно проверить, является ли человек тем, кем он себя называет. Имплантат RFID (радиочастотная идентификация ближнего действия) может хранить всю информацию, которую мы обычно храним в наших кошельках. Он может передавать нашу идентификационную информацию, когда мы проходим через контрольно-пропускной пункт, позволяя нам пользоваться общественным транспортом и оставлять длинные очереди у кассы супермаркета в прошлом. Будущее микрочипов захватывающее, с множеством интересных потенциальных применений.Чипы, подобные тем, которые мы сейчас используем для домашних животных, могут стать обычным явлением в следующем десятилетии. Конечно, у технологии есть несколько недостатков, от практических и реалистичных до, возможно, более надуманных и мрачных. Но хотя некоторые эксперты сомневаются в том, подходят ли эти чипы для использования на людях, тот факт, что они могут предложить много преимуществ, неоспорим.
Чип RFID существует уже некоторое время.
Чип RFID - это, по сути, крошечный двусторонний радиоприемник, размером примерно с рисовое зернышко, способный содержать различные типы информации.Он вставляется под кожу, и при сканировании чип может предоставить такую информацию, как идентификационный номер человека, связанный с базой данных с более подробной информацией о пользователе. Кевин Уорвик, профессор кибернетики из Университета Рединга в Великобритании, был первым человеком, имплантировавшим RFID-чип в свою руку в 1998 году. Цель заключалась в том, чтобы проверить, может ли его компьютер отслеживать его движения в университете по беспроводной сети. Когда в начале 2000-х компания Applied Digital Solutions во Флориде начала экспериментировать с имплантацией своих VeriChips - теперь называемых PositiveID - обычным людям, эта технология начала набирать обороты и в 2004 году получила одобрение FDA.
RFID-чип - это, по сути, крошечный двусторонний радиоприемник размером примерно с рисовое зерно, способный хранить различные типы информации.
Преимущества
RFID-чип может быть полезным инструментом, особенно когда речь идет о чрезвычайных ситуациях, когда мгновенный доступ к нужной медицинской информации может означать разницу между жизнью и смертью. Вот еще несколько преимуществ:
1. Вам больше не придется беспокоиться о потере кошелька
Мы используем RFID-чипы во многих наших повседневных делах.Они находятся в карточках, которые мы используем для оплаты покупок в магазине, проезда в общественном транспорте, доступа к зданиям и брать книги в библиотеке. Проблема с этими пластиковыми картами в том, что мы можем их потерять или украсть. Имплантированный RFID-чип невозможно потерять или украсть.
2. Еще более простая идентификация
Наши паспорта, удостоверения личности и водительские права уже содержат микрочипы, и для перехода от сканирования паспортов к сканированию оружия потребуются минимальные изменения в инфраструктуре на вокзалах, автобусных вокзалах и в аэропортах.Вы будете идентифицированы без каких-либо действий, кроме как пройти мимо читателя.
3. Членство в клубах и контроль доступа
Клубы Baja Beach в Роттердаме, Нидерланды, и Барселоне, Испания, были первыми клубами, которые предложили микрочипирование VIP-клиентам, что позволило им избежать долгих ожиданий в очередях и облегчить доступ к функциям членства. . Участники используют свои фишки, чтобы отслеживать, что они заказывают, и даже для оплаты еды и напитков. Официанты могут сканировать чипы, а компьютер автоматически снимает с их банковских счетов.Имплантированные чипы RFID также практичны на рабочем месте, в отелях, в спортзалах и в любом другом месте, где требуется идентификация для получения доступа.
4. Ваша история болезни всегда будет легко доступна.
Имплантированный RFID-чип можно использовать для быстрого доступа к вашей истории болезни: какие антибиотики вы принимали в прошлом, на что у вас аллергия, на какие лекарства вы принять и любую другую медицинскую информацию, имеющую отношение к неотложной медицинской помощи, особенно когда пациент без сознания.Эти имплантаты особенно полезны для людей, страдающих диабетом, сердечно-сосудистыми заболеваниями или болезнью Альцгеймера. Сам чип содержит не всю историю болезни пациента, а уникальный код или номер, которые можно использовать для доступа к информации из базы данных.
5. Наблюдение за пациентами, детьми и преступниками
Младенцы нередко сбиваются с толку в больницах, пожилые люди или пациенты больниц уходят из учреждений по уходу или преступники сбегают из тюрьмы.Также нередко дети теряются в толпе, убегают из дома или становятся похищенными. В этих случаях возможность отслеживать людей означает душевное спокойствие для миллионов опекунов, членов семьи и родителей. В случае похищения первые 4 часа являются наиболее критическими, поскольку убийство обычно происходит в эти сроки. Чип RFID может значительно снизить риск чего-то ужасного.
6. Вы сможете автоматически управлять многими своими устройствами.
Представьте, что вы можете заводить машину автоматически, открывая входную дверь, когда вы приближаетесь к ней, ваш любимый телеканал включается, когда вы садитесь на диван, или термостат, чтобы убедиться, что температура правильная, когда вы приходите домой с работы.Все это возможно с помощью имплантата RFID, который привносит цифровую идентификацию в реальный мир.
7. Никто, кроме вас, не сможет использовать ваше оружие.
Smith & Wesson, а также Browning уже разработали систему имплантатов для огнестрельного оружия, которая позволяет только зарегистрированному владельцу стрелять из своего оружия. Ситуации, когда оружие украдено и попадает в чужие руки, или дети, случайно находящие оружие, больше не будут приводить к опасным ситуациям. Кроме того, функция GPS в этом оружии предоставит информацию о том, где, когда и кем был произведен выстрел, оставляя феномен «потерянного оружия» на местах преступления в прошлом.
Недостатки
Конечно, у имплантации RFID-чипов есть и недостатки. Есть проблемы со здоровьем, а также проблемы с конфиденциальностью. Сможем ли мы по-прежнему контролировать нашу личную жизнь? Сможем ли мы сами удалить имплантаты? Как мы узнаем, что наши чипы взламывают?
1. RFID-чипы могут представлять угрозу для нашего здоровья
Существует множество различных систем цифровой идентификации, и мы используем много разных карт.У нас есть кредитная карта, удостоверение личности, членская карта медицинской помощи, карта общественного транспорта и так далее. Возможно, нам также потребуется имплантировать не один RFID-чип. Потенциальная проблема с этими чипами заключается в том, что они не всегда остаются на своем месте. Иногда они мигрируют в другое место, что затрудняет их поиск, что было бы особенно проблематично в экстренных случаях. Некоторые другие риски включают опасность поражения электрическим током, неблагоприятные тканевые реакции, инфекции и несовместимость с медицинским оборудованием, таким как аппараты МРТ.Во время МРТ пациенты не могут брать ничего металлического, в том числе микрочипов. Кроме того, существуют потенциальные риски, связанные с некоторыми фармацевтическими препаратами, а также проблема электрохирургических и электромагнитных помех для устройств и дефибрилляторов.
Исследования 2007 года показали, что микрочипы вызывают рак у 1–10 процентов лабораторных животных, которым имплантированы чипы. Несмотря на то, что эти случаи слишком редки, чтобы их можно было отличить от риска рака, связанного с любым другим имплантированным (медицинским) устройством, факт остается фактом: существуют различные потенциальные проблемы со здоровьем, связанные с RFID-чипами, которые в настоящее время недостаточно изучены.
2. Микрочипы могут лишить нас свободы выбора
С имплантатами RFID мы всегда должны вести себя как можно лучше. Больше не нужно ездить на автобусе бесплатно, ехать немного быстрее, чем следовало бы, придумывать оправдание тому, почему мы опаздываем на работу. Чтобы лучше служить обществу, поставщику услуг необходимо иметь больший доступ к дополнительной информации, что также может серьезно ограничить нашу свободу. Например, сможем ли мы по-прежнему выбирать оплату наличными деньгами или кредитной картой, или мы будем вынуждены платить с помощью нашего имплантата RFID? Что, если получение микрочипа станет обязательным, например, для возможности устроиться на работу, получить страховку или поступить в школу? Как мы сможем удалить имплант?
3.Чипы могут сделать нас главной мишенью для людей с плохими намерениями
Как и в случае с большинством новых технологических разработок, чипы RFID также чувствительны к эксплуатации. Поскольку они содержат так много важной информации, они могут стать основной целью для людей с плохими намерениями, таких как хакеры. Представьте, что информация на вашем чипе не только читаема, но и доступна для записи. Это будет означать, что ваши данные могут быть повреждены, удалены или скопированы. Это означает, что преступники могут использовать ваши данные и копировать их или заменять своими собственными данными, изменяя вашу - и свою - личность.
4. Нам нужно подумать о том, кому действительно выгодно человеческое микрочипирование.
Да, RFID-имплантаты могут сделать нашу жизнь более эффективной, но мы действительно должны спросить себя, кому действительно выгодно человеческое микрочипирование. Большому брату было бы очень легко постоянно отслеживать, где мы находимся, что мы делаем, как мы это делаем и с кем мы это делаем. Это может быть очень ценная информация для крупных корпораций и правительств. RFID могут позволить правительствам, охранным компаниям или полиции электронным образом «обыскивать» граждан с помощью считывателей чипов, размещаемых в общественных местах, вдоль дорог, пешеходных зон и т. Д.RFID могут быть отсканированы с расстояния в несколько футов любым, у кого есть считыватель. Это законное беспокойство, требующее строгих мер контроля конфиденциальности и безопасности.
Заключение
RFID-чипы уже широко внедрены. Их приложения варьируются от отслеживания животных, отслеживания продуктов, инвентаризации, доступа и паспортного контроля и многих других. Хотя мысль о введении чипа в ваше тело немного странная, на самом деле она не новее, чем другие имплантированные устройства, которые мы используем сегодня, например, кардиостимуляторы.На данный момент микрочипирование является чисто добровольным и в основном используется для пациентов с высоким риском, таких как диабетики и люди, страдающие болезнью Альцгеймера и сердечно-сосудистыми заболеваниями. Если микрочипирование человека не выполняется в обязательном порядке и не используется для отслеживания или «обыска», люди, как правило, кажутся вполне открытыми для потенциальных приложений. Однако массовая имплантация этих чипов вызовет множество споров о проблемах здоровья и конфиденциальности.
.