Главное меню

Цементный раствор при низких температурах


Время схватывания цементного раствора: температура и условия

Многим начинающим строителям знакомо неизбежное появление дефектов на поверхности бетона: мелкие трещины, сколы, быстрый выход из строя покрытия. Причина не только в несоблюдении правил бетонирования, или в создании цементного раствора с неправильным соотношением компонентов, чаще проблема кроется в отсутствии ухода за бетоном на этапе застывания.

Время схватывания цементного раствора зависит от многочисленных факторов: температуры, влажности, ветра, воздействия прямых солнечных лучей и т. п. Важно на этапе застывания увлажнять бетон, это позволит приобрести максимальную прочность и целостность покрытия.

Время схватывания цементного раствора зависит от многочисленных факторов

Общие сведения

В зависимости от того, при какой температуре застывает цемент, отличается и период затвердевания. Наилучшая температура – 20°С. В идеальных условиях процесс занимает 28 суток. В жарких регионах или в холодные периоды года обеспечить данную температуру сложно или невозможно.

Зимой бетонирование требуется по ряду причин:

Недостатком работы в холодное время является сложность копания траншеи и необходимость оборудования места обогрева для рабочих. С учётом дополнительных затрат экономия наступает не всегда.

Особенности заливки бетона при низких температурах

Время застывания цементного раствора зависит от температуры. При низкой температуре время существенно увеличивается. В строительной сфере принято называть погоду холодной при снижении уровня термометра в среднем до отметки 4°С. Чтобы успешно использовать цемент в холода, важно предпринять защитные меры для предотвращения замерзания раствора.

Особенности заливки бетона при низких температурах

Схватывание бетона в условиях низких температур протекает несколько иначе, наибольшее значение на итоговый результат оказывает температура воды. Чем теплее жидкость, тем быстрее протекает процесс. В идеале для зимы стоит обеспечить показатель термометра на уровне 7-15°. Даже в условиях подогрева воды окружающий холод замедляет скорость гидратации цементного раствора. Приобретение прочности и схватывание занимает больше времени.

Для расчёта сколько застывает цемент важно учесть закономерность, что падение температуры на 10° приводит к снижению скорости отвердения в 2 раза. Важно проводить расчёты, так как преждевременное снятие опалубки или эксплуатация бетона может привести к разрушению материала. Если окружающая температура опустится до -4°С и отсутствуют добавки, утеплители или подогрев, раствор кристаллизуется, а процесс гидратации цемента остановится. Конечное изделие утратит 50% прочности. Время застывания увеличится в 6-8 раз.

Несмотря на то, что следует определять, сколько времени застывает бетон, и приходится контролировать процесс твердения, есть обратная сторона – возможность улучшить качество результата. Снижение температуры увеличивает прочность бетона, но только до критической отметки -4°С, хотя процедура и требует больше времени.

Факторы, влияющие на застывание

На этапе планирования работ с цементом важным фактором, влияющим на конечный результат, является скорость обезвоживания бетона. На процесс гидратации влияют многочисленные факторы, точнее определить сколько застывает цементный раствор можно с учётом факторов:

Факторы, влияющие на застывание бетона

На то, сколько застывает цементный раствор, также оказывает влияние тип основания. Сухая земля быстро впитывает влагу. При затвердении бетона на солнце время затвердения увеличивается в разы, чтобы предотвратить получение низкой прочности материала следует постоянно увлажнять поверхность и затенять участок.

Искусственное увеличение скорости застывания

Время затвердевания цементного раствора в холодное время сильно увеличивается, но сроки все равно остаются ограниченными. Чтобы ускорить процедуру, разработаны различные методики.

BITUMAST Противоморозная добавка в бетон

В современном строительстве время высыхания можно ускорить с помощью:

Использование модификаторов

Самый простой способ выполнить работы в срок даже зимой – применять модификаторы. При внесении определенной пропорции наступает сокращение сроков гидратации, при использовании некоторых присадок происходит твердение даже в -30°С.

Условно добавки, влияющие на скорость затвердения, разделяются на несколько групп:

Калькулятор застывания фундамента и отзывы показывают максимальную эффективность при внесении в раствор хлорида калия. Материал расходится экономно, так как его массовая доля составляет до 2%.

Если применять смеси отвердения бетона типа С, стоит позаботиться о подогреве, так как они не защищают от замерзания.

Пластификаторы и добавки для бетона

Рекомендуется позаботиться о прокладке коммуникации в фундаменте или стяжке заранее, иначе потребуется бурение отверстий. Проделывание коммуникационных отверстий после застывания приведёт к необходимости в специальном инструменте и шлифовке бетонной поверхности. Процедура достаточно трудоёмкая и снижает прочность конструкции.

Подогрев бетона

Преимущественно для подогрева состава применяют особый кабель, который преобразует электрический ток в тепло. Методика обеспечивает наиболее естественный путь застывания. Важным фактором является необходимость следования инструкции по монтажу провода. Способ защищает от кристаллизации жидкости, также существуют инструменты (фен, сварочный аппарат) и теплоизоляция для защиты от замерзания.

Увеличение дозировки цемента

Повышение концентрации цемента применяется исключительно при небольшом уменьшении температуры. Увеличение дозировки важно выполнять в небольшом количестве, иначе качество и долговечность значительно снизятся.

Рекомендации

Бетон – многофункциональный состав, из которого можно возвести любые конструкции. В современном строительстве используются самые разные составы цемента и способы его обработки:

Вывод

Бетонирование в условиях жары или холода требует принятия особых мер. Если создать идеальные условия для гидратации бетона, он приобретёт высокую прочность, будет способен выдерживать значительные несущие нагрузки и приобретёт устойчивость к разрушению. Главная задача строителя – предотвратить замерзание или преждевременное высыхание раствора.

При какой температуре можно заливать бетон на улице?

Вопрос о том, при какой температуре можно заливать бетон, очень важен, так как от него во многом зависят не только технические и эксплуатационные характеристики застывшего монолита, но и вообще вероятность прохождения процесса застывания. Залитый при неверной температуре или замерзший при твердении бетон может покрываться трещинами, демонстрировать меньшие показатели прочности и стойкости в сравнении с нормативными, становиться причиной деформации или полного разрушения конструкции, здания.

Для набора бетоном проектной прочности и гарантии длительного срока службы очень важно соблюдение температурного режима как в момент заливки, так и на протяжении всего времени твердения (28 суток). Оптимальной считается температура воздуха в районе +20 градусов. Но далеко не всегда на строительной площадке удается соблюсти это условие.

Довольно часто появляется необходимость лить бетон при отрицательной температуре или в процессе выполнения работ неожиданно портится погода. В таких случаях используются разные методы прогрева бетона, в состав смеси вводят противоморозные добавки, утепляют конструкцию непосредственно на площадке и т.д. Прежде, чем использовать любой этот способ прогрева, необходимо тщательно изучить его особенности и условия реализации.

Процесс набора прочности бетонных конструкций

Чтобы определить, до какой температуры можно заливать бетон, необходимо сначала хотя бы поверхностно рассмотреть особенности процесса набора прочности монолитом. Реакция начинает протекать между цементом/водой в момент затворения. В первые часы бетон еще текучий и с ним можно работать, но уже по прошествии нескольких часов он начинает застывать, становиться сначала более густым, а потом и вовсе твердым.

Процесс взаимодействия воды и цемента называется гидратацией. Гидратация проходит в два этапа: сначала смесь схватывается, потом твердеет. В схватывании задействованы алюминаты, появляются иглообразные кристаллы, связанные между собой. Через 6-10 часов эти кристаллы становятся своеобразным каркасом, скелетом. Бетон начинает твердеть.

Весь процесс схватывания может занимать от 20 минут до 20 часов, что напрямую зависит от температуры окружающего воздуха. Дольше всего процесс проходит в холодное время года – когда на улице около 0, схватываться бетон начинает через 6-10 часов, длится этап 15-20 часов.

В процессе твердения в реакцию с находящейся в растворе водой вступают клинкерные минералы, постепенно формируется силикатная структура. Реакция провоцирует появление мелких кристаллов, они объединяются в уникальную мелкопористую структуру. Это и есть бетон, который на протяжении 28 суток уже набирает марочную прочность и стойкость, не меняя формы и структуры.

Оптимальное значение температуры для стадии твердения также равно +20 градусам, влажность – до 100%.

Отклонения от параметров существенно влияют на прочность: полное созревание монолита длится несколько лет (но набор проектной прочности должен быть завершен через 28 суток после заливки), скорость твердения меняется со временем.

Влияние отрицательной температуры на твердение бетона

Как уже было указано выше, скорость гидратации очень сильно зависит о температуры окружающей среды. Так, при снижении с +20 до +5 градусов твердение проходит медленнее в среднем в 5 раз. Дальше чем ниже температура, тем медленнее проходит реакция. При достижении минусовой температуры гидратация и вовсе прекращается (вода просто замерзает).

В момент замерзания вода имеет свойство расширяться, что становится причиной повышения давления внутри бетонного раствора и разрушения уже сформировавшихся связей кристаллов. Структура бетона разрушается и в дальнейшем восстановиться уже не может. Кроме того, появившийся в смеси лед может обволакивать крупные наполнители, разрушая сцепление с цементом. Все это существенно ухудшает монолитность конструкции и понижает прочность.

Когда вода оттаивает, твердение продолжается, но структура бетона уже деформирована. Могут появляться отслоения, деформации, трещины, наблюдаться отделение крупных наполнителей и арматуры от монолита. Чем на более ранней стадии свежезалитый бетон замерз, тем меньшим будет показатель прочности.

В каких условиях нельзя заливать бетон:
  • Когда температура окружающей среды находится на отметке +5 С и ниже, а никаких мероприятий по прогреву или повышению морозостойкости бетона осуществляться не планируется.
  • В межсезонье – когда температура нестабильна, отмечены сильные скачки как отметок на термометре, так и влажности.
  • Если термометр показывает температуру +25 градусов и выше, а влажность воздуха ниже 50%. В такое время лучше использовать специальные цементы или не проводить работы, так как процесс гидратации будет происходит очень быстро: вода испарится, а бетон не успеет набрать прочность, вследствие чего нередко появляются трещины, деформации, отслоения и т.д.

  • Заливка бетона при минусовой температуре без прогрева в течение минимум 3 дней до отметки в +10-30 градусов.
  • Когда уже приготовлен бетон со специальными присадками, а за окном внезапно наступила оттепель или влажность воздуха стала выше 60%, начался дождь и т.д.
  • В случае неумения определить оптимальный режим прогрева, настроить приборы, контролировать бетон в мороз. Ведь для бетона одинаково страшны как мороз, так и перегрев.
При какой оптимальной температуре можно заливать бетон:
  1. От +5 до +20 градусов – нормальные условия для заливки бетона, приготовленного по стандартному рецепту.
  2. От нуля до +5 градусов – исключительно с использованием специальных добавок.
  3. От 0 до -20 градусов – со специальными добавками и прогревом.
  4. Идеальные условия – температура бетона +30 и воздуха +20, влажность до 100%.

Бетонирование зимой

Использовать бетон в мороз может понадобиться в самых разных случаях – когда невыгодно останавливать строительство на целый сезон, в случае выполнения экстренных работ и т.д. С учетом губительного воздействия минусовой температуры на материал и его технические характеристики, бетон нужно прогревать. В случае, когда температура внутри раствора выше температуры снаружи, могут появляться деформации.

Прогрев бетона осуществляется до момента набора критического показателя прочности. Если таковых данных нет в проектной документации, то значение принимают в 70% от проектной прочности. Когда есть требования со значениями водонепроницаемости/морозостойкости, то критическая прочность составляет 85% от проектной.

Основные методы прогрева бетона для заливки при минусе:
  • Прогрев самих компонентов для приготовления смеси.
  • Использование эффекта термоса.
  • Осуществление электронагрева.
  • Применение паропрогрева.

Таким образом, вопроса о том, при какой минимальной температуре можно заливать бетон, нет вообще. Задача заключается в том, чтобы в соответствии с условиями работ оптимально подготовить смесь и объект для сохранения технических свойств материала и основных требований по прочности, надежности, долговечности.

Самый простой и дешевый вариант – прогрев всех компонентов, использующихся для приготовления бетона. Их греют для того, чтобы в момент заливки бетон имел минимум +35-40 градусов.

Греют все материалы, кроме цемента: щебень/песок до +60, воду до +90, цемент просто на время оставляют в теплом помещении (чтобы был комнатной температуры). Потом смешивают все компоненты и выполняют заливку.

Метод термоса

Этот вариант актуален в случае заливки массивных конструкций. Дополнительного прогрева не предусматривается, но укладываемая смесь должна демонстрировать температуру в +10 градусов как минимум (лучше больше). Данный метод заключается в том, чтобы залитая смесь в процессе остывания успела приобрести критическую прочность.

Принцип работы этого метода заключается в том, чтобы бетон вступил в реакцию и начался процесс затвердевания, который является экзотермическим (то есть, сопровождается выделением тепла). Таким образом, бетоном будет выполняться самоподогрев. Если исключить теплопотери, бетон может прогреться до +70 и выше.

Опалубку надежно защищают теплоизолирующими материалами, устраняя теплопотери бетона, находящегося в процессе затвердевания. Вода не замерзает, бетонный монолит постепенно набирает прочность без разрушения внутренней структуры. Такой вариант используют для заливки фундаментов зимой, он считается наиболее простым и экономичным, так как не требует использования какого-либо оборудования.

Электронагрев бетонной смеси

Задумываясь о том, при каких температурах можно заливать бетон, многие рассматривают в качестве выхода из ситуации электропрогрев. Осуществляться прогрев может с использованием нескольких способов: с применением электродов, метода индукции и с различными электронагревательными устройствами.

Нагрев электродами осуществляется так:
  • В свежезалитую смесь вводят электроды.
  • Потом на электроды подают ток.
  • В процессе прохождения тока по электродам они нагреваются, передают тепло бетону.

Ток должен быть переменным, так как постоянный станет причиной прохождения процесса электролиза, который сопровождается выделением газа. Газ экранирует поверхность всех электродов, значительно возрастает сопротивление тока, в результате чего нагрев заметно снижается. В случае, если в бетоне уложена арматура, она может использоваться в качестве электрода.

Чтобы данный способ сработал, необходимо сделать так, чтобы бетон прогревался равномерно и максимум до +60 градусов. Расход электроэнергии в таких случаях обычно не превышает 80-100 кВт*ч на кубический метр бетонного раствора.

Индукционный нагрев применяется достаточно редко, так как его реализация предполагает ряд сложностей. Данный тип прогрева бетонной смеси работает на принципе бесконтактного нагрева высокочастотными токами электропроводящих материалов. Так, вокруг стальной арматуры мотают изолированный провод, а через него пропускают ток. Таким образом появляется индукция, арматура нагревается и греет бетон. Расход электроэнергии составляет обычно 120-150 кВт*ч на кубический метр бетона.

Применение электронагревательных приборов предполагает использование самых разных средств для уменьшения негативного воздействия мороза на процесс гидратации смеси. Это могут быть греющие маты, к примеру, которые раскладывают на бетон и затем подключаются к сети. Можно сделать над залитым монолитом что-то типа палатки, установить внутри тепловую пушку и греть.

Тут важно обеспечить удержание влаги в бетоне, чтобы он, в процессе прогрева, не пересох, что также негативно влияет на качество и прочность, как и холод (при замерзании). Расход электроэнергии (при условии, что температура окружающего воздуха составляет около -20 градусов) составляет 100-120 кВт*ч на кубический метр.

Паропрогрев бетона в зимнее время

Когда температура окружающей среды на нуле или ниже, есть смысл задуматься о прогреве бетона паром. Данный метод особенно эффективен для тонкостенных конструкций. В опалубке с внутренней стороны делают каналы, через них пускают пар. Иногда делают двойную опалубку, а пар пропускают между двумя стенками.  Можно смонтировать трубы внутри бетона, а затем по ним пускать пар.

С использованием данного метода можно прогреть бетон до +50-80 градусов. Столь высокая температура и оптимальная влажность ускоряют в несколько раз процесс твердения. Так, за 2 суток при паропрогреве бетон набирает прочность, аналогичную твердению в течение недели в нормальных условиях.

Единственный недостаток данного метода – существенные затраты времени, финансов и усилий для его реализации.

Использование присадок при морозе

Сегодня очень распространено использование противоморозных добавок и особых химических ускорителей твердения бетона. Чаще всего в качестве этих добавок выступают нитрит натрия, хлористые соли, карбонат кальция и другие. Добавки существенно понижают температуру замерзания воды, активизируют гидратацию цемента (таким образом повышается температура застывания бетона).

Благодаря введению в состав смеси добавок можно избежать необходимости прогрева. Некоторые добавки способны повысить стойкость бетона к морозу настолько, что вопрос о том, можно ли заливать бетон при минусе, не стоит вообще: гидратация проходит даже при окружающей температуре -20 градусов.

Но, несмотря на все преимущества, присадки обладают и некоторыми недостатками.

О чем нужно помнить, вводя в бетон присадки:
  • Они пагубно влияют на арматуру – может начаться процесс коррозии, поэтому актуально вводить добавки лишь в неармированный бетон.
  • Добавки позволяют бетону набрать прочность, равную максимум 30% от проектной, а потом при оттаивании смеси (при плюсовой температуре) процесс набора прочности продолжается. В связи с этим, по СНиП, добавки нельзя вводить в бетон, работающий в условиях динамических нагрузок (молоты, вибростанки и т.д.).
Основные виды противоморозных добавок:
  1. Сульфаты – активно выделяют тепло, сопровождая процесс гидратации. Прочно связываются с труднорастворимыми соединениями, для снижения температуры замерзания смеси их использовать нельзя.
  2. Антифриз – уменьшает температуру кристаллизации жидкости, увеличивает скорость схватывания раствора, на скорость формирования структур не влияет.
  3. Ускорители – повышают растворимость силикатных компонентов цемента, они реагируют с продуктами гидратации, создают основные и двойные соли, которые понижают температуру замерзания жидкости в растворе.

Наиболее распространенные противоморозные добавки:
  • Карбонат кальция (поташ) – кристаллическое вещество, противоморозный компонент, который ускоряет схватывание и затвердевание. Понижает прочность бетонного монолита на 20-30%, поэтому его обычно сочетают с сульфидно-дрожжевой бражкой (тетраборатом натрия) в концентрации максимум 30%.
  • Тетраборат натрия (сульфатно-дрожжевая бражка) – смесь солей кальция, натрия, аммония либо лигносульфоновых кислот. Добавка используется в виде примеси к поташу, не дает бетону терять прочность.
  • Нитрит натрия – кристаллический порошок, ядовитое пожароопасное вещество, применяется при возведении многоэтажных зданий, легко растворяется, не разрушает арматуру, повышает скорость застывания в 1.5 раза.
  • Формиат кальция или натрия – используется с пластификаторами в объеме не более 2-6% от массы раствора. Добавляется в процессе замеса.
  • Аммиачная вода – раствор аммиака в концентрации 10-12%, не провоцирует корродирования металла, не дает высолов.

Бетонирование в условиях сухого жаркого климата

Бетон не любит не только мороза, но и жары. Когда температура воздуха повышается до +35 и выше, а влажность находится на уровне 50%, вода испаряется слишком быстро, что провоцирует нарушение водоцементного баланса. Гидратация замедляется либо прекращается вовсе, в связи с чем бетон нужно защищать от слишком быстрой потери влаги.

Для понижения температуры смеси используют охлажденную (либо разбавленную льдом) воду. Так устраняют быстрое испарение воды в процессе укладки смеси. Через определенное время смесь нагревается, поэтому важно обеспечить герметичность опалубки (чтобы вода не испарялась через щели). Опалубка также может впитывать влагу, в связи с чем для ограничения адгезии бетона и материала конструкции до заливки ее обрабатывают специальными составами.

Твердеющий бетон защищают от прямых ультрафиолетовых лучей – поверхность укрывают брезентом (мешковиной), каждые 3-4 часа осуществляют смачивание поверхности. Увлажнение может понадобиться все 28 суток набора прочности монолитом.

Часто для защиты бетона от жары используют такой метод: над поверхностью создают воздухонепроницаемый колпак из ПВХ пленки толщиной минимум 0.2 миллиметра.

Приготовленный по рецепту бетон способен схватиться, затвердеть и приобрести все проектные характеристики при окружающей температуре +20 градусов и влажности около 100%. В случае проведения работ на морозе или жаре необходимо позаботиться о мерах прогрева или охлаждения, которые будут гарантировать прочность и долговечность готовой конструкции.

Зимние растворы используемые при низкой температуре

Во время строительства дома поздней осенью или зимой, следует использовать продукты, предназначенные для использования при низких температурах. К ним относятся зимние растворы для кладки и монтажные пены, а также устойчивые к заморозкам добавки, которые ускоряют связывание. Следует изучить, какие ещё продукты можно использовать во время морозов.

Продукты для использования при низкой температуре

Всё больше и больше появляется зимней строительной продукции для использования при низкой температуре, обычно 0 °C, иногда даже до -10 °C. Могут также использоваться добавки-модификаторы для работы с материалами, приготовленными с водой: ускоряется связывание, испарение воды, повышается пластичность. При эксплуатации зимних материалов или наполнителей от мороза, необходимо строго соблюдать рекомендации производителя. Потому что даже в группе одних и тех же изделий могут быть различные способы их приготовления при низкой температуре, часто различные, в зависимости от температуры.

Использование зимних продуктов или низкотемпературных добавок во время мороза

Некоторые растворы для кладки необходимо приготовить с тёплой водой или добавить в них денатурат. Следует очень внимательно читать рекомендации производителя по условиям использования продукции во время зимы. В технологических картах имеются записи о том, как подготовить материал, при какой температуре его можно использовать, через какое время температура может снизиться и на сколько градусов. Покупатель должен быть в курсе того, что модифицированные продукты, со специальными добавками, стоят дороже, чем стандартные.

Кладка и бетонирование при температуре ниже +5 °C

Проведение мокрых строительных работ (с использованием раствора или бетонной смеси) при температуре ниже +5 °C хлопотно. Появляются отклонения в связывании и упрочнении материалов. Это касается как температуры окружающей среды, так и основания.

Для кладки следует использовать кладочные элементы в воздушно-сухом состоянии. Невозможно использовать кладочные элементы на мокрой или обледенелой поверхности, так как тогда не будет, требуемого слияния элементов с раствором. Такие материалы, как кирпич, пустотелые блоки, блоки хранятся на открытой площадке. И всё-таки предусмотренные для кладки материалы должны быть заранее, на 24 часа, размещены в отапливаемом помещении.

Кладка зимой — советы эксперта

Но, в случае строительства при температуре ниже 0 °C не должно на стройке выполняться никаких мокрых работ, кладки кирпича, бетонирования, оштукатуривания. В виде исключения допускается выполнение этих работ, но до температуры -10 °C, при использовании специальных противоморозных добавок (ПМД). Эти добавки ускоряют выделение тепла гидратации цемента и снижают температуру замерзания свежего бетона при отрицательной температуре. Работают пластификаторами, увеличивая прочность бетона в начальной стадии твердения и конечную прочность.

Зимний раствор кладки

Многие производители строительной химии предлагают зимние растворы кладки, которые можно использовать при температуре до 0 градусов Цельсия. Часто это раствор тонкослойный, который быстро связывается. В традиционном растворе бетономешалки, можно применять противоморозные добавки. Как правило, они содержат пластифицирующие вещества и ускоряют связывание.

Система для кладки на сухую

На рынке это первая система для кладки на сухую, без использования воды. Шлифованные блоки керамические связываются раствором в виде пены. Работы по кирпичной кладке могут проводиться при температуре до -5 °C. Пистолетом наносят полоски пены на вершине пустотелых блоков и задают ещё один слой. Конечно, это система, которая должна быть предусмотрена в проекте. Не допускается использовать её для кладки стены из другого материала. Но если собираются продлить строительный сезон и начать кирпичные работы очень ранней весной или поздней осенью, то это первый продукт для работ при заморозках, хотя и не при больших морозах.

Строительство зимой: добавки ускоряющие связывание бетона

Сопряжение и получение прочностных параметров бетона длится примерно семь дней, а вместе с высыханием – четыре недели. Процесс проходит при оптимальной температуре. При низкой температуре это занимает гораздо больше времени.

Добавки, которые ускоряют связывание бетона, позволяют укладывать его при температуре ниже +5 °C. Они повышают температуру гидратации цемента. Если вы хотите укладывать бетон при низких температурах, необходимо накрыть его тентами или пенопластом так, чтобы излучалось тепло не наружу, но оставлялось в смеси. Для изготовления бетона допускается использование цемента с маркировкой символом R, то есть содержащего ускоритель времени схватывания. Бетон, сделанный из такого цемента, схватывается в течение нескольких часов и получает половину целевой прочности на сжатие после трёх дней. В случае заказа смеси на бетонном заводе, следует уточнить, в каких условиях она будет укладываться и нужно ли применять противоморозные присадки.

Температура для цементных работ: оптимальные значения с

Основной проблемой, сопровождающей работы по бетонированию зимой, есть низкая температура. Как выход возможно разглядывать использование материала особых марок, применение противоморозных добавок, электро-прогревание и другие современные хитрости.

Любой из вариантов оптимален по-своему. Но лишь верно подобранная технология окажет помощь проводить цементные работы при низких температурах без утраты качества.

Температурные условия

Забетонированная поверхность схватывается и затвердевает тем стремительнее, чем теплее и суше около.

Чему мешает мороз

Зимний период мешает не только мороз, но и чрезмерная влажность, содействующая замедлению процесса застывания.

Вот основные факторы, отрицательно воздействующие на процесс.

  1. Гидратация цемента замедляется, вплоть до полной остановки застывания и комплекта прочности цементного изделия.
  2. Вода, в обязательном порядке присутствующая в смеси, вымерзает, разрушая структуру материала.
  3. Влага, содержащаяся в окружающем воздухе в повышенной концентрации, замедляет застывание. Время комплекта прочности в этом случае существенно возрастает.

Оптимальные условия

С наступлением зимнего сезона строительные работы не останавливаются.

В зависимости от условий, температура при цементных работах может содействовать, не мешать либо мешать процессу.

  1. При режиме от 0? до +10? гидратация заметно затормаживается. В среднем процесс комплекта прочности до 70% образовывает до 4-х недель.
  2. Температура выше +11? мало активизирует затвердевание, но до норм и в этом случае на большом растоянии.
  3. Благоприятной считается температура в +20?, тогда возможно не проводить дополнительные операции по ускорению комплекта прочности.

Обратите внимание! Стандартом, установленным нормативными документами, принято считать полную гидратацию материала в течение 28 дней. С целью достижения 70 процентной прочности при благоприятных факторах достаточно 10–12 дней.

Вода как необходимость

Гидратация цемента без присутствия в

Заливка бетона при минусовой температуре

Основа любой постройки — фундамент, от него зависит надежность и долговечность всего строения. При его закладке требуются специальные знания и выполнение всех строительных норм и требований, обязательно учитывать климатические условия в конкретном месте.

Не так давно, заливка фундамента проводилась только в теплое время года, при отрицательной температуре, бетон замерзал прежде, чем застыть. Впоследствии, вся масса деформировалась, появлялись трещины и провалы. Если процесс происходил в холодное время, основание укрывали камышовыми матами, минеральной ватой, различными способами пытались предотвратить преждевременное замерзание массы.

Научный мир также пытался найти способ, при котором работы с бетонной смесью можно проводить при отрицательных температурах. В ходе научных исследований, была установлена оптимальная температура — от +5 до +15С. Именно такие условия способствуют получить прочный фундамент, который простоит многие года без повреждений.

При какой температуре можно заливать бетон зимой

Без определенных условий, раствор замерзнет при – 4 градуса. Уже при +5с процесс твердения значительно замедляется, набор прочности отменяется, пока не потеплеет. Итог — чем дольше этот период продлится, тем хуже будут показатели надежности. Официально считается оптимальная температура примерно +20 градусов, но часто возникают ситуации, когда нужно что-либо строить при низких градусах.

Бетонный раствор состоит из наполнителей — вода, песок, щебень, цемент. При смешивании цемента с водой, получается цементное молочко, посредством которого и происходит сцепление компонентов, это называется гидратацией. При этом, лишняя влага испаряется, масса отвердевает. Чтобы каменное основание получилось правильным, ему надо высохнуть на протяжении 25 — 30 суток. На первый взгляд — много и долго, но именно в такой срок получается каменной основание, которое не даст просадки. Весь периметр желательно укрыть от осадков или палящего солнца, которые одинаково вредны для раствора.

В холодный период допустимые показатели для наружных работ колеблются в районе — 15 мороза. При этом важным действием является применение противоморозных добавок или иных методов для прогрева смеси.

Можно ли заливать бетон при минусовой температуре

Работа с раствором при отрицательных погодных показателях требует определенных знаний и дополнительных финансовых вливаний.  Летом все происходит без осложнений и лишних материальных трат, риск деформаций можно исключить на 100 %.

Когда замерзает вода в растворе, она расширяется, вследствие чего и появляются разрывы в смеси. Также, лед обволакивает крупные компоненты, не давая им прочно сцепиться с цементом. После оттаивания, твердение продолжается, но монолитность уже нарушена. Чем раньше произошло замерзание, тем больше будет разрушений монолита.

Если возникла необходимость работ при отрицательных показателях погодных условий, необходимо произвести манипуляции, которые предотвратят замерзание смеси. Перечислим некоторые практические советы от профессиональных строителей:

  • по возможности, нужно согревать смесь до момента набора критической прочности;
  • при замешивании бетоносмеси, воду нагревают до + 60 С — 90 С, такой метод приемлем если на улице — 15 С и ниже.;
  • можно обогревать путем обдува горячим воздухом или паром;
  • прогревать с помощью теплоизоляционной опалубки с утеплителем;
  • специальные морозостойкие добавки не позволят ему быстро замерзнуть.

В нормативных актах указано, что снятие опалубки производиться после достижения 50% прочности, остальные работы не раньше 70%.

Отсюда мы видим, что заливать бетон в холодный период вполне возможно, важно подобрать приемлемый вариант согревания будущего основания. Довольно популярный способ — подогрев всех компонентов перед приготовлением раствора, чтобы он в момент заливки был примерно 40 — 50 С.

Каждый метод имеет свои слабые и сильные стороны, для принятия правильного решения, нужно учесть подземную часть фундамента, его конструктивную особенность.

В зимний период часто можно видеть, как с применением тех или иных способов, строительство практически не прекращаются. Критически неприемлемая температура для таких работ является — 15 градусов ниже нуля.

Что добавить в бетон при минусовой температуре

Специальные антиморозные присадки позволяют проводить наружные работы при низких температурах. Это химические добавки, которые условно делятся на несколько групп:

  1. Присадки, не позволяющие замерзнуть воде, как правило, их применяют с подогревом, что позволяет сократить период схватывания и отвердевания.
  2. Присадки на основе антифриза; их задача — усилить активность цемента при отрицательной температуре внешней среды. Указанные добавки используют без прогрева конструкции, нужную прочность бетон наберет без замерзания массы.
  3. Добавки — ускорители твердения цементной массы с выделением тепла, поэтому, монолитная масса подогревается без применения дополнительных средств — самостоятельно.

С материальной точки зрения, использование морозоустойчивых добавок наиболее дешевый вариант, который приемлем для любых конструкций. Главное правило — заливать траншею равномерно, с трамбовкой и уплотнением.

Особенность данных присадок заключается в точной дозировке в процессе использования, учитывая массивность изделия в каждом конкретном случае. Некоторые присадки усиливают коррозию арматурного пояса, другие наоборот — повышают антикоррозийные свойства бетона. Поэтому — их часто используют совместно.

Что будет с бетоном при минусовой температуре?

Часто, возведение фундамента сопровождается внезапной сменой температуры, монолитная масса начала застывать, а ночью ударил мороз и все замерзло. После оттаивания, он затвердеет при восстановлении поврежденных участков. По мнению опытных строителей, допускается одноразовый цикл заморозки — оттаивания при относительно невысоком минусе на улице. При соблюдении правил, укладку в зимнее время можно производить также, как летом. Важной особенностью является доставка готовой подогретой смеси миксером, сооружение утепленной опалубки, использование дополнительных материалов для укрытия основания, обязательная гидроизоляция поверхности.

Для придания бетона высоких прочностных характеристик, песок должен быть карьерный сеяный или промытый. Данный вид имеет шероховатую поверхность, которая дает высокое сцепление с цементом.

Щебень в растворе также должен быть карьерным — благодаря шершавой поверхности, он быстро схватывается с цементным молочком и песком.

Заливка армопояса при минусовой температуре

Армировочный пояс предназначен для равномерного распределения нагрузки от верхних рядов кладки на нижние. Он как бы связывает все строение в единое целое. что значительно повышает его общую прочность и долговечность. Армопояс выполняется с уложенных по периметру стальных прутьев, которые обязательно сваривают между собой в единую конструкцию.

При строительстве строения из газосиликатных блоков, армированный пояс особо актуален. Такие блоки быстро трескаются при малейших подвижках почвы, при усадках основания. При устройстве крыши на таких блоках, также необходим армопояс, так как крепить брус к блокам нельзя — они могут потрескаться. Во избежание деформации стен и здания в целом, сварной армопояс просто необходим. Его сваривают в цельную конструкцию, укладывают поверх кладки и заливают бетоном. С обеих сторон его заделывают раствором, чтобы не нарушать теплоизоляцию стен. Бетонирование пояса допускается в холодною пору года только с применением вышеперечисленных методов.

Работа с бетонной смесью при низких температурах допускается в случаях, когда нет другого выхода, потому, что оптимальной температурой затвердевания массы является от +5 градусов до 25.

можно ли использовать цемент зимой, особенности применения

Современное строительство все чаще теряет свою сезонность. Хотя возводить здания летом намного проще, нередко приходится работать и в холодное время года. Чаще всего строить зимой заставляют либо сорванные сроки для сдачи объекта, либо желание сэкономить: в это время покупка и доставка строительных материалов значительно дешевле. Почти все архитектурные и ремонтные работы подразумевают использование цемента — основного вяжущего материала, который проблемно ведет себя при минусовых температурах. Поэтому работать зимой с ним могут и должны только профессиональные бригады.

Какие проблемы могут возникнуть при зимнем бетонировании

Вода, которая входит в состав строительной смеси, замерзает. Это может полностью остановить процесс застывания: кристаллы льда, расширяясь при замерзании, разрушают агрегатную структуру раствора. Происходит торможение гидратации цемента. Прочность и долговечность бетона в дальнейшей эксплуатации сильно пострадают. Если прогноз погоды на ближайшие двадцать восемь дней (период максимального набора прочности для начала эксплуатации) — ниже минус пяти градусов по Цельсию, то набирание прочности остановится окончательно.

Больше всего от морозов страдает верхний слой цементного покрытия, поэтому если заливается фундамент или бетонная плита, при резком похолодании до минуса разрушится именно он: со временем он обсыплется.

Для строительства фундамента зимой используется цемент с противоморозными добавками и пластификаторами

Технологическое решение: противоморозные добавки

От негативного воздействия мороза современные цементные смеси защищают специальные противоморозные добавки, входящие в состав: хлористый натрий, хлористый кальций, натрия формиат и др. Для проведения наземных работ на открытом воздухе может применяться также нитрит натрия (до −15 °С) или поташ (до −30 °С). Под воздействием солей вода не успевает замерзнуть, давая раствору возможность правильно и своевременно застыть. Главное — четко придерживаться правил применения подобных миксов:

  • температура раствора не ниже плюс пяти градусов по Цельсию;
  • не замораживать приготовленный вяжущий продукт;
  • применять сразу после приготовления.

Портландцемент уже содержит необходимые антифрост-добавки, поэтому он является идеальным вариантом для зимнего строительства.

Кладка кирпича зимой должна происходить с помощью раствора с содержанием нитрита натрия

Для того чтобы ускорить набирание прочности строительной смеси, в нее могут быть добавлены еще пластификаторы, которые повышают ее плотность и устойчивость к капризам зимы. Их стоит подмешивать вместе с водой. Количество пластификатора зависит от предназначения раствора.

Другие методы защиты

Если антифриз-добавки не используются, а температура воздуха опускается все ниже и ниже, можно защитить цемент и другими способами:

  1. Использование теплой воды при замешивании бетона. Это метод быстрого замораживания кладки, который позволяет избежать нарушения процесса гидратации.
  2. Прогревание участка строительства с помощью электрических калориферов. Весьма дорогой способ.
  3. Защита плитами или щитами, обернутыми любым теплоизоляционным материалом, например, полиэтиленовой пленкой. Только нужно помнить, что они могут прилипнуть к поверхности залитого раствора, поэтому стоит продумать вариант подпорок для теплоизоляции.

С помощью тех же плит можно попробовать отогреть не застывший бетон, который уже пострадал от мороза.

Отделочные работы с цементом, например, оштукатуривание поверхности, даже если заказ песка, глины, гипса и др. материалов уже осуществлены, лучше оставить до весны, когда установится стабильная плюсовая температура. Иначе, какими бы тщательными ни были работы штукатуров, отделка отвалится от стены уже через несколько дней.

Испытания конструкции цементного раствора - PetroWiki

Тестирование производительности

При определении характеристик и производительности суспензии рекомендуются следующие процедуры испытаний:

Температура

Испытание на максимальную смоделированную температуру циркуляции в нижней части ствола скважины (BHCT) с использованием различных замедлителей схватывания, плотности и температуры.

Давление

Испытание на время увеличения фактического забойного давления (забойного давления). [Примечание: тестируемая суспензия должна включать необходимое время на поверхности (если партия смешана) и расчетное время до дна.]

Прочность на сжатие в верхней части футеровки (TOL)

Убедитесь, что выполняются определенные условия:

  • Моделируемые температура и давление
  • Самая низкая смоделированная BHCT, используемая с самой продолжительной рекуперацией тепла
  • Ультразвуковые анализаторы цемента, установленные для моделирования восстановления температуры и расчетного давления, превышающего минимум Американского института нефти (API) (3000 фунтов на квадратный дюйм).

Эффекты смешивания

Изучить и стандартизировать:

  • Время, затраченное на добавление
  • Хранение смешанной воды
  • Время перемешивания на поверхности
  • Температура перемешивания поверхности / эффекты сдвига
  • Устойчивость суспензии
  • Седиментационный тест
  • Реология высокого давления / высокой температуры (HP / HT) (при наличии).

Методы испытаний цемента для скважинного применения основаны на эксплуатационных испытаниях. Методы тестирования обычно выполняются в соответствии со спецификациями API, хотя также используется специально разработанное и спроектированное оборудование или тесты. Выбор добавок и критериев тестирования продиктован, прежде всего, конкретными параметрами скважины, подлежащей цементированию. Испытания на производительность оказались наиболее эффективными для определения того, как суспензия будет вести себя в конкретных условиях скважины.Не существует прямых средств прогнозирования характеристик цемента на основе свойств цемента, и еще не разработана методика, которая бы коррелировала состав цемента и взаимодействие цемент / добавка с характеристиками.

Диагностическое тестирование

Эксплуатационные испытания не подходят для поиска и устранения неисправностей в скважине, когда целостность цементной смеси находится под вопросом. Существуют диагностические анализы, которые могут быть выполнены для оценки цементного порошка, но нет окончательных тестов для химического анализа состава цемента после того, как он был смешан с добавками, будь то сухая смесь, суспензия или затвердевший цемент.Основная причина этого - низкая концентрация добавок, используемых в жидком растворе или затвердевшем цементе. Эта концентрация в затвердевшем цементе может быть даже ниже, чем в исходной суспензии, если добавка потребляется и / или изменяется во время реакции гидратации цемента. Состав проб, взятых из скважины, часто вызывает сомнения, поскольку неясно, где именно они были взяты, были ли они загрязнены буровым раствором, пластовыми водами или во время извлечения. Многие из методов, используемых для понимания химического состава цемента, разработаны для лабораторных образцов и применений и не применимы к полевым образцам.Однако, в зависимости от образца и концентрации добавок, иногда можно провести качественный анализ.

Анализ образцов сухой смеси несколько отличается от анализа цементного раствора или затвердевшего цемента. Если доступно достаточное количество для тестирования производительности, это будет наиболее подходящим для сравнения фактической смеси с разработанной. Если это не так, тогда смесь потребует растворения в экстрагирующем растворителе. Обычно это включает воду, и неизбежно произойдет гидратация цемента, при этом часть добавочного компонента удаляется продуктами гидратации.Поскольку время контакта меньше, необходимо экстрагировать больше добавки, и ее можно будет обнаружить с помощью одного из ранее обсужденных методов. После того, как цемент и добавки смешаны, обычно невозможно отделить добавку от сухого образца, если только он не имеет значительно больший размер частиц или более высокую плотность, чем у цемента.

Список литературы

См. Также

Конструкция цементного раствора

Цементировочные работы

PEH: Цементирование

Интересные статьи в OnePetro

Внешние ссылки

.

Замедлители схватывания цементного раствора - PetroWiki

Обычно в скважинах используются цементы API класса A, C, G и H. Эти цементы, произведенные в соответствии с API Spec. 10A [1] не обладают достаточно длительным сроком службы жидкости (время загустевания) для скважин с температурой циркуляции в забое скважины (BHCT) выше 38 ° C (100 ° F). Чтобы продлить время загустевания сверх времени, полученного с чистым (цемент и вода без добавок или минералов) цементным раствором API-класса, требуются добавки, известные как замедлители схватывания.

Виды замедлителей

Лигносульфонаты

Из химических соединений, которые были идентифицированы как замедлители схватывания, лигносульфонаты являются наиболее широко используемыми. Лигносульфонат - это соль сульфоната металла, полученная из лигнина, полученного при переработке древесных отходов. Обычными лигносульфонатами являются лигносульфонат кальция и натрия.

Три сорта лигносульфоната доступны для замедления образования цементных растворов. Каждый сорт доступен в виде солей кальция / натрия или натрия.Эти три степени:

  • с фильтром
  • Очищенный
  • Модифицированный
Отфильтрованный

Кальциевая или натриевая соль отфильтрованного сорта обычно используется при температуре 200 ° F BHCT или ниже при концентрации 0,6% BWOC или ниже. Его можно использовать при более высоких температурах, но обычно это ограничивается экономическими соображениями.

Очищенный

Очищенный сорт представляет собой класс лигносульфонатов с пониженным содержанием сахара.Соль кальция / натрия обычно используется при BHCT 200 ° F или ниже и в концентрации 0,5% BWOC или меньше.

Модифицированный

Модифицированный сорт представляет лигносульфонаты, которые были смешаны или прореагировали со вторым компонентом. Соединения, наиболее часто используемые в качестве компонентов смеси, представляют собой борную кислоту и гидроксикарбоновые кислоты или их соли. Смешанные материалы доступны в виде солей кальция или натрия. Модифицированные лигносульфонаты обычно используются при BHCT 200 ° F или выше.Они более эффективны, чем очищенный сорт, при температурах выше 250 ° F. Преимуществами, будь то смесь или прореагировавший продукт, являются их улучшенная высокотемпературная стабильность выше 300 ° F BHCT, повышенная диспергирующая активность и синергизм с добавками, снижающими водоотдачу.

Производные целлюлозы

Два полимера целлюлозы используются при цементировании скважин. Это гидроксиэтилцеллюлоза (HEC) и карбоксиметилгидроксиэтилцеллюлоза (CMHEC). ГЭЦ обычно считают добавкой, снижающей водоотдачу.Хотя в качестве возможного варианта стоит отметить, что при BHCT 125 ° F или менее время загустевания в пресноводной суспензии может быть увеличено примерно на два часа. Традиционно единственной целлюлозой, которая считается замедлителем схватывания, является CMHEC. Это в значительной степени связано с тем, что он действует как замедлитель схватывания при температуре BHCT примерно до 230 ° F при тех же концентрациях, что и лигносульфонат кальция, но также обеспечивает хороший контроль потери жидкости.

Кислоты гидроксикарбоновые

Гидроксикарбоновые кислоты хорошо известны своими антиоксидантными и связывающими свойствами, которые улучшают характеристики цементного раствора.Антиоксидантные свойства улучшают температурную стабильность растворимых соединений, таких как присадки, снижающие водоотдачу. Обычно используемые гидроксикарбоновые кислоты и их производные:

  • Лимонная кислота
  • Винная кислота
  • Глюконовая кислота
  • Глюкогептонат
  • Глюконо-дельта-лактон

Обычно используемые гидроксикарбоновые кислоты обычно получают из природных сахаров.

Фосфатыорганические

Органофосфонаты, за некоторыми исключениями, являются наиболее мощными замедлителями схватывания, используемыми в цементе.Эти материалы не получили широкого распространения при цементировании скважин из-за необходимой низкой концентрации, сложности точных измерений и чувствительности к концентрации. Преимущество фосфорорганических замедлителей схватывания заключается в их эффективности в сверхвысокотемпературных скважинах (> 450 ° F) или в приложениях, где желательно увеличенное время загустевания, составляющее 24 часа или более.

Синтетические замедлители схватывания

Термин «синтетический замедлитель схватывания» является неправильным, поскольку все ранее упомянутые замедлители схватывания фактически созданы человеком.Однако термин "синтетический замедлитель схватывания" применялся к семейству низкомолекулярных сополимеров. Эти замедлители схватывания основаны на тех же функциональных группах, что и обычные замедлители схватывания (например, сульфонат, карбоновая кислота или ароматическое соединение). Двумя распространенными синтетическими замедлителями схватывания являются:

  • Малеиновый ангидрид
  • Сополимеры 2-акриламидо-2-метилпропансульфоновой кислоты (AMPS).

Соединения неорганические

Механизм замедления гидратации цемента неорганическими соединениями отличается от такового для ранее рассмотренных замедлителей схватывания.Неорганические соединения, обычно используемые в качестве замедлителей схватывания цемента, включают бура (Na 2 B 4 O 7 • 10H 2 ) и другие бораты, такие как борная кислота (H 3 BO 3 ) и ее натрий. соль и оксид цинка (ZnO).

Бораты обычно используются в качестве замедлителя схватывания для высокотемпературных замедлителей схватывания при BHCT 300 ° F (149 ° C) и выше. При более высоких температурах борат является менее мощным замедлителем схватывания, чем при более низких температурах; однако он оказывает синергетический эффект с другими замедлителями схватывания, такими как лигносульфонаты, благодаря чему комбинация обеспечивает лучшее замедление схватывания, чем любой из замедлителей по отдельности.ZnO является сильным замедлителем схватывания, когда используется отдельно, и обычно используется для замедления образования химически растянутых цементов.

Соль как замедлитель схватывания

Вода с содержанием солей более 20% BWOW оказывает замедляющее действие на цемент. Гелеобразование проявляется в профиле вязкости насыщенных солевых суспензий во время загустевания по внезапному увеличению единиц консистенции Бердена, которые затем выравниваются перед схватыванием. Насыщенные солевые растворы полезны для цементирования через соляные купола.Они также помогают защитить сланцевые секции от оседания и вспучивания во время цементирования, а также помогают предотвратить образование кольцевых перемычек и возможные потери циркуляции. Насыщенные солевые цементы также диспергированы, и соль снижает эффективность добавок, снижающих водоотдачу.

Список литературы

  1. ↑ API Spec. 10A, Технические условия на цементы и материалы для цементирования скважин, 23-е издание. 2002. Вашингтон, округ Колумбия: API.

См. Также

Конструкция цементного раствора

Цементировочные работы

PEH: Цементирование

Интересные статьи в OnePetro

Внешние ссылки

.

Разбавители цементного раствора - PetroWiki

Во многих частях мира обычны сильная потеря циркуляции и слабые пласты с низким градиентом трещин. Эти ситуации требуют использования цементных систем с низкой плотностью, которые снижают гидростатическое давление столба жидкости во время укладки цемента. Следовательно, для уменьшения веса суспензии используются легкие добавки (также известные как наполнители).

Материалы, использованные при разработке удлинителя

Чистые цементные растворы, приготовленные из цементов API классов A, C, G или H с использованием количества воды, рекомендованного в API Spec.10A [1] будет иметь массу суспензии более 15 фунтов / галлон.

Есть несколько различных типов материалов, которые можно использовать в качестве наполнителей. К ним относятся:

  • Физические наполнители (глины и органические вещества)
  • Пуццолановые расширители
  • Химические наполнители
  • Газы

Любой материал с удельным весом ниже, чем у цемента, будет действовать как расширитель. Эти материалы, как правило, снижают плотность цементных растворов одним из трех способов.Пуццолановые и инертные органические материалы имеют меньшую плотность, чем цемент, и могут использоваться для частичной замены цемента, снижая плотность твердого материала в суспензии. В случае физических и химических наполнителей они не только имеют более низкую плотность, но также поглощают воду, позволяя добавлять больше воды в суспензию без образования свободной жидкости или сегрегации частиц. Газы ведут себя по-разному, поскольку они используются для производства вспененного цемента, который имеет исключительно низкую плотность и приемлемую прочность на сжатие.

Во многих легких суспензиях обычно используется комбинация различных типов материалов. Например, пуццолановые и химические наполнители используются или могут использоваться с физическими наполнителями и / или газами. В конструкции пуццолановой суспензии почти всегда присутствует бентонит, а газы обычно содержат химический наполнитель для стабилизации пены. Легкие добавки также увеличивают выход суспензии и могут привести к получению экономичной суспензии.

Физические расширители

Это материалы в виде твердых частиц, которые действуют как расширители цемента, увеличивая потребность в воде или уменьшая средний удельный вес сухой смеси.В эту категорию попадают два основных класса материалов: глины и инертные органические материалы. Наиболее часто используемый глинистый материал - бентонит, хотя также используется аттапульгит. Обычно используемые инертные органические материалы:

  • перлит
  • Гильсонит
  • Молотый уголь
  • Молотая резина

Бентонит (гель)

Этот наполнитель представляет собой коллоидный глинистый минерал, состоящий преимущественно из монтмориллонита натрия [NaAl 2 (AlSi 3 O 10 ) • 2OH].Содержание монтмориллонита в бентоните является определяющим фактором его эффективности в качестве наполнителя. Это один из двух расширителей, на которые распространяется спецификация API. Бентонит может быть добавлен к цементу любого класса API и обычно используется в сочетании с другими наполнителями. Бентонит используется для:

  • Предотвратить отделение твердых частиц
  • Уменьшить бесплатную воду
  • Уменьшить потери жидкости
  • Увеличение выхода суспензии

Бентонит обычно используется при концентрациях от 1 до 16% BWOC.Он может быть смешан с цементом в сухом виде или предварительно гидратирован в воде для смешивания. При предварительной гидратации эффект предварительно гидратированного 1% BWOC приблизительно равен 3,5% BWOC в сухом виде, но предел текучести намного выше. Для достижения наилучших результатов предварительно гидратированную смесь бентонита и воды следует использовать для смешивания цементного раствора вскоре после завершения предварительной гидратации. Рекомендуется проводить лабораторные испытания для определения надлежащей концентрации геля и процедуры смешивания для предварительно гидратированного бентонита. Бентонит для цемента не должен заменять технический или «грязевой гель».Лигносульфонат обычно используется в качестве диспергатора и замедлителя схватывания в цементах с высоким содержанием геля для снижения вязкости суспензии.

Аттапульгит (солевой гель)

Это более эффективный наполнитель, чем бентонит в морской воде или суспензиях с высоким содержанием соли, но он не регулируется или не имеет спецификации. Аттапульгит, (Mg, Al) 2 (OH / Si 4 O 10 ) • 12H 2 O, состоит из скоплений волокнистых игл, которые требуют высокого усилия сдвига для диспергирования в воде. Он производит многие из тех же эффектов, что и бентонит, за исключением того, что он не снижает потери жидкости.

Недостатком аттапульгита является то, что из-за сходства волокон с волокнами асбеста его использование запрещено в некоторых странах. Доступны гранулированные формы, которые могут быть разрешены в качестве замены.

Перлит вспученный

Расширенный перлит - это кремнистое вулканическое стекло, которое подвергается термической обработке с образованием пористой частицы, содержащей увлеченный воздух. Это продукт с высокой плавучестью, который требует добавления от 2 до 6% бентонита BWOC для предотвращения отделения от шлама.Из-за его низкой прочности на раздавливание потребность в воде для перлитсодержащих суспензий должна быть увеличена, чтобы обеспечить сжимаемость суспензии в скважинных условиях. Потеря объема также должна учитываться при расчете объема заполнения.

Гильсонит

Это асфальтовый материал или твердый углеводород, который встречается только в Юте и Колорадо. Это один из самых чистых битумов природного происхождения. Гильсонит можно использовать с плотностью суспензии всего 11 фунтов / галлон при нормальной концентрации от 5 до 25 фунтов / мешок (sk) цемента, и он закупорит поплавковое оборудование и перекрывает герметичные кольцевые зазоры.Низкая плотность гильсонита является результатом его низкой плотности (1,07 г / см 3 ). Поскольку гильсонит является органическим материалом, он обладает высокой плавучестью и будет всплывать из суспензии, если не будет ингибирован. Бентонит обычно добавляют в концентрации от 2 до 6% для предотвращения образования перемычек в стволе скважины.

Дробленый угольный

Дробленый уголь используется для тех же целей, что и гильсонит (т. Е. Для облегчения веса и контроля потери циркуляции). Он обычно используется при концентрациях до 50 фунтов / куб.м цемента.Его плотность немного выше (1,3 г / см 3 ), что требует небольшого увеличения содержания воды. Добавление бентонита для предотвращения расслоения обычно не требуется.

Шлифованная резина

Это недорогая альтернатива гильсониту, которую можно использовать в аналогичных целях. Плотность резиновой смеси немного выше (1,14 г / см 3 ). Физические свойства более изменчивы, чем у гильсонита, и зависят от источника материала. Одним из основных преимуществ измельченной резины является ее низкая стоимость.В настоящее время нет никаких проблем с окружающей средой при использовании резиновой смеси в цементной системе.

Пуццолановые расширители

Ряд пуццолановых материалов доступен для использования в производстве легких цементных растворов. Они могут быть как естественными, так и искусственными и включать:

По сравнению с другими добавками, пуццолановые материалы обычно добавляют в больших количествах. Зола-унос, например, может быть смешана с цементом при соотношении золы-уноса к цементу в диапазоне от 20:80 до 80:20, исходя из веса «эквивалентного мешка» (т. Е. Если в мешке с золой уносится такое же абсолютный объем, как у мешка с цементом).Пуццолановые материалы имеют более низкий удельный вес, чем у цемента, и именно этот более низкий удельный вес дает пуццоланово-портландцементный раствор более низкой плотности, чем портландцементный раствор аналогичной консистенции. В зависимости от плотности пуццолановые цементы также имеют тенденцию давать затвердевший цемент, более устойчивый к воздействию пластовых вод.

Зола уноса

Летучая зола является наиболее широко используемым из пуццолановых материалов. Согласно стандарту ASTM C618, [2] существует два типа летучей золы:

Класс N относится к натуральным пуццолановым материалам.Однако существует потребность в третьей категории, основанной на характеристиках летучей золы. Стандарт ASTM C618, [2] классифицирует летучую золу на основе комбинированного процентного содержания SiO 2 + Al 2 O 3 + Fe 2 O 3 —Класс F, имеющий минимум> 90% и класс C 50%.

На самом деле существует гораздо большая взаимосвязь между содержанием CaO и характеристиками. Содержание CaO колеблется от 2 или 3% до 30% от массы летучей золы.«Настоящая» зола-унос класса F имеет содержание CaO менее 10%, тогда как «истинная» зола класса C имеет содержание CaO более 20%. Летучая зола с содержанием CaO от 10 до 20% ведет себя несколько иначе, чем у истинного класса F или класса C. Летучая зола обычно состоит из аморфных стекловидных частиц сферической формы.

Зола-унос ASTM класса F наиболее часто используется при цементировании нефтяных скважин. Именно на эту летучую золу распространяются спецификации API. Основными преимуществами золы-уноса класса F являются ее низкая стоимость и ее распространение во всем мире.Рабочие характеристики летучей золы класса F мало различаются от партии к партии из определенного источника. Однако различия между источниками могут быть значительными, поскольку состав может варьироваться от истинно низкого содержания CaO до 10-20% CaO. Это приводит к значительным колебаниям эксплуатационных характеристик, и по этой причине различные источники летучей золы класса F следует тестировать перед использованием. Также необходимо определить удельный вес. Некоторые электростанции производят летучую золу класса F с высоким содержанием углерода из-за плохого горения.Их следует избегать при цементировании нефтяных скважин, поскольку они могут вызвать серьезные проблемы гелеобразования.

Использование золы-уноса класса C в качестве наполнителя для цементирования скважин относительно ограничено. Частично это связано с ограниченной доступностью летучей золы класса C и значительной вариабельностью, которая существует не только между источниками, но и между партиями из данного источника.

Микросферы

Микросферы

используются, когда требуется плотность суспензии от 8,5 до 11 фунтов / галлон.Это полые сферы, получаемые как побочный продукт на электростанциях или специально разработанные. Микросферы побочного продукта представляют собой полые стеклянные сферы из летучей золы. Обычно они присутствуют в летучей золе класса F, но обычно в небольших количествах. Их получают в значительных количествах, когда избыток летучей золы сбрасывается в отстойники. Полые сферы с низкой плотностью всплывают наверх и разделяются с помощью процесса флотации. Эти полые сферы состоят из алюмосиликатных стекол с высоким содержанием кремнезема, типичных для летучей золы, и обычно заполнены смесью дымовых газов, таких как CO 2 , NO x и SO x .Синтетические полые сферы изготавливаются из натриево-известково-боросиликатного стекла и имеют формулу, обеспечивающую высокое отношение прочности к массе - они обычно заполнены азотом. Синтезированные микросферы обеспечивают более однородный состав и демонстрируют лучшую устойчивость к механическому сдвигу и гидравлическому давлению.

Основным недостатком большинства микросфер является их склонность к раздавливанию при смешивании и перекачивании, а при воздействии гидростатического давления - выше средней прочности на раздавливание.Это может привести к:

  • Повышенная плотность раствора
  • Повышенная вязкость суспензии
  • Уменьшение объема пульпы
  • Преждевременная дегидратация суспензии

Однако эффект измельчения можно свести к минимуму за счет подходящего выбора микросфер. Эти эффекты можно спрогнозировать и учесть при расчетах конструкции шлама для получения шлама, имеющего требуемые характеристики для условий скважины. Легкие системы, включающие микросферы, могут обеспечить отличный рост прочности и могут помочь контролировать потерю жидкости, осаждение и свободную воду.

Микросилика

Microsilica, также известный как микрокремнезем, представляет собой мелкодисперсный диоксид кремния с большой площадью поверхности, который может быть получен в виде жидкости или порошка. В виде порошка он может быть в исходном состоянии, уплотнен или гранулирован. Насыпная плотность уплотненного микрокремнезема составляет от 400 до 500 кг / м 3 . Microsilica обычно имеет удельный вес около 2,2.

Микрокремнезем состоит в основном из стекловидного кремнезема и имеет содержание SiO 2 от 85 до 95%, что делает его значительно более чистым, чем другие пуццолановые материалы.Также считается, что частицы микрокремнезема придают суспензии полезные физические свойства. Считается, что из-за своей крупности они заполняют пустоты между более крупными частицами цемента, что приводит к образованию плотной твердой матрицы еще до того, как произойдет какая-либо химическая реакция между частицами цемента. Реологические свойства обычно улучшаются при добавлении микрокремнезема, потому что крошечные сферы могут действовать как очень маленькие шарикоподшипники и / или они вытесняют часть воды, присутствующей между флокулированными зернами цемента, увеличивая количество доступной жидкости.Концентрация микрокремнезема может составлять от 3 до 30% BWOC, в зависимости от требуемой суспензии и свойств.

Физические и химические свойства микрокремнезема делают его очень полезным для множества применений, кроме как наполнитель. К ним относятся:

  • Повышение прочности на сжатие низкотемпературного легкого цемента
  • Тиксотропные свойства для компрессионного цементирования
  • Без обращения
  • Миграция газа
  • Степень контроля водоотдачи

Недостатком микрокремнезема является его стоимость.Первоначально рассматриваемый как отходы, с его увеличившимся использованием в строительной индустрии за последнее десятилетие, он стал больше специализированным химическим веществом. Кроме того, при колебаниях спроса и предложения возникает вопрос о наличии постоянного предложения хорошего источника продукта.

Кизельгур (DE)

DE представляет собой природный пуццолан, состоящий из скелетов микроорганизмов (диатомовых водорослей), отложившихся в пресной или морской воде.

Химические наполнители

Некоторые материалы эффективны в качестве химических наполнителей.В общем, любой материал, который может предсказуемо ускорить и увеличить концентрацию исходных продуктов гидратации, эффективен как химический наполнитель.

Силикат натрия

Это наиболее часто используемый химический наполнитель для цементных растворов. Силикат натрия в пять-шесть раз эффективнее бентонита при эквивалентной концентрации. В отличие от физических или пуццолановых наполнителей силикат натрия обладает высокой реакционной способностью по отношению к цементу.

Силикат натрия доступен как в сухом, так и в жидком виде, что делает его легко адаптируемым для применения на суше и на море.Твердая форма представляет собой метасиликат натрия (Na 2 SiO 3 ), и он обычно смешивается в сухом виде с цементом в концентрации от 1 до 3,5% BWOC при плотности от 14,2 до 11,5 фунт-м3 / галлон. Он не так эффективен, если растворяется непосредственно в воде для смешивания, если только CaCl 2 не растворяется в воде первым. Если желательна жидкая система, лучше использовать жидкую форму. Жидкий силикат натрия обычно используется в морской воде с концентрацией от 0,1 до 0,8 галлона / ск цемента при плотности 14.От 2 до 11,5 фунт / галлон.

Двумя основными преимуществами силикатов натрия в качестве наполнителей являются их высокий выход и низкая концентрация использования.

Гипс

Полугидратная форма сульфата кальция (CaSO 4 • 0,5H 2 O) обычно используется в качестве наполнителя. Обычно он используется при концентрациях 15% BWOC или менее для приготовления тиксотропных суспензий для использования в приложениях, где есть серьезные проблемы с потерей циркуляции или где желательны свойства расширения для улучшения сцепления.Типичные составы суспензий для борьбы с потерей циркуляции, BHCT ≤ 125 ° F (52 ° C), содержат от 8 до 12% гипса BWOC с хорошими характеристиками расширения (от 0,2 до 0,4%). Для улучшенного склеивания, где требуется повышенное расширение (от 0,4 до 1%), используется NaCl (≥ 10% BWOW).

Список литературы

  1. ↑ API Spec. 10A, Технические условия на цементы и материалы для цементирования скважин, 23-е издание. 2002. Вашингтон, округ Колумбия: API.
  2. 2,0 2,1 ASTM C618, Стандарт на испытания и материалы.2000. Вест Коншохокен, Пенсильвания: ASTM International. http://dx.doi.org/10.1520/C0618-12.

См. Также

Конструкция цементного раствора

Цементировочные работы

PEH: Цементирование

Интересные статьи в OnePetro

Внешние ссылки

.

Ускорители цементного раствора - PetroWiki

Ускорители ускоряют или сокращают время реакции, необходимое для того, чтобы цементный раствор стал затвердевшей массой. В случае нефтесодержащих цементных растворов это указывает на уменьшение времени загустевания и / или увеличение скорости развития прочности на сжатие раствора.

Виды ускорителей

Ускорение особенно полезно в случаях, когда требуется цементный раствор с низкой плотностью (например, с высоким содержанием воды) или где встречаются низкотемпературные образования.

Хлорид кальция (CaCl 2 )

Из хлоридных солей наиболее широко используется CaCl 2 , и в большинстве случаев он также является наиболее экономичным. Исключением являются водорастворимые полимеры, такие как агенты, снижающие водоотдачу. Основные преимущества использования CaCl 2 заключаются в значительном сокращении времени загустевания и в том, что независимо от концентрации он всегда действует как ускоритель. Нормальный диапазон использования CaCl 2 составляет от 1 до 4% от веса цемента (BWOC).При концентрации BWOC выше 6% результаты станут непредсказуемыми и может произойти гелеобразование.

Хлорид калия (KCl)

Ускорение KCl аналогично ускорению NaCl. KCl имеет два преимущества перед другими ускорителями:

  • Его стабилизирующее действие на сланцы или активные глинистые образования
  • Его минимальное влияние на характеристики присадок, снижающих водоотдачу.

В качестве ускорителя KCl может использоваться в концентрациях до 5% BWOW; для стабилизации пласта эффективны концентрации 3% BWOW.

Силикат натрия (Na 2 SiO 3 )

Силикат натрия обычно считается химическим наполнителем, хотя он также действует как ускоритель. Эффективность зависит от концентрации и молекулярной массы. Низкомолекулярная форма может использоваться при концентрациях 1% BWOC или меньше для ускорения получения суспензий нормальной плотности. Высокомолекулярная форма является эффективным ускорителем при концентрациях до 4% BWOC. Мета-силикат натрия также обеспечивает превосходный контроль потери циркуляции при использовании с цементом или рассолами CaCl 2 .

Морская вода. Морская вода - это встречающаяся в природе смесь хлоридных солей щелочных металлов, включая хлорид магния. Состав морской воды во всем мире сильно различается. Например, эквивалентное содержание хлоридной соли может варьироваться от 2,7 до 3,8% BWOW.

Гидроксиды щелочных металлов [Ca (OH) 2 , NaOH]

Гидроксиды щелочных металлов обычно используются в пуццолановых цементах. Они ускоряют как пуццолановый, так и цементный компоненты, изменяя химический состав воды.

Монокальциевый алюминат (CaO.Al 2 O 3 = CA)

Алюминат кальция используется в качестве ускорителя в пуццолановых и гипсовых цементах.

Список литературы

Интересные статьи в OnePetro

Внешние ссылки

См. Также

Конструкция цементного раствора

Цементировочные работы

PEH: Цементирование

.

Низкотемпературный цемент - состав, свойства, применение и преимущества

Низкотемпературный цемент - это специальный цемент, который генерирует низкую теплоту гидратации во время схватывания. Он производится путем модификации химического состава обычного портландцемента. В этой статье мы обсудим состав, свойства, характеристики, использование и преимущества низкотемпературного цемента.

Рис. 1: Строительство плотины с использованием низкотемпературного цемента.

Состав низкотемпературного цемента

Этот особый тип цемента такой же, как и у обычного портландцемента, с некоторыми процентными изменениями в химическом составе.Этот цемент содержит низкий процент (5%) алюмината трикальция (C3A) и более высокий процент (46%) силиката дикальция (C2S).

Свойства низкотемпературного цемента

Таблица 1: Свойства низкотемпературного цемента

Артикул Стандартное значение
Удельная поверхность 250 м 2 / кг Мин.
Начальная настройка 60 минут Мин.
Окончательная настройка 12 часов Макс
Прочность на сжатие при 7d 13.0 МПа мин.
Прочность на сжатие при 28d 42,5 МПа Мин.
Разрывная нагрузка при 7d Мин. 3,5 МПа
Разрывная нагрузка при 28d 6.5 МПа Мин.
Теплота гидратации при 3д 230 кДж / кг макс.
Теплота гидратации на 7 дней 260 кДж / кг макс.

Характеристики низкотемпературного цемента

  1. Низкая теплота гидратации на 20% меньше, чем у цемента OPC.
  2. Количество воды, необходимое для гидратации, низкое.
  3. Высокая удобоукладываемость достигается благодаря текучести бетона
  4. Хорошая стабилизация громкости.
  5. Начальная прочность низкая, но высокая скорость роста конечной прочности.
  6. Более высокая техническая прочность бетона.
  7. Превосходная ударная эрозия.
  8. Превосходная износостойкость.
  9. Пониженная температура вверх значение теплоизоляции.
  10. Сверхвысокая стойкость к химической коррозии.
  11. Отличная устойчивость к усадке при высыхании.
  12. Хорошая устойчивость к разрыву.

Совместимость с добавками

Low Heat Cement совместим с:

  • Добавки химические для бетона.
  • Дополнительные вяжущие материалы для использования с портландцементом: Зола уноса, шлак - измельченный гранулированный железо, доменная печь, аморфный кремнезем.

Использование низкотемпературного цемента

  1. Для изготовления дорожных покрытий и поверхностей рабочих помещений, таких как химические заводы и заводы серной кислоты.
  2. В основном используется при строительстве больших опор плотин, больших плит плотин, цоколей ветряных турбин.

Рис. 2: Строительство электростанции с использованием низкотемпературного цемента.

Преимущества низкотемпературного цемента

  1. Помогает минимизировать возможность термического растрескивания в толстых бетонных секциях.
  2. Повышенная долговечность.
  3. Отличные характеристики, такие как высокая конечная прочность, стойкость к сульфатной коррозии, хорошие долговечные свойства, хорошая устойчивость к разрыву, защита от просачивания.
  4. Повышенная удобоукладываемость и прокачиваемость при больших заливках в гидротехнических и морских бетонных работах.
  5. Значительно улучшенная прочность бетона более позднего возраста.
  6. Устойчивость к воздействию сульфатов на арматуру, в основном в бетонных трубах.

Недостатки низкотемпературного цемента

  1. Начальная полученная прочность ниже, чем у бетона OPC, но конечная прочность такая же, как у OPC.
  2. Этот цемент нельзя использовать в холодных погодных условиях.
  3. Стоимость цемента выше, чем у Обычного цемента.
.

Купите невероятные добавки к цементным растворам для нефтепромыслов и наслаждайтесь лучшими предложениями

Мы занимаемся исследованием, производством, продажей и предоставлением сопутствующих технологических услуг в области нефтепромысловых химикатов почти 30 лет. 4. Промышленные исследования и разработки Ежегодно компания нанимает известных отечественных и зарубежных экспертов нефтяной промышленности для руководства и обучения на заводе. Наши новые продукты заменили более десяти видов химической продукции для нефтяных промыслов за рубежом, внося значительный вклад в освоение нефтяных месторождений Китая.

Мы & amp; rsquo; занимаемся исследованием, производством, продажей и предоставлением связанных технологических услуг нефтехимии почти 30 лет. Имеется более 150 производственного оборудования, а годовая производственная мощность составляет более 30 000 тонн. 4. Промышленные исследования и разработки Ежегодно компания нанимает известных отечественных и зарубежных экспертов нефтяной промышленности для руководства и обучения на заводе.

В результате он может снизить давление насоса, повысить эффективность бурения и легко использоваться в строительстве.Диспергирующий агент USZ / агент, снижающий гидравлическое сопротивление, представляет собой модифицированный полимер, состоящий из метанола и ацетона. Имеется более 150 производственного оборудования, а годовая производственная мощность составляет более 30 000 тонн.

.

Смотрите также