Главное меню

Арматурный каркас для монолитного строительства


Зачем нужен арматурный каркас для фундамента

Армированный каркас фундамента это металлическая конструкция, предназначенная для придания монолитному фундаменту дополнительных прочностных характеристик. Система скреплённых между собой арматурных стержней и сеток  воспринимает в составе монолитной бетонной смеси нагрузки на растяжение. Схватившийся бетон способен выдерживать значительные нагрузки на сжатие.

В результате соединения свойств арматурного каркаса и бетона, получившаяся железобетонная конструкция устойчива к сжатию, растяжению, изгибу и излому.

Нормативные документы

Применение арматурных каркасов для монолитных фундаментов  ответственных сооружений регламентируется СНиП 2.03.01-84 с описанием требований, допусков и расчётов.

ГОСТ 10884-94 нормирует условия эксплуатации арматурных стержней и требования к ним.

Сортамент арматуры определяет все характеристики, необходимые для инженерных расчётов конструкций каркасов.

Арматура оптимального разряда

ГОСТ 5781 определяет сортамент марок и диаметров арматурной стали для изготовления армокаркасов в малоэтажном неответственном строительстве, называемый оптимальным разрядом.

В него входят классы А1(240), А2(300), А3(400), диаметр от 6 до 18 мм, профили гладкий, винтовой и «ёлочка».

Расчёт армирования

Пространственный арматурный каркас фундаментов малоэтажных индивидуальных жилых домов и других построек с незначительными требованиями, как правило, не требует сложных инженерных расчётов. Для такого строительства вполне достаточно  адаптированного расчёта, исходящего из усреднённых нормативов.

Для ленточного фундамента с учётом места привязки, приложенной нагрузки и наличия усилений используется арматурные стержни класса А3 диаметром 14-18 мм с шагом сетчатой ячейки от 100 до 160 мм при диаметре проволоки 6-8 мм.

Общий принцип адаптированного расчёта  определяет размер шага ячейки как десятикратный диаметр используемого арматурного стержня.

Раскладка арматурного каркаса

В качестве практического примера по устройству арматурного каркаса, с расчётами по раскладке и потребности в материалах, можно использовать возведение фундамента под одноэтажный дом размером 9 Х 9 м. Предположительная глубина фундамента 40 см, ширина 40 см.

Монтаж каркаса производится после установки опалубки, но без её окончательной фиксации. Каркас исполняется в виде сплошного армопояса в две нитки по периметру фундамента.

Этапы работы:

  1. На выровненное и утрамбованное песчаное основание по периметру дома разносится и укладывается арматура А3 диаметром 14 мм в две параллельные нитки.
  2. Арматура должна отступать от опалубки на 6 см с обеих сторон.
  3. По всей длине под арматурные стержни укладываются куски кирпича так, чтобы стержни возвышались над дном траншеи на 5-6 см.
  4. Из арматуры диаметром 10 мм нарезаются поперечные стержни длиной 30 см с расчётом их укладки через каждые 15 см.
  5. Вертикальные стержни нарезаются длиной 45 см с учётом их заглубления в землю на 5-10 см.
  6. В землю устанавливаются вертикальные стержни по 4 шт. в каждом углу.
  7. Вертикальные стойки фиксируются вязальной проволокой с нижними горизонтальными продольными стержнями и между собой.
  8. Далее продольные стерни соединяются между собой поперечными отрезками с фиксацией вязальной проволокой.
  9. На каждом поперечном соединении устанавливаются вертикальные соединительные стержни с аналогичным соединением проволокой.
  10. На высоте 30 см от нижнего ряда монтируются продольные, а затем и поперечные стержни верхнего ряда.
  11. Угловые соединения перевязываются внахлёст, конструкция каркаса должна составлять единое целое.
  12. Заключительным этапом окончательно устанавливаются и укрепляются щиты опалубки.

Гнутая арматура для углов

В углах фундамента целесообразно использование горизонтальных стержней, изогнутых под прямым углом. Но в домашних условиях согнуть стержень толщиной 14 мм и выше невозможно.

Некоторые застройщики изгибают арматуру с помощью нагрева, но это категорически недопустимо из-за потери прочности металла. Профессионалы используют специальные гибочные станки, но для индивидуального застройщика они излишне дороги.

Расход металла

Нижний горизонтальный ряд стержней в две нитки  9 Х 2 Х 4 = 72 п.м. Верхний аналогичный ряд 72 п.м. Всего арматуры диаметром 14 мм х 144 п.м.

Нижние и верхние поперечные отрезки арматуры: 6о шт. Х 2 Х 4 Х 0,3 м = 144 п.м.

Вертикальные стержни: 120 шт. Х 4 Х 0,45 м = 216 п.м

Всего арматуры диаметром 10 мм х 360 п.м

Две причины неприменения сварки

  1. Сварка соединений не производится из-за нагревания высокоуглеродистой стали и потери при нагреве до половины прочности. Кроме того, сварные соединения подвергаются большей коррозии.
  2. Сварка является жёсткой фиксацией, а приваренный участок арматурного стержня работает несовместно с остальной его частью. Возникают обособленные ненормальные напряжения и перераспределения нагрузок. Иными словами, каркас не работает  и становится ненужным.

Фиксация проволокой

Для скрепления стержней в местах пересечения используется вязальная проволока от 0,5 до 2, 5 мм толщиной.

Вязка проволоки довольно трудоёмкий и длительный процесс, поэтому арматурщики придумали массу приспособлений для ускорения и облегчения своего труда. Чаще всего крючок для вязания изготавливается из проволоки диаметром до 12 мм. Самый простой крючок делают из сварочного электрода.

Сборка вне опалубки

Собрать каркас вполне возможно рядом с опалубкой. Сложность заключается в необходимости постоянного контроля за размерами каркаса, непосредственно в опалубке промеры почти не нужны.

Вторая проблема заключается в трудности последующей установки каркаса в опалубку, она тяжёлая и неудобная для переноски.

Каркас для столбчатых и плитных фундаментов

Для фундамента в виде плоской плиты сборка каркаса намного проще, так как исполняется в горизонтальной плоскости. Сам сборочный процесс аналогичен ленточному фундаменту.

Каркас для столбов фундамента выполняется вне его места установки. Для изготовления возможно применение различных приспособлений и специального инструмента.

Для небольших строений возможно вместо объёмных каркасов в фундаменте использование для упрочения здания армированных поверхностных поясов.

Армопояс

Технология армопояса  аналогична изготовлению объёмного каркаса.

Но пояс монтируется по верхней отметке монолитного или блочного фундамента, что значительно снижает трудозатраты.

Назначение армопояса аналогично монтажу каркаса  придание дополнительной прочности основанию здания.

Ростверк

Ещё одно применение арматурного каркаса в изготовлении балок для укладки под стены по столбчатым либо свайным фундаментам.

Ростверк изготовляется в опалубке необходимых размеров, установленной по отметке верха винтовых или монолитных столбчатых оснований. По сути это изготовление железобетонных пролётов в домашних условиях с применением деревянной щитовой опалубки.

Подбор толщин и марок арматуры производится по аналогии с каркасом для фундамента. В изготовлении ростверка без армирования не обойтись, но в целом устройство прогонов по винтовым сваям или бетонным столбам значительно дешевле монолитного ленточного фундамента. Особенно это актуально в строительстве домов облегчённого типа.

Минусы армирования каркаса

В недалёком прошлом монументальные строения возводились без какого-либо армирования. Применение арматурных каркасов стало настолько распространённым, что без него не стали строить даже сараи. На самом деле армирование не всегда оправдано. Главная причина — высокая цена на профилированный металл и применение арматуры приводит к значительному удорожанию строительства. Это не всегда учитывают индивидуальные застройщики, стремясь увеличить количество металла и диаметр арматурных стержней.

Использование металлических кладочных сеток при возведении стен тоже является разновидностью армокаркаса, но только плоской формы. Абсолютно не нужен каркас в фундаменте для возведения домов  из сэндвич-панелей или по финской технологии.

В целом можно сформулировать вывод: арматурный каркас для фундамента позволит застройщику возвести дом по любой технологии и с применением самых тяжёлых строительных материалов с дополнительными гарантиями прочности и надёжности строения.

Статьи по теме:

Монолитный жб каркас: частного дома, стен здания

Монолитный каркас представляет собой технологию строительства зданий, при которой строение возводят из бетона с армированием стальными прутьями. Такое сооружение обеспечивает повышенный уровень прочности и долговечности, обходится сравнительно недорого. Раньше технология монолитно-каркасного строительства из бетона использовалась в основном в промышленной и коммерческой сферах, сегодня же все чаще таким образом возводят частные дома и коттеджи.

Основное преимущество монолитного каркаса – равномерное распределение нагрузок между бетонными колоннами, которые усилены стальной арматурой. После заливки бетоном каркас становится прочной монолитной конструкцией, в которой вся несущая нагрузка приходится на колонны, балки и перекрытия. Железобетонные здания считаются наиболее надежными, крепкими и стойкими.

При условии верного выбора и проектирования фундамента ЖБ коробка способна простоять максимальный срок, демонстрируя прекрасные эксплуатационные свойства и наилучшие технические характеристики.

Основанием для дома из бетона может служить плитный, ленточный или свайно-винтовой фундамент, который выбирают в соответствии с такими факторами: структура и характеристики грунта, особенности рельефа территории, несущая способность почвы, расчетные нагрузки и масса здания, уровень залегания грунтовых вод, конструктивные и технические особенности архитектурного проекта.

Благодаря особенностям технологии проекты домов из железобетона могут быть самыми разными – тут есть возможность реализовать любую задумку, использовать самые разные материалы (стекло, кирпич, дерево и т.д.), экспериментировать с различными элементами. Большинство современных коттеджей необычных форм и конфигураций создают с использованием монолитно-каркасной технологии.

Что такое монолитно-каркасное строительство

Устройство монолитно-каркасных зданий осуществляется по единой технологии. Монолит представляет собой цельнолитую бетонную конструкцию, которая создается прямо на строительной площадке путем заливки бетоном смонтированного каркаса из стальных прутьев и элементов. Бетон заливается и обязательно вибрируется, подбирается определенная марка, что обеспечивает высокую прочность.

Арматурный каркас может быть соединен вязальной проволокой либо сварен. Марка бетона, класс арматуры, специальные добавки в раствор подбирают, исходя из количества этажей, сейсмичности региона. Стальной каркас заливается бетоном в съемную или несъемную опалубку, которая формирует стены и другие элементы конструкции.

Что включает каркас монолитного здания:
  1. Фундамент – может быть разного типа.
  2. Колонны – расположенные вертикально и соединяющие основание и перекрытие.
  3. Монолитные перемычки и перекрытия, которые создают пояс жесткости.

Все элементы конструкции связаны как монолитным бетоном, так и арматурным каркасом, благодаря чему удается создать жесткое соединение, прочное и неподвижное, без шарниров и люфтов.

Ввиду того, что потом что-то переделать и или заменить невозможно, монолитно-каркасное строительство здания требует чрезвычайно тщательного проектирования с точными расчетами и применением специфических технологий, которые способны понизить риск появления деформаций в процессе усадки.

Достоинства технологии

Строительство частного дома по монолитно-каркасной технологии обладает определенными преимуществами, благодаря которым метод становится все более популярным и часто используется для возведения домов по индивидуальным проектам.

Основные преимущества монолитно-каркасной технологии:
  • Быстрый процесс монтажа с минимальными трудозатратами. Основные этапы – создание опалубки, арматурного каркаса, заливка бетоном. Процесс осуществляется непрерывно по отдельным зонам, что исключает простой рабочей силы.
  • Длительный срок эксплуатации без необходимости в ремонте или реконструкции.
  • В случае аварийных ситуаций при разрушении одной секции остальные элементы конструкции остаются целыми и здание не рухнет. Монолитный каркас – единственный метод безопасного строительства в сейсмоопасных регионах.
  • Возможность реализовать проект любой сложности с оригинальной планировкой, так как в данном случае нет обязательных несущих стен, перегородок. Площади можно реализовать даже как единое пространство с колоннами.

  • Перепланировка в любом формате – благодаря отсутствию несущих стен, без согласования с надзорными органами.
  • Повышение общей жесткости со временем благодаря набору прочности бетона.
  • Возможность сделать в доме потолки высотой от 3 метров.
  • Строительные работы можно проводить в любую пору года.
  • Для возведения каркаса понадобится небольшой объем материалов.
  • Габаритные конструкции не нужно доставлять на объект, сборка каркасных зданий из арматуры и бетонного раствора осуществляется непосредственно на территории строительства.

Недостатки жилья

Устройство монолитного каркаса предполагает и некоторые негативные моменты, о которых нужно знать до начала проведения расчетов и проектирования. Все эти факторы можно устранить за счет разумного применения различных технологий и методов строительства.

Главные минусы технологии монолитного каркаса:
  • Наличие мостиков холода, которые распространяются по бетонным перекрытиям, внешним колоннам, что предполагает обязательную теплоизоляцию и выполнение облицовки фасадов.
  • Большой объем работ по вязке и установке арматуры, монтажу опалубки, опорных стоек.
  • Важность правильных и максимально точных расчетов, от которых зависят безопасность и комфорт эксплуатации, прочность и срок службы здания.

Технология

Монолитно-каркасная технология применяется в строительстве одно/многоэтажных зданий различного назначения любой площади и высоты.

Этапы реализации технологии монолитного каркаса: Сначала выполняют фундамент, потом заливают стены и перегородки, далее монтируют заводскую или заливают монолитную плиту перекрытия. После этого осуществляется прокладка инженерных коммуникаций, отделочные работы, обустройство крыши.

Методы возведения фундамента

Устройство основания является одним из наиболее важных этапов строительства, так как от него зависит то, насколько качественным и прочным будет каркас, не просядет ли дом на грунте и т.д.

Виды фундамента, применяемые при заливке монолитного каркаса:
  • Сваи – тип свайного основания подбирают по типу грунта и особенностям ландшафта на территории.
  • Ленточный – заливается на объекте в опалубку с арматурой. Подходит для домов с подвалом, мелкозаглубленный обустраивают исключительно на почве с низким уровнем грунтовых вод.
  • Бетонная монолитная плита – надежная база, особенно подходит для зон с опасностью землетрясения. Фундамент заливается на строительной площадке с обязательным армированием.

Особенности строительства подвала

Для подвала роют котлован, а фундамент размещают на минусовой отметке – в основании подвала. В этом помещении заливают монолитные стены, перегородки, сверху на нулевой отметке монтируют плиту перекрытия заданной проектной толщины и с повышенной прочностью.

Методы возведения опалубки

Опалубка представляет собой форму, в которую будут заливать готовый бетонный раствор. Опалубка может быт какой угодно, формируя толщину и конфигурацию монолита.

Основные виды опалубки:
  1. Съемная – после твердения бетона демонтируется и может применяться снова.
  2. Несъемная – становится частью конструкции домов, выступая теплоизоляцией и защитой. Обычно такую опалубку делают из пенополистирола, но встречаются и конструкции из фанеры, древесины, металла. Пенополистирол дополнительно выступает в качестве утеплителя.

Типы опалубки по конструкции:
  • Туннельная – изготавливается по спроектированным данным на заводе, обладает заданными размерами, доставляется на объект готовой, неразборной.
  • Щитовая – сборная конструкция для создания монолита любых конфигураций. Предполагает оснащение крепежными элементами высокой прочности, эргономичная и надежная, ее можно использовать для заливки овальных конструкций.

Съемную опалубку можно взять в аренду, любые виды конструкции можно купить.

Армирование

С целью обеспечения прочности и жесткости монолитно-каркасной конструкции применяют стальную арматуру и армирующую сетку. Для монолитного строительства подходит рифленая/гладкая арматура сечением 6-8 миллиметров, особо прочные конструкции создают из арматуры диаметром больше 10 миллиметров. Вязать проволокой или сваривать каркас допускается горизонтально и вертикально.

В процессе создания каркаса особое внимание уделяют угловым зонам. Металл должен надежно крепиться, чтобы в будущем правильно распределять нагрузку в конструкции. Обязательно усиливают перемычки, чтобы здание не «ползло» и был оптимально распределен вес.

Как произвести расчеты и создание каркаса:
  • Средние расчеты предполагают затраты около 25 килограммов арматуры на 1 кубический метр бетонных конструкций.
  • Рабочие прутья подбираются в соответствии с расчетами, минимальные значения: 8 миллиметров для поперечной и 10 миллиметров для продольной арматуры.
  • Каркас может вязаться проволокой либо быть сваренным, создается на месте установки или на площадке с последующим перемещением.
  • Шаг арматуры в среднем составляет 15-25 сантиметров между отрезками. Прутья поперечные выступают элементами жесткости для прутьев продольных.
  • Вся арматура должна быть перевязана или сварена между собой.
  • В процессе заливки фундамента оставляют свободными вертикальные стержни, с которыми потом сопрягается арматура перекрытий и колонн (так продолжают до верхней точки здания).

Способы подачи бетона

Бетонный раствор может замешиваться непосредственно на строительном объекте или доставляться с завода специальной техникой. Чтобы смесь не застыла и не потеряла однородность, ее транспортируют в бункере с работающим миксером. Для подачи смеси на объект используют бетононасосы или краны.

Бетононасос представляет собой специальный автомобиль с длинным шлангом, который под давлением поставляет бетон в нужную точку. Очень удобно подавать бетон таким образом для заливки на высоте. Если используется кран, то бетон подают в бадьях – такой вариант актуален для сооружения небольших железобетонных конструкций.

Утрамбовка бетона

После того, как бетон залит в опалубку, его нужно уплотнить для удаления пузырей воздуха и более равномерного распределения смеси. Для этого используют вибраторы поверхностного и глубинного типа.

Главные функции вибротрамбования:
  • Улучшение внешнего вида конструкции – однородная поверхность, устранение воздушных полостей.
  • Повышение качества и прочности бетонной смеси.
  • Понижение трудозатрат и расхода материалов при выполнении отделки помещений.

Готовые монолитно-каркасные стены облицовывают керамической плиткой, кирпичом, красивым камнем. Обеспечить хорошую циркуляцию воздуха поможет обустройство вентиляции фасадов, кровли.

Монтаж перекрытий

Перекрытия в монолитно-каркасных конструкциях должны быть выполнены по той же технологии. Они образуют пояс жесткости здания.

Этапы обустройства перекрытий:
  • Создание каркаса, вязка стержней с выпусками из колонн, расположенных ниже. Стойки устанавливают на полу нижнего этажа, они должны поддерживать опалубку и исключат возможность обрушения конструкции до завершения цикла набора прочности бетона.
  • Монтаж опалубки из досок или фанеры.
  • Заливка смеси бетона без перерывов, но слоями.
  • Выжидание набора первоначальной прочности, демонтаж опалубки и стоек.

Стоимость и материалы

В процессе создания монолитно-каркасного дома качество напрямую зависит от затрат: более высокая марка бетона стоит дороже, чем больше арматуры – тем крепче здание. Поэтому экономить и игнорировать расчеты не стоит – это может стать фатальной ошибкой.

Арматуру нужно выбирать без дефектов и ржавчины, нужного сечения. Бетон обязательно должен соответствовать указанной в проекте марке, установленным характеристикам.

Если бетонирование ведется при минусовой температуре, желательно позаботиться о противоморозных добавках, при очень низкой температуре лучше работы не проводить.

Материалы для опалубки также должны быть качественными, чтобы все это не обрушилось. Тут цена материалов может быть разной и в определенных случаях высокие затраты также оправданы: несъемная опалубка позволит провести быстрее работы, в будущем поможет сэкономить на утеплении и отоплении. С другой же стороны, оправданной может быть и аренда хорошей съемной конструкции.

На все материалы нужно требовать сертификаты соответствия, паспорта качества, гигиенические заключения и т.д. Сметную стоимость дома составляют расходы на такие материалы, как: арматура и проволока, все для бетона (или заказ готовой смеси), готовая опалубка или материалы для ее монтажа, инструмент, емкости, работа людей, техника для подачи бетона, кровля, отделка и т.д. От проекта к проекту стоимость может очень сильно разниться.

Монолитный каркас – технология, позволяющая создавать прочные, надежные, долговечные дома по разумной стоимости и индивидуальному проекту. Самое главное – верно выполнить расчеты и соблюдать технологию реализации проекта.

Разновидности арматурных каркасов, технологии производства и сферы применения

Подробности
Опубликовано: 03 Апрель 2019

Надежный и долговечный каркас фундамента из арматуры различного сечения увеличивает прочность железобетонной конструкции. Для производства используются металлические стержни, собранные в пространственную модель. Благодаря использованию металла удается нивелировать самое слабое место бетонного раствора – хрупкость. Каркас из арматуры для ленточного фундамента, железобетонных блоков, монолитной конструкции является обязательным для длительной эксплуатации сооружения.

Виды арматурных каркасов

Изготовление поддерживающего каркаса из арматуры выполняется в соответствии с требованиями ГОСТ и СНиП. К металлу, технологии соединения элементов, конструкции модели предъявляются высокие требования в плане прочности, надежности, способности выдерживать нагрузки на изгиб, разрыв и кручение. Поэтому к работам привлекаются специалисты, способные рассчитать максимально допустимое воздействие внешних факторов, сварить каркас из прутков нужной длины и диаметра.


В соответствии с общепринятой классификацией, выделяют два вида продукции. Плоский каркас из арматуры представляет собой металлическую сетку с ячейками одинакового размера. Для производства металлические стержни накладываются друг на друга под прямым углом и соединяются методом сварки или вязки. Используются плоские каркасы из поперечной арматуры для укрепления плоскостных сооружений, например, при выполнении стяжки пола, кирпичной кладке, оштукатуривании поверхности.

Пространственный поддерживающий каркас из арматуры имеет три размера: длину, ширину и высоту. В простейшей форме изделие представляет собой несколько плоских каркасов, объединенных в единую конструкцию. Вид, форма и размеры изделия могут быть самыми разными. Такая продукция используется при заливке фундамента, производстве монолитных блоков, колонн, балок и других железобетонных изделий.

Способы изготовления

Любой плоский каркас из арматуры изготовить достаточно просто. Для этого на поверхности расстилаются металлические прутья параллельно друг другу. Второй ряд стержней кладется сверху также через равные расстояния. Между собой пересекающиеся прутья надежно фиксируются, после чего изделие проверяется на прочность и надежность.

Плоские и пространственные каркасы из арматуры производятся двумя способами: при помощи вязки или сварки. В первом случае используется специальная проволока, толщиной от 0,8 до 1 мм. Прутья крепятся друг к другу с помощью специнструмента, после чего конструкция принимает прочную и надежную форму. Использование сварки также актуально, при этом к выполнению работ привлекаются квалифицированные специалисты.


Технология вязки или сварки арматурного каркаса выглядит следующим образом:

  • составляется схема будущей конструкции, рассчитывается объем и параметры металлических прутков, расстояние между соседними прутьями, габаритные размеры;

  • для производства каркаса из арматуры выполняется нарезка металла в размер, подготавливаются поперечины, проволока, при использовании технологии вязки;

  • арматурные каркасы для фундамента свариваются отдельными секциями, плоские элементы соединяются в объемные конструкции;

  • производится сборка отдельных секций в единую модель нужного размера и формы;

  • готовое изделие устанавливается в опалубку и тщательно фиксируется для исключения подвижек при заливке бетонным раствором.

Аналогичным способом собирается арматурный каркас плиты перекрытия. Металлическая объемная сетка устанавливается в заранее подготовленную форму, после чего конструкция заливается цементом, остается для просушки и набора прочности.

Особенности продукции

Сварка и вязка арматурных каркасов является достаточно сложной операцией, выполнять которую без необходимого опыта не рекомендуется. Готовое изделие может не выдержать механической нагрузки, что приведет к повреждениям мест сварки и деформации фундамента. При соблюдении требований технологического процесса и использовании качественных материалов, сборка арматурного каркаса происходит без недостатков. Полученные конструкции применяются в следующих целях:

  • при производстве монолитных конструкций из бетона использование арматурной основы обязательно и регламентировано нормативными документами;

  • применение плоских каркасов актуально при производстве отделочных работ, так как подобные системы позволяют избежать образования трещин при перепадах температуры, влажности, различных механических воздействиях;

  • арматурные каркасы перекрытий также пользуются спросом, выдерживают нагрузку на изгиб, кручение и разрыв;

  • при кладке кирпича или блоков рекомендуется применять сетку из арматуры, так как прочность стены существенно возрастает;

  • перед укладкой потолочной плитки, заливкой стяжки также желательно положить металлическую основу из сетки;

  • еще одним способом применения продукции является утепление трубопроводов, на плоский каркас вокруг магистрали можно легко закрепить теплоизолятор;

  • облицовка внешних и внутренних поверхностей зданий выполняется более качественно, если предварительно установить плоскую сетку.

Кроме указанных, существуют и другие сферы применения продукции. При выполнении подобных работ главное правильно рассчитать толщину прутьев, проработать чертеж арматурного каркаса и собрать конструкцию в соответствии с намеченным планом.


Достоинства плоских и объемных арматурных моделей

Приобретая и соединяя элементы арматурного каркаса в единую конструкцию, можно существенно улучшить характеристики железобетонно монолита. Использование стальных прутков актуально в строительстве, производственной отрасли, при ремонтных и отделочных работах. Контактная сварка арматурных каркасов востребована в частных целях, при возведении фундаментов дач и домов, других целях.

Использование подобных конструкций дает следующие преимущества:

  • правильно сваренная и смонтированная арматура существенно увеличивает показатели прочности и надежности любого объекта, вне зависимости от размеров, назначения, максимальной нагрузки;

  • хрупкость бетона и выкрашивание материала исключается, вне зависимости от интенсивности перепада температуры, влажности, механических воздействиях;

  • у владельца строящегося объекта появляется возможность снизить расходы на возведение фундамента за счет уменьшения размеров и объема бетона;

  • уменьшаются сроки монтажа здания, соответственно затраты на оплату труда рабочих, возрастает производительность труда.

  • Готовая конструкция по своим характеристикам соответствует требованиями ГОСТ и СНиП, других нормативных документов.

Допускается соединение арматурных каркасов в одну единую систему непосредственно на месте установки. Подобная технология применяется при производстве сложных и протяженных фундаментов для жилых и промышленных объектов.


Технология производства арматурного каркаса

Несмотря на сложность конструкции, особенно пространственных каркасов, возможно самостоятельное изготовление металлического скелета для заливки фундамента. Допускается использование обрезков арматуры, но сварка или вязка должны быть максимально качественными и надежными. Технология производства каркаса в подготовленной для заливки бетонного раствора траншее состоит из следующих этапов:

  • в траншею на одинаковых расстояниях друг от друга вбиваются 2 ряда металлических стержней, высота которых должна быть на несколько сантиметров ниже предполагаемого фундамента;

  • между собой стержни попарно соединяются короткими прутками, длина которых немного меньше ширины траншеи, для фиксации используется сварка или вязка;

  • на поперечные прутки укладывается продольная арматура на всю длину траншеи;

  • стержни также свариваются или связываются между собой;

  • после монтажа нижнего пояса, аналогичным образом производится верхний ряд, в первую очередь привариваются поперечины.

Готовая конструкция проверяется на прочность, после чего заливается цементным раствором. В качестве стержней используется ребристая арматура. Диаметр прутьев варьируется от 8 до 16 мм и более, в зависимости от особенностей фундамента и максимальной нагрузки.

Самостоятельное производство каркаса для плитного фундамента также возможно, но требует больших знаний и трудозатрат. Монтажнику необходимо сварить или связать две плоские сетки нужного размера. Для этого используются прутки толщиной 12-14 мм, желательно ребристые. Между собой сетки соединяются отрезками соответствующего размера. В результате получается объемная конструкция, придающая бетонному основанию прочность.

Возможно самостоятельное производство каркаса для фундамента из буронабивных свай. Для этого используется ребристая арматура в количестве от 2 до 4 штук. Между собой стержни соединяются специальными хомутами. Готовая конструкция устанавливается в подготовленное в грунте отверстие и заливается бетоном.

Отличные технические характеристики стальных прутков, способность выдерживать высокие механические нагрузки определяют спрос на продукцию. Производство любого фундамента, перекрытия, отделочные и строительные работы обязательно выполняются с организацией арматурного каркаса. Для расчета толщины стальных прутков, характеристик сетки, размеров ячеек и других параметров лучше воспользоваться помощью специалистов.

 

Видеоматериалы

Каркас для фундамента из арматуры: особенности, разновидности, этапы работ

Дата: 12 января 2019

Просмотров: 6787

Коментариев: 1

Ответственной частью любого строения является фундамент, изготовление которого должно осуществляться с особой тщательностью. Соблюдение строительных требований обеспечивает качество, длительный ресурс эксплуатации, надежность возводимого здания. Арматурные каркасы применяются практически во всех видах оснований.

Основа из бетона, в котором отсутствует армокаркас, не обладает требуемой прочностью. Бетон способен воспринимать только сжимающие нагрузки, а каркас из арматуры компенсирует растягивающие усилия, различные виды деформаций, обеспечивая целостность основы.

Изготовление армокаркасов из стальных прутков определенного сортамента осуществляется на основе результатов предварительно выполненных расчетов. Это позволяет воспринимать значительные нагрузки, обеспечивает высокий запас прочности частным постройкам и ответственным конструкциям из монолитного бетона.

Рассмотрим особенности металлического контура усиления, виды армирования фундамента, способы фиксации стальных прутков, технологию выполнения операций.

Металлическая составляющая фундамента служит не только в качестве каркаса: арматурные прутья необходимы для того, чтобы воспринимать растягивающие нагрузки и деформации

Проектный этап

Сортамент применяемой арматуры влияет на ресурс эксплуатации строения и определяется на проектной стадии. До приобретения материалов на арматурный каркас для ленточного фундамента следует выполнить комплекс подготовительных мероприятий. Осуществление в полном объеме подготовительных мероприятий гарантирует долговечность будущей постройки.

Армирование ленточного фундамента

Проектная стадия предусматривает выполнение следующих мероприятий:

  • Изучение, анализ особенностей почвы, массы возводимого здания. Оценка данных параметров позволяет выполнить расчет усилий, произвести выбор требуемой арматуры. Диаметр прутков составляет от 10 мм для легких строений до 14-17 мм для тяжелых конструкций, возводимых на слабых почвах.
  • Определение вида будущего основания. От выбранного типа фундамента зависит сортамент применяемых прутков. Для столбчатой, ленточной и монолитной основы используются стержни разного размера.
  • Расчет потребности в арматурных прутках, учитывающий размеры возводимого здания, особенности фундамента, тип почвы. Зная необходимое количество, не сложно подсчитать потребность в финансовых ресурсах.

Несмотря на то, что функция арматурного скелета для любого железобетонного основания одна и та же, конструкции таких каркасов различаются для отдельных типов фундаментов

Особенности конструкции

Производство арматурных каркасов осуществляется из стальных прутков со специальными ребрами, обеспечивающими повышенный коэффициент сцепления с бетоном. Применение гладких стержней не позволяет добиться целостности железобетонного массива, подвергающегося воздействию усилий и температурных факторов.

Прочность каркасов из арматуры зависит от следующих факторов:

  • марки применяемых металлических стержней;
  • сечения используемых прутков;
  • правильно разработанной схемы конструкции, регламентирующей количество, сортамент арматуры;
  • выбранного метода фиксации арматуры.

Ленточный железобетонный фундамент армировать сложнее всего: суть остается прежней, но количество манипуляций и трудоемкость процесса формирования каркаса усложняется

Каркас для фундамента изготавливается с использованием арматуры, диаметр которой не должен быть меньше 12 мм. Применение уменьшенного сортамента возможно для усилений, предназначенных для подсобных строений, небольших дачных построек, гаражей, зданий из газонаполненных композитов или пеноблоков.

Для усиления оснований частных построек применяют прутки класса А-2 или А-3, прочностные характеристики которых способны обеспечить устойчивость, долговечность основы, а, следовательно, возводимого здания.

Правильное армирование фундамента

Разновидности крепления арматуры

Арматурные каркасы состоят из отдельных металлических стержней, объединенных в единую конструкцию с использованием следующих методов:

  • Соединения прутков с помощью электрической сварки.
  • Фиксации арматуры с использованием вязальной проволоки.

Проверенный способ фиксации стержней арматуры для ленточного основания – использование проволоки для вязки и выполнение работ с помощью специального приспособления.

Применение электросварки для крепления прутков обладает рядом недостатков, связанных с нарушением структуры металла, уменьшением прочностных характеристик.

Сварка каркасов не получила широкого распространения. Остановимся на особенности крепления стержней с помощью вязальной проволоки.

Специфика вязки

Производство арматурных каркасов с фиксацией элементов вязальной проволокой осуществляется следующими методами:

  • обвязка арматуры ручным способом, отличающимся повышенной трудоемкостью, требующим приложения значительных усилий, высоких затрат времени. Фиксация стержней производится в местах стыковки с использованием отожженной проволоки диаметром 0,8-1,2 мм. При ручном методе используются пассатижи или специальный крючок для выполнения вязки, использование которых позволяет прочно скручивать концы проволоки, обеспечивать фиксацию стержней;

Арматурные стержни соединяются воедино специальной проволокой

  • автоматизированным методом, предполагающим применение специального пистолета для вязки. Устройство гарантирует качественное соединение прутков, быстрое выполнение операций. Время, необходимое для фиксации пары прутков, не превышает одной секунды. Пистолет применяется при выполнении значительных объемов работ.

Арматурные каркасы, элементы которых скреплены вязальной проволокой, характеризуются прочностью, обеспечивают долговечность возводимого фундамента.

Виды усиленных конструкций

Функциональное назначение разновидностей пространственных конструкций, изготовленных из металлических прутков – обеспечение прочности железобетонного монолита. Каркас арматурный для фундамента определенного типа имеет свои конструктивные особенности, предусматривающие:

  • Наличие двух поясов контура усиления, скрепленных с помощью поперечно расположенных стержней. Применяется для цельного основания ленточного типа.
  • Использование стержневой сетки, обеспечивающей жесткость плиточных фундаментов.
  • Применение вертикально расположенных стержней, скрепленных цельными поперечными контурами, гарантирующими прочность буронабивных оснований свайного типа.

Каркас для плитного фундамента представляет собой две арматурные сетки, расстояние между которыми определяется исходя из выбранной толщины плиты

Типы армированных фундаментов

Рассмотрим разновидности железобетонных оснований, для усиления которых применяются стальные прутки:

  • основание ленточного вида распространено в частном строительстве, а также в промышленной сфере. Каркас арматурный для фундамента ленточного типа – сложная и ответственная конструкция, элементы которой фиксируются вязальной проволокой или хомутами, изготовленными из пластика. Пространственная конструкция воспринимает растягивающие и сжимающие усилия, обеспечивая целостность фундамента. Изготовление арматурных каркасов для ленточных оснований осуществляется непосредственно как в смонтированной опалубке, так и отдельно, с последующим опусканием в траншею готовых элементов;
  • плиточный фундамент актуален при возведении зданий на проблемных почвах. Толщина плиты регламентирует жесткий интервал между двумя стержневыми сетками, представляющими арматурные каркасы. Металлические стержни сеток расположены внутри бетонного массива, надежно защищены от коррозии. Толщина защитного слоя составляет 5 сантиметров. Сетки изготовлены из поперечных и продольных стержней, сечение которых составляет 12-14 мм;
  • свайный фундамент буронабивного типа позволяет запускать объект в эксплуатацию непосредственно после возведения, но характеризуется длительным циклом выполнения подготовительных мероприятий. Армокаркас отличается простой конструкцией по сравнению с другими видами усиления фундаментов. Каркас из арматуры содержит продольно размещенные стальные прутья. Длина превышает габарит буронабивной сваи на 0,3-0,5 м. Конструктивно рама представляет группу из 4-6 стержней диаметром 12 мм. Они обвязаны поперечными хомутами, форма которых напоминает треугольник или окружность.

Таковы разновидности фундаментов, при обустройстве которых применяются арматурные каркасы.

Последовательность операций

Самостоятельно осуществляя работы по формированию контура усиления ленточного основания, руководствуйтесь приведенными рекомендациями по выполнению операций:

  • Заготовьте прутки необходимой длины, диаметра, соответствующие предварительно разработанному эскизу.
  • Нарежьте стержни, соблюдая требуемые размеры.
  • Уложите с расчетным интервалом гладкие поперечные прутки (сечением 6-8 мм) требуемого размера, обеспечив расстояние 5 сантиметров до краев ленты.
  • Разместите сверху два ребристых прутка диаметром 12-16 миллиметров, формирующие нижний контур.
  • Установите вертикальную арматуру в точках сопряжений прутков, обеспечив ее длину на 10 сантиметров ниже общей высоты будущего основания.
  • Обеспечьте расстояние, равное 5 см, от контура усиления до грунта, используя куски кирпича, отходы, специальные подставки.
  • Зафиксируйте элементы, используя вязальную проволоку и специальное приспособление.
  • Выполните сборку и фиксацию прутков верхнего яруса, аналогичным образом.
  • Проверьте надежность крепления проволоки, неподвижность пространственной конструкции.

Осуществляя сборку, крепление стержней, расположенных на каждом из ярусов, предварительно согните с помощью специального инструмента выступающие концы длиной 30 сантиметров, что обеспечит необходимое перекрытие, жесткость угловых зон, позволит сформировать надежный пространственный армокаркас.

Итоги

Материал статьи содержит рекомендации, позволяющие изготовить армокаркас основания, обеспечивающий прочность, долговечность возводимого здания. Потребуются качественные материалы, необходимый инструмент и немного терпения.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках – 12 лет, из них 8 лет – за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

выбор хомутов и процесс изготовления, пространственный каркас из арматуры и плоский для армирования фундамента

Сооружения, выстроенные для длительной эксплуатации, обязательно должны содержать арматурные металлические каркасы. Они могут находиться в фундаменте или железобетонных блоках. Именно их присутствие делает постройку надежной и долговечной.

      Что это и зачем нужны?

      Арматурный каркас состоит из стальных прутьев. Чаще всего используют рифлёные изделия, они обеспечивают лучшее сцепление с цементом. Конструкции из арматурной сетки добавляют прочность бетону, который выдерживает довлеющие нагрузки, но не может противостоять растягивающим усилиям. Арматурный каркас устойчив к любым воздействиям и деформациям. Присутствие его в фундаменте или поверхностях постройки (стены, пол, потолочные перекрытия) увеличивает надежность здания многократно, обеспечивает его целостность и долговечность.

      Каркасы изготавливают на промышленных предприятиях или кустарным способом для личного пользования. Самостоятельно собирать изделие можно лишь, имея определенный опыт. Слабые прутья или некачественная сборка под давлением бетона может привести к разрыву сборного узла, деформации прута, нарушении целостности фундамента.

      Прочность арматурных конструкций зависит от разных причин:

      • вида каркаса;
      • марки стали;
      • диаметра и рифления прутьев;
      • соединительных элементов;
      • частоты установки прутьев.

      Используют арматурные каркасы повсеместно, особенно они незаменимы в строительстве. К сфере их применения относятся такие.

      • Монтаж фундамента любого типа – ленточного, плитного, свайного.
      • Монолитные бетонные конструкции не могут обходиться без арматуры. Несмотря на видимую прочность, цементные изделия, не усиленные металлом, способны осыпаться и разрушаться.
      • Арматуру применяют для балок, колонн, так как они выдерживают большую нагрузку перекрытий, и проверка их прочности на изгиб без поддержки металла не всегда успешна.
      • Тонкие плоские каркасы используют при выполнении внутренних и наружных отделочных работ. Их присутствие на плоскости стены позволяет в дальнейшем избежать трещин и деформаций, вызванных перепадом температур или влажной средой.
      • Важно применение арматуры в перекрытиях зданий. Она помогает выдерживать нагрузку на изгиб, давление, разрыв и механические удары.
      • Кирпичную кладку также можно укрепить арматурой. Она гарантирует прочность стены даже при некачественном цементе.
      • Металлическая сетка поможет крепко держаться потолочной плитке, сделает прочной стяжку пола.
      • Арматуру применяют для утепления трубопроводов, идущих по поверхности земли. На плоскую сетку легко устанавливается теплоизоляция разных видов.

      В каждой сфере деятельности используется собственный вид арматурного каркаса с индивидуальной конструкцией, определенной толщиной и частотой прутьев.

      Процесс изготовления

      Для армирования фундамента, железобетонной балки, бетонных блоков и других конструкций выпускают стержневую и проволочную арматуру. Каждому объекту требуются изделия разного типа стали. Например, для армирования бетона используют низколегированную и углеродистую сталь.

      По способу применения арматуру классифицируют на 4 вида.

      • Рабочая – задает форму бетонным строениям, идет на изготовление каркасов.
      • Монтажная – скрепляет базовые элементы при бетонировании.
      • Распределительная – рационально принимает нагрузку.
      • Хомуты – представляют собой арматурные крепежи, связывающие стержни в единый каркас.

      Изготовление заводским способом

      Созданную на производстве арматуру режут на стержни по заданным параметрам, гнут на гибочных машинах, производят из нее хомуты и петли для монтажа каркасов. Все это делается на приводных станках. На металлургических заводах формируют арматурные сетки, там же из них гнутым способом производят объемные каркасы. Сварку стержней в местах соединений сваривают с помощью одноточечных или многоточечных машин. На больших монтажных установках выстраивают и фиксируют пространственные каркасы.

      Ручная сборка

      Каркасы ручной сборки изготавливают следующим образом.

      • Начинают работу с составления схемы, в которой фиксируется нагрузка на конкретный объект. В связи с полученными данными вычисляют параметры каркаса, подбирают толщину изделия и марку стали. Просчитывают расстояния между прутьями, получают данные по количеству требуемого материала.
      • Из арматуры, согласно схеме, нарезают металлические стержни.
      • На плоскость в ряд выкладывают подготовленные прутья, выдерживая расстояние, заданное проектом.
      • Перпендикулярно на лежащие прутья устанавливают второй ряд изделий.
      • В точках их соприкосновения арматуру фиксируют с помощью сварки. Применяют и другие способы фиксации – в качестве креплений используют проволоку, муфты, петли, уголки, швеллеры. В итоге получают определенное количество автономных секций.
      • Из полученных секций формируют объемный каркас, который ляжет в основу бетонных блоков или пойдет на заливку фундамента.

      В некоторых случаях применяются плоские сетки, например, для укрепления потолка, стяжки пола, отделки стен.

      Обзор видов

      Армирующие каркасы могут различаться по форме, толщине прутьев, маркам стали, методу сборки. Форма сечения арматурного стержня может быть треугольной, овальной, круглой, гладкой либо рифленый. По конструктивным особенностям каркасы разделяют на две большие группы.

      Плоские и пространственные

      Арматурные конструкции разделяют на две большие категории: плоские (двухмерные) и пространственные (трехмерные).

      1. Плоские каркасы изготавливаются следующим образом: монтажные стержни, устанавливаются в верхней плоскости. Рабочие прутья выкладываются вдоль нижней плоскости. Распределительные стержни занимают свое место поперек конструкции. Изделие фиксируется в узлах соединений, образуя своеобразную сетку с ячейками, все углы которой абсолютно прямые. Двухмерные каркасы применяют для укрепления плоскостных объектов – облицовки стен, кирпичной кладки.
      2. Пространственные. К ним относятся изделия, которые располагаются в трех измерениях – в длину, ширину, высоту. Они могут состоять из нескольких плоских каркасов, соединенных в единую объемную конструкцию. Более легкие и прочные модели изготавливают гнутым способом из цельной армированной сетки. Пространственные каркасы выдерживают разнонаправленные нагрузки. Их применяют в монолитном строительстве, также используют для укрепления колонн и усиления уже выстроенных стен и перекрытий.

      По методу сборки

      Арматурные каркасы состоят из секций. Те, в свою очередь, собраны из металлических стержней. Стержни скрепляются между собой разными способами.

      1. Электросваркой. Работу выполняют профессиональные сварщики. Несмотря на это, способ не особо популярен, так как сварка чревата нарушением структуры металла и потерей прочности.
      2. Вязальной проволокой. Процесс вязания проволокой происходит вручную, с помощью специального крючка. Материал подбирают толщиной 0,8-1 мм.
      3. Вязальным пистолетом. Автоматизированный способ соединения арматурных прутьев в единую конструкцию.

        Из готовых секций арматурный каркас собирают по-разному.

        1. Секции скрепляются между собой хомутами и другими фиксаторами.
        2. Для сцепки применяются монтажные кольца.
        3. Элементы каркаса связываются с помощью распределительной арматуры.

        Самые прочные каркасы получают методом гнутья армированных сеток.

        Комплектующие

        Чтобы собрать из стержней или секций определенный каркас, понадобятся специальные фиксаторы, ограничители. Их придумано большое множество, и все они с успехом применяются в сборке арматурных конструкций. Выполняются данные элементы из прочного современного пластика, на который не влияют температурные колебания и технические свойства бетона.

        Фиксаторы делят на группы – для вертикальной сборки, для горизонтальной сборки, универсальные. Для каждой задачи продумана специальная форма крепления. Остановимся подробнее на самых популярных видах комплектующих элементов.

        • «Змейка» – популярный фиксатор, выполненный в виде извилистой линии. Элемент предназначен для армирования пространства между сетками. Благодаря ему заметно сокращается продолжительность технологических операций в процессе строительства.
        • Кольца – обычно для укладки армирующего слоя применяется кольцо крупного диаметра с множеством ножек, позволяющих ему надежно удерживаться во время монтажных работ.
        • «Грибки» – это название получили сразу несколько видов комплектующих. Один из них – фиксатор на удобной ножке для удерживания узлов, образованных металлическими стержнями. Второй представляет собой защитный колпачок, одеваемый на торчащую арматуру, во избежание травматизма на строительной площадке.
        • «Стульчики» – удобный фиксатор для однослойной горизонтальной арматуры, диаметром до 16 мм. Усиленные варианты могут фиксировать стержни диаметром 20-30 мм. Применяются для монтажа фундамента, межэтажных перекрытий, стяжек.
        • «Звездочки» – универсальные фиксаторы, выглядят в виде зубчатых колец разной величины. Зажим в центре изделия рассчитан на фиксацию горизонтальной и вертикальной арматуры. Работает с сечением стержней от 5 до 20 мм. Применяется в большинстве случаев для монтажа столбов, заборов.
        • «Стойки» – относится к универсальным фиксаторам, но чаще используется как горизонтальный элемент крепления. Может обслуживать арматуру диаметром от 16 до 40 мм. Для нарастающей толщины слоя существуют многоярусные стойки, с возможностью установки элементов друг на друга.
        • «Кубики» – многофункциональное крепление для арматуры диаметром 4-30 мм, способное задействовать все 4 стороны.
        • «Косточки» или «бабочки» – с помощью данных горизонтальных подставок возможно изменение слоя, в зависимости от используемой поверхности. Фиксаторы работают с арматурой от 20 до 40 мм.
        • «Опоры» – крепления подходят стержням с диаметром от 4 до 30 мм. Они могут быть квадратными, круглыми или прямоугольными.

        Элементы с крупной круглой платформой предназначены для сыпучих оснований.

        Популярные производители

        Плоские и пространственные арматурные каркасы можно приобрести в качестве готовых изделий. Многие заводы их собирают в своих цехах, с учетом разработанных стандартов либо по индивидуальному заказу. К самым популярным производителям арматуры относятся следующие компании.

        • ОАО Пензенский арматурный завод (ПАЗ). Более 50 лет предприятие выпускает качественные изделия, технически совершенную продукцию, используемую для разного рода деятельности.
        • ООО Евразийский арматурный завод. Продукция известна под торговой маркой «ЕАЗ». Задачей компании стоит выпуск высококачественных изделий по доступным ценам. Заводские технологии ориентированы на производство современной продукции.
        • АО Алексинский завод тяжелой промышленной арматуры. Крупнейшее отечественное специализированное предприятие по выпуску арматурной продукции. Предприятие оперативно реагирует на требование рынка, нередко поставляет новаторскую продукцию.
        • Арматурный завод «Гусар» основан в 2002 году, на сегодняшний день имеет 1400 сотрудников. Для выпуска своих изделий использует последние технологические достижения, а также безопасные материалы, которые не загрязняют окружающую среду.
        • АО «Армалит». Современный производственный комплекс, выпускающий арматуру разных видов. Ведет свою деятельность с 1878 года.

        Особенности сборки

        Если есть опыт работы с арматурой и уверенность в собственных силах, можно изготовить конструкцию для заливки фундамента дома самостоятельно. Но она должна быть прочной и качественной, только в таком случае удастся обеспечить надежность и долговечность всей постройки. Устройство арматурных каркасов для ленточного, плитного и свайного фундамента не одинаковое. Рассмотрим все три варианта.

        Ленточный

        Прежде чем приступить к выполнению каркаса для ленточного фундамента, следует учесть несколько правил.

        • Высота конструкции должна заметно превышать ее ширину.
        • Лучше не прибегать к монолитным соединениям типа сварочных узлов. Следует выбирать гибкие фиксаторы, например, полимерные хомуты либо проволоку.

        При возведении арматурного каркаса упор необходимо делать на продольное растяжение.

        Армирование ленточного фундамента состоит из следующих этапов.

        1. На продолжении всей длины траншеи вбивается рифленая арматура двумя рядами. Размеры высоты стержней должны быть ниже уровня будущего фундамента.
        2. Когда установка стержней закончена, их попарно скрепляют между собой горизонтальными отрезками арматуры. Для соединений можно использовать заводские пластиковые фиксаторы подходящего типа или проволоку.
        3. После монтажа поперечной арматуры на них устанавливают продольную, располагая ее по длине всей траншеи. В соединительных узлах стержни тщательно фиксируются.
        4. Таким образом монтируют нижний и верхний пояс каркаса.

        Убедившись в прочности конструкции, фундамент заливают бетоном.

        Плитный

        Для плитного основания используют две армированные плоские сетки, такими же размерами, как и фундаментные плиты. Толщина стержней, из которых собраны сетки, варьируется в пределах от 12 до 16 мм. Между собой две плоские конструкции скрепляются пластиковыми трубками или уголками. Такой каркас позволяет равномерно распределить нагрузку по всему фундаменту.

        Свайный

        Армирование свай подразумевает укрепление их вручную металлическими стержнями либо усиление пространственным каркасом производственной сборки. Ручной способ осуществляется следующим образом.

        • Ребристая арматура устанавливается в подготовленные под сваи отверстия. Количество вертикальных стержней зависит от объема свай.
        • В роли фиксаторов выступают специальные хомуты.
        • После установки свай фундамент заливается бетоном.

        Приступая к самостоятельной сборке каркаса важно не переоценить свои силы. Если не уверены в качестве работы, лучше обратиться к специалисту. От прочности арматурного каркаса зависит безопасность и долговечность любого строения.

        О том, как правильно армировать ленточный фундамент, смотрите в следующем видео.

        Каркасы из арматуры: процесс изготовления и правила установки

        Автор Optimist На чтение 10 мин. Опубликовано

        Работы по возведению конструкций из монолитного железобетона включает и заготовку арматуры и арматурных каркасов. В данном разделе мы и рассмотрим, какую арматуру и каркасы используют в монолитных фундаментах и стенах при строительстве жилых домов и хозяйственных построек.

        Виды арматуры

        Для изготовления арматурных стержней и каркасов применяют стали, указанные в таблице 1.

        Таблица 1. Арматурная сталь для железобетонных изделий

        Наименование ГОСТ  Класс  Марка стали Диаметр,
        мм
        Поставка
        Горячекатаная гладкая арматурная сталь  5781-(..)  A-I Ст3   6…40 6…12-в мотках
        14…40-в стержнях
        Горячекатаная арматурная сталь периодического профиля 5781-(..)  A-II  Ст5 6…40 6…12-в мотках
        18Г2С 40…80 14…80-в стержнях
        A-III 25Г2С 10…40 6…10-в мотках
        32Г2Рпс 6…22   12…40-в стержнях
        A-IV 80С 10…18 В стержнях
        29ХГ2Ц 10…32 В стержнях
        A-V 23Х2Г2Т 10…32 В стержнях
        Упрочнённая вытяжкой арматурная сталь 5781-(..)  A-IIв Ст5 6…40 6…10-в мотках
        80Г2С 80Г2С 12…80-в стержнях
        A-IIIв 25ГС 10…40 7…10-в мотках
        32Г2Рпс 6…22 12…40-в стержнях
        Холоднотянутая арматурная гладкая проволока 6727-(..) B-I  Ст3  3, 4, 5 В мотках
        Холоднотянутая арматурная проволока периодического профиля  Bр-I  Bр-I  Ст3  3, 4, 5 В мотках
        Термомеханическая и термическая упрочненная сталь периодического профиля  10884-(..) Aт-IIIс     Ст5 10…18 В стержнях
        Aт-IVс 25Г2С,
        10ГС2
        10…28 То же
        Aт-IV 20ГС
        Aт-V
        Примечание:
        Применяемая в строительстве арматурная сталь с винтовым профилем (ТУ 14-2-448-..) имеет номинальные диаметры стержней 18, 25, и 32мм, по химическому составу, механическим свойствам и классу соответствует арматурным сталям по ГОСТ 5781-.. и ГОСТ 10884

        Арматурную сталь выпускают:

        • гладкую горячекатаную сталь — для армирования железобетонных конструкций (ГОСТ 5781-..)
        • гладкую сталь периодического профиля — для армирования обычных и предварительно напряжённых железобетонных конструкций (ГОСТ 5781-..)
        • стержневую сталь арматурную и термически упрочнённую периодического профиля — для армирования предварительно напряжённых железобетонных конструкций (ГОСТ 10884-..)
        • сталь горячекатаная по ГОСТ 5781-(..) — имеет 5-ть классов (A-I; A-II и Ac-II, A-III, A-IV, A-V)
        • сталь термически упрочнённая по ГОСТ 10884-(..) — имеет 4-е класса (Aт-IV, Aт-V, Aт-VI, Aт-VII)

        В обозначении арматуры на чертежах указан диаметр в миллиметрах, класс и ГОСТ.

        Например:

         

         

         

         

         

         

        Стержень арматуры периодического профиля диаметром 20 мм имеет обозначение 20 A-II ГОСТ 5781

        Стержень гладкой арматуры диаметром 8 мм имеет обозначение

        8 A-I ГОСТ 5781

        Стержень гладкой холоднотянутой арматурной проволоки периодического профиля диаметром 4 мм имеет обозначение

        4 Вр-I ГОСТ 6727

        Товарные арматурные изделия

        При изготовлении арматурных каркасов следует руководствоваться указаниями СНиП III-15-(..), а также рабочими чертежами проекта производства работ.Как правило, арматуру изготавливают в специализированных цехах в виде укрупнённых элементов.

        Сварочные работы выполняют в соответствии с «Указаниями по сварке соединений арматуры и закладных деталей железобетонных конструкций» (СН 393-..). Эти работы должны выполнять сварщики, прошедшие соответствующий курс обучения и имеющие специальные свидетельства.

        Ручная вязка арматуры разрешается в исключительных случаях, при выполнении мелких работ.В строительстве преимущественно используют плоские и рулонные арматурные сетки по ГОСТ 8478-(..) «Сетки сварные для армирования железобетонных конструкций. Сортамент и технические требования» и тяжёлые сварные унифицированные арматурные сетки по ГОСТ 23279-(..) из стержневой арматуры.

        Арматурные сетки могут быть использованы как законченные изделия или как полуфабрикат, подвергаемый дальнейшей доработке:

        • разрезка на части
        • вырезка отверстий
        • приварка дополнительных стержней
        • гибка
        • укрупнительная сборка в объёмные каркасы и т.п.

        Изготовление пространственных каркасов целесообразно производить из сварных и рулонных сеток. Свариваемость основного металла можно предварительно оценить по группам.

        Таблица 2. Группы свариваемости сталей

        Группа Свариваемость  Характеристика
        I Хорошая Свариваются любыми способами без применения особых приёмов, образуя сварные соединения высокого качества.
        II Удовлетворительная Для получения сварных соединений высокого качества требуется строгое соблюдение режимов сварки, применение специального присадочного металла, особо тщательная очистка свариваемых кромок и нормальные температурные условия сварки, а в некоторых случаях — предварительный и сопутствующий подогрев до 100-150оС, а также термообработка.
        III Ограниченная В обычных условиях сварки стали склонны к образованию трещин. Перед сваркой их подвергают термообработке и подогреву до 250-400оС с последующим отпуском.
        IV  Плохая Качество сварных соединений пониженное, швы склонны к образованию трещин несмотря на то, что при сварке применяют сложные технологические приёмы, обязательный подогрев изделий, предварительную и последующую термообработку.

        Арматурные каркасы из фасонной стали (швеллер, уголок и закладные детали) изготавливают с соблюдением требований СНиП III-18.

        Закладные изделия

        Закладные детали служат для соединения между собой сборных железобетонных конструкций при монтаже их с целью образования жёсткого каркаса. Закладные детали изготавливают из листовой и профильной стали путём механизированной заготовки элементов и контактной точечной, рельефной и дуговой сварки, а также холодной штамповки.

        Основные типы и конструктивные формы элементов сварных соединений закладных деталей должны назначаться в соответствии с ГОСТ 19292.

        Таблица 3. Рекомендации по выбору сталей для закладных деталей

        Характеристика закладных деталей Условия эксплуатации конструкций
        до Т = -30оС от Т = -30оС до Т = -40оС
        марка стали
        по ГОСТ 380-(..)
        толщина проката,
        мм
        марка стали
        по ГОСТ 380-(..)
        толщина проката,
        мм
        1. Закладные детали, рассчитываемые на усилия статистических нагрузок Ст3пс2 4…25 ВСт3пс6 4…10
        ВСт3сп5  4…25
        2. Закладные детали, рассчитываемые на динамические и многократно повторяющиеся нагрузки  ВСт3сп5 4…25 ВСт3сп5 4…25
        3. Закладные детали конструктивные, не рассчитываемые на силовые воздействия ВСт3кп 4…30 ВСт3кп2 4…30
        БСт3кп2 4…30 ВСт3пс3 4…30

        При хранении и перевозке арматуры, заготовок и каркасов они должны быть надёжно защищены от увлажнения, загрязнения и повреждений.

        Установка арматурных каркасов

        Установку арматуры необходимо выполнять по схемам, разработанным в проекте производства работ (ППР), что обеспечивает правильную последовательность монтажа.Доски для перехода рабочих по арматуре укладывают и крепят согласно ППР.При монтаже все сварные соединения выполняют способом ванной сварки в инвентарных формах.

        Дуговую сварку можно применять с использованием остающихся стальных элементов: скоб, подкладок, накладок и др.В виде исключения при соединении арматуры внахлёстку или с накладками, разрешается дуговая сварка многослойными или протяжёнными швами.

        При необходимости замены марки стали, указанной в проекте, сталью другой марки, а также при замене стержней одного диаметра другими нужно соблюдать следующие требования:

        • при замене стержней одного диаметра стержнями другого диаметра из стали той же марки — суммарная площадь сечения арматуры должна быть равновелика площади сечения, предусмотренной проектом
        • при замене стержней из стали одной марки или вида стержнями другой марки или вида — расчётная площадь сечения арматуры должна изменяться обратно пропорционально расчетным сопротивлениям запроектированной и фактически применяемой стали

        Защитные покрытия арматуры (если они предусмотрены проектом) наносят согласно СНиП III-15. Целостность защитного слоя арматуры проверяют перед бетонированием, обнаруженные дефекты устраняют.

        Стыковать каркасы, сетки и отдельные стержни при монтаже арматуры следует по рабочим чертежам и указаниям СНиП II-21 и СН 393.

        В местах пересечения арматуры в каркасах:

        стержни штучной арматуры диаметром до 25 мм скрепляют точечной сваркой, перевязкой вязальной проволокой или с помощью специальных соединительных элементов,а стержни диаметром 25 мм и выше — при помощи дуговой сварки;

        для получения крестовых соединений двух или трёх пересекающихся стержней диаметром 3…40 мм из стали класса A-I, A-II, A-III и проволоки d = 3…8 мм классов B-I и Bp-I применяют точечную контактную сварку.Перевязкой и сваркой должно быть соединено не менее 50% всех пересечений, в том числе обязательно пересечение стержней с хомутами (в углах).

        Указания по сборке и сварке стержней арматуры

        При сборке арматурных каркасов должна строго соблюдаться соосность стержней. Смещение не должно превышать 0,1d, а перелом в месте стыка — не более 3о. Размеры фланговых швов: высота h=0,25d, но не менее 4 мм, ширина b=0,5d, но не менее 10 мм.

        Для сварки стержней из стали всех классов, кроме A-I, применяют электроды марки УОНИ 13/55У или аналогичные:

        • арматуру диаметром до 36 мм сваривают электродами диаметром 4-5 мм
        • арматуру диаметром 40 мм и выше — электродами диаметром 5-6 мм

        Сварку выполняют без перерыва до полной заварки стыка, обязательно заплавляя кратеры. Затем заваривают фланцевые швы. Сила тока при ручной сварке колеблется от 220А при d=20 мм до 330А при d=40 мм.

        Длина выпусков арматуры из тела бетона между стыкуемыми стержнями должна быть не менее 150 мм при нормальных зазорах и 100 мм при использовании вставки. При увеличенных зазорах между стыкуемыми стержнями допускается применение одной вставки из арматуры того же класса и диаметра.

        Бессварочные методы соединения арматуры

        При монтаже арматуры из отдельных стержней, усилении сеток и каркасов дополнительными стержнями крестовые соединения стержней арматуры, в местах их пересечения следует скреплять вязальной проволокой или с помощью проволочных фиксаторов.

        Концы стержней в бессварных соединениях из арматуры гладкого профиля в растянутой зоне делают с крюками, а из стали периодического профиля — без крюков. В местах стыкования стержни должны быть связаны проволокой двойным узлом.

        Расстояние между стыками, расположенными в разных сечениях каркаса, должны быть не менее длины нахлёстки или полунахлёстки. Стыки не должны совпадать с местами изгиба стержней.Расход стальной проволоки диаметром 1…1,5 мм для вязки 1 тн арматуры составляет 4…5 кг, при диаметре стержней свыше 25 мм их следует скреплять дуговой сваркой.

        Длину перепуска вязальных арматурных сеток и каркасов в рабочих стыках, выполняемых внахлёстку без сварки, в растянутой зоне — из стержней с номинальным диаметром d смотрите по таблице 4.

        Таблица 4. Сварные сетки и каркасы в рабочем направлении стыкуются внахлёстку без сварки

        Тип рабочей арматуры Условия работы стыка Бетон проектной марки
        М-150  М-200 и выше
        1. Горячекатаная арматура периодического профиля класса A-II, гладкая класса A-I  В растянутой зоне не изгибаемых элементов 35 d 30 d
        В растянутых элементах 40 d 40 d
        2. Горячекатаная арматура периодического профиля класса A-III и упрочнённая вытяжкой непериодического профиля класса A-IIB В растянутой зоне не изгибаемых элементов   45 d 40 d
        В растянутых элементах    50 d 40 d
        Примечание:
        1. В любом случае длина перепуска Lн должна быть не менее 250 мм.
        2. Длина перепуска Lн в сжатой зоне может быть на 10d меньше, но не менее 200 мм.

        В направлении монтажной арматуры сетки укладываются без перепуска с расстоянием 200 мм по осям крайних рабочих стержней соседних сеток. Смещение арматурных стержней при их установке в опалубку, а также при изготовлении арматурных каркасов и сеток не должно превышать 1/5 наибольшего диаметра стержня и 1/4 диаметра устанавливаемого стержня.

        Для защиты арматуры от коррозии необходимо устраивать защитный слой из бетона согласно таблице 5.

        Таблица 5. Минимальная допустимая толщина защитного слоя из бетона

        Наименование
        железобетонных изделий
        Толщина
        защитного
        1. Плиты и стены толщиной до 100 мм из бетона:
        — тяжёлого 10 мм
        — лёгкого 15 мм
        2. Плиты и стены толщиной более 100 мм 15 мм
        3. Рёбра часторебристых покрытий 15 мм
        4. Блоки и колонны при диаметре арматуры:
        до 20 мм 20 мм
        от 20 мм до 35 мм 25 мм
        более 35 мм 30 мм
        при арматуре из проката 50 мм
        5. Нижняя арматура фундамента:
        при наличии подготовки    36 мм 36 мм
        без подготовки    70 мм 70 мм
        6. Фундаментные балки 36 мм

        В каждой изготовленной предприятием партии арматуры должен быть документ установленной формы, соответствующий стандарту «Арматура и закладные детали сварные для железобетонных конструкций».

        В документе (паспорте или сертификате на партию) указывают:

        • реквизиты завода-изготовителя
        • дату изготовления, номер партии
        • тип и число изделий в партии
        • марку стали
        • результаты внешнего осмотра, обмеров и механических испытаний.

        Установленные в конструкции дома (здания) арматуру и арматурные каркасы оформляют актом на скрытые работы, которые фиксируют номера чертежей, отступления от проекта, качество арматурных работ и заключение о возможности бетонирования.

        проектирование, маркировка и этапы строительства

        Монолитный железобетонный фундамент на сегодняшний день является наиболее распространенным решением при строительстве частных домов. За многие десятилетия эксплуатации он хорошо зарекомендовал себя, так как достаточно прост в устройстве, не требует использования специального оборудования и особо сложных устройств.

        Технологии

        Чтобы конструкция была прочной и надежной, необходимо соблюдать технологию.Он предусматривает создание проекта фундамента, рытье траншей, установку опалубки, укладку арматуры и работы по гидроизоляции. В основном ленточный фундамент представляет собой монолитную полосу из бетонного раствора, на которой возводятся несущие стены дома. Такая основа актуальна, если предлагается построить частный дом из материалов с внушительной массой, среди которых следует отметить:

        • шлакоблоков;
        • кирпич;
        • бетон;
        • камень.

        Проект фундамента можно создать для зданий, генплан которых представляет собой подвал, цокольный этаж или подземный гараж. Такую основу можно использовать и в том случае, если в доме будет мансарда или тяжелое перекрытие. Обычно такой тип строительства выбирают для регионов, где грунт преимущественно неоднородный. В целом ленточное основание подходит практически для всех типов грунтов, кроме торфяников и просадочных грунтов.

        Разновидности монолитного ленточного фундамента

        Ленточный монолитный железобетонный фундамент представлен несколькими разновидностями, которые можно классифицировать по нескольким факторам, в том числе по глубине залегания залежи.Для массивных построек из тяжелых строительных материалов применяется заглубленный фундамент, который располагается на глубине от 250 до 300 мм.

        Укладывать такой фундамент необходимо ниже уровня промерзания грунта. Еще один вид ленточного фундамента - это неглубокая конструкция, которая подходит для каркасных легких конструкций. Глубина в этом случае может быть в пределах от 550 до 600 мм.

        Подготовка материалов

        Ленточный монолитный железобетонный фундамент возводится после подготовки некоторых инструментов и материалов.Среди последних следует отметить:

        • рубероид;
        • проволока стальная;
        • арматура;
        • саморезы или гвозди;
        • щебень и песок;
        • бетон.

        Монолитный железобетонный ленточный фундамент можно заполнить самоподготовленным бетоном. Для этого потребуется цемент марки М-400 и выше. Для раствора необходимо приготовить также щебень средней фракции, песок и гравий.

        Чертеж

        Проектирование фундамента может осуществляться на основании Данных, которые диктуют глубину залегания оснований в зависимости от грунта.Например, в случае каменистого грунта глубина составляет 200 мм, а нагрузка на грунт составит 20 кН / м 2 . Эти цифры актуальны для хозяйственных построек, бань и сараев. Нагрузка увеличится до 30 кН / м 2 , а глубина насыпи составит 300 мм, если это одноэтажный загородный дом с мансардой. Параметры будут составлять 50 кН / м , 2, и 500 мм соответственно, если вы планируете строительство двухэтажного коттеджа.

        Трехэтажный особняк будет иметь фундамент, углубленный на 650 мм, а нагрузка составит 70 кН / м. 2 .Если это территория с преобладанием глины или плотной глины, то глубина сваи под хозпостройку составит 300 мм. Одноэтажный дом отдыха или двухэтажный коттедж заглубляют в подвальную площадь на 350 мм и 600 мм соответственно. Трехэтажный особняк будет иметь фундамент на высоте 850 мм.

        Реализуя конструкцию фундамента, можно столкнуться с тем случаем, когда территория представляет собой мягкий песок или зольную супесю. В первом случае глубина фундамента хозпостройки составит 450 мм, во втором - 400 мм.Если планируется строительство одноэтажного дачного дома, то на мягком песке его основание следует заделать на 650 мм. Для илистого грунта в случае сарая или бани необходимо основание, которое углубляют на 650 мм. Торфяники требуют другого типа фундамента.

        Расчет нагрузки на фундамент

        Нагрузка на фундамент рассчитывается по нескольким параметрам. Для этого нужно знать площадь стен, рассчитанную путем умножения высоты постройки на периметр дома.Объем стен рассчитывается путем умножения площади на толщину. Также важно определить вес стен, умножив удельный вес материала на объем.

        Определить площадь сторон фундамента можно методом умножения периметра на толщину. Удельная нагрузка на фундамент будет равна величине, которая будет получена путем деления веса стен на площадь всех сторон фундамента.

        Ориентир

        Строя ленточный фундамент для дома, на первом этапе необходимо осуществить разметку.Участок перед его очисткой от мусора и посторонних предметов, с поверхности снимается верхний плодородный слой почвы, толщина которого равняется пределу от 120 до 150 мм.

        Если не позаботиться об удалении органических остатков, это может вызвать возникновение процессов биологического разложения, которые нежелательны для подвалов. На участке необходимо разметить углы при помощи колышков. Плавность их установки следует уточнить, проверив диагонали.При необходимости колышки можно переставить. Между ними протягивается прочный шнур, с помощью которого можно контролировать углы и определять направление подвала.

        Перед тем, как приступить к возведению ленточного фундамента под дом, для обозначения углов можно использовать подготовленные деревянные детали в виде прямоугольников. Один из них устанавливается в нужной точке и фиксируется. На него следует приклеить два шнура, взяв за основу расстояние ширины желоба за основание. Протяните шнуры до следующего места, где будет располагаться второй угол.К этому элементу прикрепляются натянутые шнуры. Это позволит разметить 4 угла.

        Если несущие стены располагаются неподвижно и внутри здания, важно выполнить их разметку по той же технологии. Как только все углы обнажены, вы должны проверить диагонали квадрата или прямоугольника. Они должны быть равны, это будет свидетельствовать о правильной установке углов. Перед тем как сделать фундамент, важно разметить территорию. По ходу шнура возможно

        .

        % PDF-1.5 % 134 0 объект > endobj xref 134 32 0000000016 00000 н. 0000001404 00000 н. 0000001506 00000 н. 0000002052 00000 н. 0000002089 00000 н. 0000002203 00000 н. 0000003417 00000 н. 0000004901 00000 н. 0000006133 00000 п. 0000007420 00000 н. 0000008310 00000 н. 0000008909 00000 н. 0000009365 00000 н. 0000009620 00000 н. 0000010137 00000 п. 0000010751 00000 п. 0000011830 00000 п. 0000014480 00000 п. 0000047032 00000 п. 0000050877 00000 п. 0000056750 00000 п. 0000059381 00000 п. 0000066600 00000 п. 0000070360 00000 п. 0000077384 00000 п. 0000081225 00000 п. 0000090413 00000 п. 0000092625 00000 п. 0000100115 00000 н. 0000102324 00000 п. 0000110004 00000 н. 0000000936 00000 п. трейлер ] >> startxref 0 %% EOF 165 0 объект > поток xb``f``cʻe`3Abl, / 1Ȭ0QwάŽ gX: 7YB5 / _64i \ q`S9 ~ ΎIcSl * u ^ ǕaCMӑAl% ̓Xʲde8v8 ^ 7ˋSK & dY ^ Lq- Wejp?: q Xi LJJJJJ W

        .

        Выбор армирования швов - СТР

        Фото любезно предоставлено Neumann / Smith Architecture

        Дэном Цехмайстером, PE, FASTM, и Джеффом Снайдером, MBA
        Во время все более сложных систем ограждающих конструкций каменная промышленность стремится заново открыть для себя упрощенные принципы, которые сделали ее частый выбор материала на протяжении всей истории. Одним из них является принцип «меньше - значит больше», который справедлив, когда дело доходит до выбора проволочной арматуры для стеновых систем из каменной кладки.

        Стандартный калибр 9 (MW11), лестничная проволока, изготовленная из приварных встык поперечных стержней, расположенных на расстоянии 406 мм (16 дюймов) по центру (oc), лучше облегчает конструктивно необходимую установку арматуры, растекание и уплотнение раствора, а также усадку контроль для бетонных стен. Чтобы понять, почему, важно знать историю и рациональную основу армирования горизонтальных швов.

        Согласно данным Национальной ассоциации бетонных кладок (NCMA) TEK 12-2B (2005), Армирование швов для бетонной кладки , армирование швов CMU было «изначально задумано в первую очередь для контроля растрескивания стен, связанного с горизонтальной термической усадкой или расширением под действием влаги, а также альтернатива кладки коллекторов при связывании кладочных лент вместе.Далее в примечании TEK говорится, что он «также увеличивает сопротивление стены горизонтальному изгибу, но это не широко признано модельными строительными нормами для структурных целей».

        Самым значительным изменением конструкции одинарных и многослойных кирпичных стен с тех пор, как армирование проволокой стало нормой в 1960-х годах, стал переход на вертикальную и горизонтальную стальную арматуру (арматуру) в CMU в 1990-х годах. Это охватило все неармированные рынки Северной Америки, а не только сейсмические зоны.

        В соответствии с таблицей 2 в NCMA TEK 10-3 (2003), Контрольные стыки для бетонных стен - альтернативный инженерный метод («Максимальный интервал горизонтального армирования для соответствия критериям> 0.0007 An ”), для стен без заделки или частично залитых раствором, расстояние между проводами по вертикали составляет 406 мм (16 дюймов) oc для блока CMU 203 и 305 мм (8 и 12 дюймов). Кроме того, в таблице 2 указано, что расстояние 406 мм (16 дюймов) применяется к проводу 9-го калибра (MW11) с двумя проводами (по одному проводу на лицевую оболочку блока). Стена CMU без часто расположенных вертикальных арматурных стержней и соответствующих связующих балок с арматурными стержнями, заключенными в раствор, встречается редко.

        Проволока в форме лестницы обеспечивает необходимое центрирование арматуры. Изображения любезно предоставлены Джоном Маниатисом Проволока в форме фермы мешает центрированию арматуры в соответствии с требованиями кода.

        Ферма против лестницы
        Армирование горизонтальных швов претерпело значительные изменения за последние десятилетия. Вначале форма фермы была нормой для стен из неармированной каменной кладки. Как следует из NCMA TEK 12-2B, форма фермы оказывала некоторое сопротивление перекрытию стены в горизонтальном направлении из-за трех проводов - двух продольных и одной диагональной. Однако, поскольку большинство каменных стен в настоящее время, как правило, рассчитаны на перекрытие в вертикальном направлении, стальная арматура и раствор размещаются вертикально.

        Размещение арматуры
        Когда инженеры-строители проектируют армированную кладку, они обычно требуют, чтобы вертикальный стержень был размещен в центре ячеек блока. В статьях 3.4 B.11.a и b, Требования и спецификации строительных норм и правил для строительных норм , Комитета по стандартизации каменной кладки 2013 г. ширину блока и ± 50,8 мм (2 дюйма) по длине блока, измеренной от центра ячейки блока.

        Форма имеет значение
        Проволока лестничной формы имеет перпендикулярные поперечные стержни, приваренные встык под углом 406 мм (16 дюймов) к продольной проволоке. Он размещается поперечными стержнями по центру непосредственно над стенками блока (рис. 1). Размещение лестничного троса таким образом устраняет препятствия, вызванные диагональными поперечными стержнями, общими с формой фермы, особенно если блочные ячейки спроектированы так, чтобы содержать вертикальные стержни (Рисунок 2).

        Поток раствора
        Еще одно преимущество лестничной проволоки проявляется при укладке и уплотнении раствора.Отсутствие диагональных (анкерных) поперечин улучшает растекание и уплотнение раствора. Согласно статьям 3.43 B.4.d, код MSJC обычно требует размещения блока CMU (, т.е. полых блоков), чтобы вертикальные ячейки, подлежащие заливке, были выровнены. Это обеспечивает беспрепятственный путь для потока раствора. Согласно NCMA TEK 12-2B: «Поскольку диагональные поперечные проволоки могут мешать укладке вертикальной арматурной стали и цементного раствора, армирование швов ферменного типа не следует использовать в армированных или залитых раствором стенах.”

        Контроль усадки
        Проволока в форме лестницы, размещенная с поперечными стержнями, центрированными непосредственно над стенками блоков, имеет еще одно отличительное преимущество. Он размещает сварные встык Т-образные пересечения каждой продольной проволоки с поперечными стержнями непосредственно над Т-образными пересечениями, где торцевые поверхности блоков встречаются с каждой стенкой. При укладке по схеме непрерывного склеивания двухъячеечные блоки укладываются только под засыпку из облицовочного раствора. Перекрытия блоков засыпаются строительным раствором только рядом с вертикально армированными ячейками.

        Подложка из облицовочного раствора будет выдавливаться на перемычках при сжатии во время укладки блока, полностью закрывая Т-образные пересечения проволоки, связывая проволоку с бетонной кладкой (Рисунок 3). Следовательно, конечный результат должен заключаться в улучшенном контроле трещин от усадки.

        Проволока в форме лестницы улучшает контроль усадки. Прочная проволока диаметром 4,8 мм (3/16 дюйма) не оставляет места для покрытия раствором.

        Стандартный калибр 9 против усиленного 3/16
        Помимо формы ( i.е. фермы или лестницы), толщина проволоки важна в процессе укладки. Чаще всего указанная толщина швов раствора составляет 9,5 мм (3/8 дюйма). Наибольший диаметр проволоки, разрешенный Разделом 6.1.2.3 MSJC Code , будет составлять половину толщины шва раствора - 4,8 мм (3/16 дюйма). Существуют веские причины, по которым использование провода 9-го калибра (, т.е. 3,8 мм [0,148 дюйма) более целесообразно, чем использование провода большего диаметра для тяжелых условий эксплуатации (, т.е. 4,8 мм [3/16 дюйма]). .

        Допуски на укладку
        Допуск MSJC Code на укладку толщины стыка слоя раствора составляет ± 3.2 мм (1/8 дюйма), как указано в Статье 3.3 F. 1. b. Следовательно, указанный шов из раствора толщиной 9,5 мм (3/8 дюйма) может иметь толщину от 12,7 до 6,4 мм (от ½ до ¼ дюйма). При толщине шва из строительного раствора от до 3/8 дюйма, с использованием сверхпрочных 3/16 дюйма. проволока с покрытием, нанесенным методом горячего цинкования (согласно MSJC Code , раздел 6.1.4.2), оставит недостаточно места для покрытия из раствора, чтобы изолировать проволоку (рисунок 4). Буквально, блок можно было поставить прямо на провод ( т.е. блок на проводе на блоке).

        В статье в выпуске журнала Masonry Construction за январь 1995 г. «Выбор правильного армирования швов для работы» автор Марио Дж. Катани утверждает:

        Одной из веских причин использовать арматуру 9-го калибра является удобство и конструктивность. В то время как код позволяет армированию швов иметь диаметр, составляющий половину ширины шва раствора, допуски, разрешенные для узлов, соединений и самой проволоки, могут препятствовать размещению арматуры большого диаметра.Используйте его только тогда, когда другого выбора нет.

        Формовка углов
        Существуют некоторые споры относительно преимуществ заказа заводских сборных внутренних и внешних углов по сравнению с их формованием на месте. Поскольку код MSJC Code не различает достоинств ни одного из методов (и, действительно, почти не распознает их), необходима некоторая интерпретация.

        Стандарт для притертой проволочной арматуры в любом месте всегда один и тот же - требуется 152 мм (6 дюймов).) как минимум, при притирке прямых участков длиной 3,1 м (10 футов) друг к другу или там, где прямой участок пересекает угол (согласно статье 3.4 B.10.b). Это требование также может применяться к углам полевой формы. Внутреннюю продольную проволоку можно разрезать и согнуть, образуя угол в 90 градусов с минимальным перекрытием 152 мм (6 дюймов) параллельно недавно сформированной внутренней продольной проволоке (Рисунок 5).

        Заводские углы могут показаться естественным выбором, но это может потребовать дополнительных затрат времени и средств для любого размера или конфигурации, кроме стандартных (8 или 12 дюймов.) двухпроводная арматура. Это особенно актуально для регулируемых крючков и проушин, изготовленных по индивидуальному заказу.

        Углы полевой формы имеют много преимуществ. Они соответствуют всем требованиям MSJC Code и легко поддаются формовке, чтобы соответствовать любым угловым условиям. Каждая ножка может быть сформирована по размеру, а также притерта в каждом направлении от угла, что сводит к минимуму расточительные остатки с отрезков длиной 3,1 м, которые в противном случае были бы отправлены на свалку. Формованные на месте углы сокращают время выполнения заказа, стоят меньше на линейный фут, чем детали, изготовленные на заводе, и занимают всего минуту, чтобы вырезать и сформировать, чтобы соответствовать на рабочем месте.

        Здесь показана простая последовательность из трех шагов для формирования углов. Сетчатые стяжки, утвержденные Кодексом , безопасны, экономичны и легко доступны. Изображение предоставлено Мэттом Фаулером

        Пересекающиеся стены
        Код MSJC допускает сборные Т-образные горизонтальные участки армирования проволокой там, где внутренняя ненесущая каменная стена пересекает другую для боковой поддержки.Однако это может быть не лучший выбор. Такие Т-образные профили обычно закладываются на 406 мм (16 дюймов) по центру во время строительства в продольной стене, оставляя выступающую ножку Т-образного профиля, выступающую примерно на 609 мм (24 дюйма) до тех пор, пока пересекающаяся стена не станет построен.

        Многие каменщики согласятся, что оголенные участки провода могут быть опасными на месте, особенно на высоте глаз. К счастью, MSJC Code также допускает использование оцинкованной аппаратной ткани с сеткой 6,3 мм (1/4 дюйма) для внутренних ненесущих интересных стен (рис. 6).Кроме того, код MSJC позволяет использовать анкеры Z-образной планки для стен, которые пересекаются там, где требуется перенос сдвига. Выступающие Z-образные ремни имеют те же проблемы безопасности, что и открытые Т-образные секции. Их нужно использовать только там, где инженер-строитель указывает на передачу сдвига. Когда это применимо, сетчатые стяжки обычно являются лучшим выбором. Они легко доступны, просты и экономичны в установке, и их можно безопасно сгибать, пока пересекающаяся стена не достигнет их высоты.

        Варианты отделки
        Двумя наиболее распространенными видами отделки для армирования проволоки являются прокатное цинкование и горячее цинкование.Первая категория разрешена кодом MSJC для большинства внутренних помещений, не контактирующих с влагой или высокой влажностью. Эти стандартные оцинкованные покрытия производятся путем гальванизации - процесса, при котором слой цинка связывается со сталью, когда электрический ток пропускается через солевой / цинковый раствор с цинковым анодом и стальным проводником. Этот процесс выполняется, когда проволока находится в необработанном состоянии, перед ее изготовлением (, т. Е. , разрезанная и сваренная для придания формы) арматуры.

        В этом руководстве описывается выбор армирования швов. Изображение предоставлено Masonry Institute of Michigan Горячее цинкование требуется для всех наружных работ, а также любых внутренних стен, подверженных воздействию влаги или высокой влажности. Это процесс нанесения на сталь толстого слоя путем погружения ее в ванну с расплавленным цинком. Этот процесс выполняется после изготовления проволоки для формирования арматуры.

        Множество преимуществ
        К сожалению, не все, кто проектирует или задает арматуру проволоки, успевают за переходом на армированные CMU.Есть много мест в стране, где все еще используются устаревшая форма фермы и / или сверхпрочная проволока. На рис. 7 показаны преимущества и недостатки профилей лестниц и ферм, а также стандартной арматуры 9 калибра по сравнению с усиленной проволокой.

        Кроме того, проволока в форме лестницы с поперечными и поперечными стержнями 9-го калибра имеет другие преимущества, включая более низкие затраты на производство, упаковку и транспортировку. Более легкий вес связки снижает риск травм спины при работе с ними на рабочем месте.Конфигурация лестницы также упрощает установку проводов, арматуры и раствора, что, в свою очередь, увеличивает производительность каменщика.

        Спецификация
        Ниже и на Рисунке 8 приведен пример рекомендуемой формулировки для усиления горизонтальных швов в одинарных и многослойных кирпичных стенах:

        ЧАСТЬ 2 ПРОДУКТЫ
        2.1 Армирование кладки
        A. Армирование швов, общее: ASTM A 961
        1. Внутренние стены: оцинкованные, ASTM A 641 (0,10 унций на квадратный фут), углеродистая сталь.
        2. Наружные стены: горячеоцинкованная углеродистая сталь ASTM A 153, класс B-2 (1,50 унции на квадратный фут).
        3. Внутренние стены, подверженные воздействию высокой влажности: горячее цинкование, углеродистая сталь ASTM A 153, класс B-2 (1,50 унции на квадратный фут)).
        4. Размер проволоки и боковые стержни: диаметр W1,7 или 0,148 дюйма (калибр 9).
        5. Размер проволоки и поперечные стержни: диаметр W1,7 или 0,148 дюйма (калибр 9).
        6. Размер проволоки для шпоновых стяжек: W2,8 или 0,1875 дюйма в диаметре (3/16 дюйма).
        7. Расстояние между поперечными стержнями: 16 дюймов по центру
        8.Обеспечьте длину 10 футов.

        • B. Армирование швов кладки для одинарной кладки: лестничного типа с одной парой боковых стержней.
        • C. Армирование швов в каменной кладке с несколькими витками Кладка: лестничного типа с регулируемой (состоящей из двух частей) конструкцией, с отдельной двойной проушиной, приваренной встык к боковому стержню 16 дюймов по центру. Двойные крючки, которые входят в проушины, приваренные к арматуре, и препятствуют перемещению перпендикулярно стене. Длина стяжки с крюком должна быть достаточной, чтобы выступать минимум на 1/2 дюйма в оболочку внешней поверхности для полых элементов и минимум на 1-1 / 2 дюйма в сплошные элементы, но с минимальной крышкой 5/8 дюйма на внешней стороне.

        Проволока в форме лестницы, минимальный требуемый код нахлеста и варианты регулируемых петель для стыковой сварки показаны здесь. Изображение любезно предоставлено Джоном Маниатисом

        Заключение
        Чтобы контролировать возможное растрескивание в результате усадки в бетонной кирпичной стене, необходимо правильное размещение контрольных швов (CJ), а также размещение горизонтального армирования швов. Армирование горизонтальных швов в стене CMU не предотвращает растрескивание, а контролирует его. Без этого в бетонной кладке стены могут быть видны усадочные трещины, размер которых может проникнуть сама Мать-природа.

        При армировании стыков в виде лестницы 9-го калибра в бетонной стене из кирпича продольная проволока будет растягиваться по мере усадки бетонной кладки. Следовательно, случайные микроскопические трещины не должны быть заметны и будут менее уязвимы для элементов. Использование проволоки в форме фермы не соответствует нормам и может негативно повлиять на целостность железобетонной кирпичной стены.

        Когда дело доходит до армирования кирпичной кладки, старая поговорка «меньше значит больше» не может быть более верной.Проволока в форме лестницы, изготовленная из отрезков длиной 3,1 м (10 футов) с непрерывными боковыми стержнями 9-го калибра и приваренными встык поперечными стержнями 9-го калибра, расположенными на расстоянии 406 мм (16 дюймов), является идеальным выбором для высокоэффективных и экономичных стенных систем CMU.

        Дэн Зехмайстер, ЧП, FASTM, был исполнительным директором и директором по структурным службам Мичиганского института масонства (MIM) с 1986 года. Он является активным членом ASTM и в 2012 году был удостоен Международной награды за заслуги перед ним. Зехмайстер также является членом правления Американского института архитекторов (AIA) Совета по ограждению зданий Большого Детройта.С ним можно связаться по адресу [email protected]

        Джефф Снайдер, магистр делового администрирования, является президентом Masonpro Inc., поставщика специальных принадлежностей для подрядчиков каменщиков. Он имеет обширный опыт работы на местах, в том числе руководил проектами для каменщиков в Техасе и Нью-Мексико. Снайдер является доверенным лицом MIM и входит в его комитет по проектированию общих стен. С ним можно связаться по адресу [email protected]

        .

        Восстановление поврежденных сдвигом железобетонных балок с использованием самоуплотняющейся бетонной оболочки

        Экспериментально исследуется применение армированной самоуплотняющейся бетонной оболочки для структурного восстановления поврежденных сдвигом железобетонных балок. Были построены пять балок и подверглись монотонной нагрузке, чтобы продемонстрировать разрушение при сдвиге. Поврежденные образцы были восстановлены с использованием относительно тонких армированных кожухов и повторно испытаны той же четырехточечной изгибающей нагрузкой.Применяемая самоуплотняющаяся бетонная оболочка, охватывающая нижнюю ширину и обе вертикальные стороны первоначально испытанных балок (U-образная оболочка), имеет небольшую толщину (25 мм) и включает небольшие (5) стальные стержни и U-образные хомуты. Результаты испытаний и сравнения экспериментального поведения балок показали, что исследуемый метод оболочек является надежным методом восстановления, поскольку мощность модернизированных балок была полностью восстановлена ​​или улучшена по сравнению с исходными образцами.Также включено обсуждение способности нанесенной оболочки улучшить общие структурные характеристики исследуемых балок и, возможно, изменить их режим разрушения на более пластичный. Также были выполнены расчеты прочности на изгиб и сдвиг испытанных балок, а также оценка монолитных факторов прочности при пределе текучести и предела прочности покрытых оболочкой балок.

        1. Введение

        Одним из наиболее часто используемых методов восстановления плохо детализированных или поврежденных железобетонных (ЖБИ) элементов является нанесение оболочки вокруг структурных элементов.Ж / б оболочка - это традиционный и хорошо известный метод модернизации, который оказался лучшим вариантом для инженеров в сейсмоопасных районах. Давно признано, что куртки RC действительно обеспечивают повышенную прочность, жесткость и общее улучшение структурных характеристик. По этой причине, хотя обычная ж / б оболочка имеет недостатки, она часто используется либо до, либо после повреждения элементов ж / б, таких как балки, колонны и соединения [1–5].

        Использование торкретбетона на поверхности существующего железобетонного элемента с внешним собранным арматурным каркасом также оказалось эффективным методом усиления.Оболочка из торкретбетона может использоваться вместо обычных оболочек из монолитного бетона из-за ее способности обеспечивать хорошую прочность сцепления и низкую проницаемость. Также известно, что процесс торкретирования более универсален, чем обычная укладка бетона, и может применяться на очень трудных или сложных участках, где обычная бетонная опалубка окажется трудной, дорогостоящей или даже невозможной [2, 6].

        Кроме того, очевидные недостатки применения оболочки из ЖБИ (монолитного бетона или торкретбетона) заключаются в необходимости трудоемких и длительных процедур.Другим важным недостатком является уменьшение доступной площади пола, поскольку оболочка увеличивает размеры элементов, а также вызывает значительное увеличение массы, модификации жесткости и, как следствие, изменение динамических характеристик всей конструкции [7].

        По этим причинам, несмотря на то, что бетон является наиболее часто применяемым конструкционным материалом для оболочек, куртки также были построены с использованием стальных элементов, армированных волокном полимеров (FRP) и армированных текстилем растворов (TRM) в качестве альтернативы RC. оболочка.Разнообразие этих методов облицовки было исследовано для улучшения балок, колонн и соединений [8–11].

        Несмотря на то, что использование кожухов из стеклопластика или стальных каркасов улучшило реакцию элемента с кожухом в большинстве исследованных случаев, закрепление этих материалов оказалось важной и сложной проблемой для эффективности этих методов. Также очевидно, что общие конструктивные ограничения, такие как перемычки, наличие перекрытия и поперечные балки, особенно в случаях соединений балка-колонна, создают больше трудностей для применения этих материалов.Кроме того, в отказе FRP преобладает преждевременное отслоение композитного материала от бетонной поверхности, и сообщалось о значительном снижении потенциальной способности прочности на сдвиг [12].

        Недавно было предложено использовать тонкую и локально накладываемую ж / б оболочку для восстановления поврежденных соединений ж / б балки и колонны. Основным преимуществом этой техники обшивки по сравнению с обычной оболочкой из ЖБИ является тот факт, что ее применение не ограничено пространственными ограничениями и, поскольку она лишь незначительно изменяет исходный размер элементов, сейсмические характеристики здания практически не затрагиваются.Эта тонкая оболочка состоит из стальной арматуры малого диаметра и изготовлена ​​из предварительно смешанного, безусадочного, текучего, быстродействующего и высокопрочного раствора на основе цемента. Результаты испытаний показали, что циклический отклик модернизированных образцов был полностью восстановлен и в некоторых случаях значительно улучшился по сравнению с характеристиками первоначально испытанных образцов [13].

        Основываясь на этом успехе, здесь рассматривается и исследуется применение относительно тонкой оболочки из самоуплотняющегося бетона (SCC) для восстановления поврежденных железобетонных балок.Известно, что SCC - это высокотекучий несегрегационный бетон, который растекается и заполняет опалубку, герметизируя даже самую перегруженную арматуру без каких-либо механических вибраций [14, 15].

        Хорошая удобоукладываемость, отличное наполнение и проходимость делают SCC оптимальным материалом для восстановления поврежденных бетонных частей, восстановления целостности и однородности элементов. Кроме того, SCC протекает через арматуру, не вызывая вакуума в элементе или каких-либо разрывов на границе между существующим и новым бетоном.Таким образом, смеси SCC с высокой текучестью, заполнителем небольшого диаметра, смещением усадки и высокой прочностью обычно требуются в оболочках из-за нехватки места в рубашке. Это связано с его уменьшенной толщиной, связанной с объемом, занимаемым добавленной стальной арматурой. По тем же причинам SCC также рекомендуется в сдвигающих бетонных элементах, таких как глубокие балки, которые содержат перегруженную поперечную арматуру, и недавние исследования были сосредоточены на прочности на сдвиг нормальных и высокопрочных SCC [16–18].

        В этой статье экспериментально исследуется использование усиленной оболочки SCC для структурного восстановления поврежденных сдвигом RC балок. Для нужд данного исследования были построены 5 RC-балок, которые первоначально подвергались монотонной нагрузке, чтобы продемонстрировать режим разрушения при сдвиге. После этого поврежденные образцы были модернизированы с использованием относительно тонких кожухов SCC со стальной арматурой малого диаметра и повторно протестированы. Были исследованы различные образцы и конфигурации оболочки с различным количеством усиления изгиба и сдвига.Обсуждение результатов испытаний и способности нанесенной оболочки SCC полностью восстанавливать поврежденные балки, улучшать структурные характеристики балок с оболочкой по сравнению с первоначально испытанными балками и, возможно, изменять их режим разрушения на более пластичный один также включен.

        2. Экспериментальная программа

        Экспериментальная программа включает 10 монотонных испытаний на четырехточечный изгиб под нагрузкой. Во-первых, были построены 5 ж / б балок, которые первоначально были испытаны и повреждены на сдвиг.После восстановления с использованием усиленных кожухов SCC эти 5 балок с кожухом были повторно испытаны при той же нагрузке. В программу исследований также включены дополнительные испытания на сжатие и расщепление обычно используемого бетона исходных балок и SCC оболочек, а также испытания на растяжение стальных арматурных стержней образцов.

        2.1. Характеристики исходных балок

        Все балки имели одинаковую общую длину (1,6 м) и прямоугольное сечение.Размеры поперечного сечения составляли 200/300 мм (образец B1) и 125/200 мм (образцы B2, B3, B4, B5). Геометрические и механические характеристики первоначально испытанных балок представлены в таблице 1. Стальная арматура включала продольные деформированные стержни диаметром 8 или 16 в верхней и нижней части поперечного сечения балок и закрытые хомуты из низкоуглеродистой стали диаметром 5. Укрепление расположение образцов схематично показано на рисунке 1 и суммировано в таблице 1 с точки зрения продольных и поперечных отношений армирования.Средняя прочность бетона на сжатие и растяжение каждой балки была измерена в результате испытаний цилиндров на сжатие и раскалывание, соответственно, и представлена ​​в таблице 1. Кривые зависимости напряжения от деформации использованных стальных стержней и хомутов показаны на рисунке 2, измеренные из испытания стали на растяжение.


        Название балки (мм) (мм) Продольные стержни Стремена
        Вверх Низ 900 (МПа) (МПа)
        .

        Как создаются монолитные купола - несколько фактов о современном строительстве

        Иглу демонстрирует два наиболее важных преимущества таких конструкций, а именно их высокую прочность и отличные изоляционные свойства. Монолитные купола своей долговечностью в основном обязаны естественной прочности арки, а хорошая изоляция обеспечивается минимальной поверхностью сферического сечения.

        Первым современным монолитным куполом стал каток, построенный в Прово (штат Юта, США) в 1963 году.Четыре года спустя его перестроили и превратили в рынок. В таком виде первое монолитное сооружение функционировало до тех пор, пока оно не было снесено в 2006 году. В Польше наиболее узнаваемым купольным сооружением является так называемый «Космический город», в котором находится штаб-квартира Radio RMF FM.

        В настоящее время монолитные купола используются в различных архитектурных проектах, как жилых, так и промышленных и служебных. Благодаря прочной конструкции монолитные конструкции могут использоваться в качестве складов в цементной, минеральной, энергетической, сельскохозяйственной и горнодобывающей промышленности.Они также часто используются в качестве так называемых зданий, ограничивающих радиацию на атомных электростанциях, благодаря своей структурной целостности.

        Этапы возведения монолитного купола

        Современные монолитные купола в основном строятся с использованием метода, разработанного в США тремя братьями: Дэвидом, Барри и Рэнди Саутом. Первый купол был построен в Шелли в Айдахо в апреле 1976 года. Возведение монолитных куполов этим методом основано на нескольких этапах, выполняемых в строго определенном порядке.

        Первый этап - подготовка площадки под строительство. Для этого делается кольцевой бетонный фундамент, армированный стальной арматурой. Выложенные за пределы фундамента бруски служат для связи конструкции с дальнейшим усилением конструкции. Это создает монолит с высокой конструкционной прочностью.

        Второй этап строительства монолитного купола - это закрепление пневматического воздуха для образования кольца с последующей прокачкой воздуха до получения нужной формы.

        На следующем этапе в игру вступают полиуретаны. Внутри купола нанесен слой пенополиуретана , который после затвердевания действует как изоляция для всей конструкции и обеспечивает дальнейшее усиление. На этом этапе вы можете использовать, среди прочего, готовые полиуретановые системы , доступные в предложении группы PCC, которые позволяют производить высококачественных изоляционных покрытий . Примером таких продуктов являются серии Ekoprodur и Crossin ®. Изоляционные полиуретановые системы обеспечивают отличную тепло- и звукоизоляцию благодаря полужесткой пене и жесткой пене . Эти типы изоляции имеют очень широкий спектр применения. Применяются для фундаментов, полов, внутренних и внешних стен, крыш и чердаков. Благодаря использованию продуктов Crossin® можно достичь отличных коэффициентов теплопроводности. Помимо готовых полиуретановых систем , портфель продуктов группы PCC также включает полуфабрикаты, такие как полиэфирполиолы Rokopol® , антипирены (серия Roflam ), а также используемые компатибилизаторы и эмульгаторы. производить монтажные пены OCF высокого качества.Все эти химические продукты широко используются в современном строительстве.

        Четвертый этап строительства монолитных куполов - это сборка стальных арматурных стержней на ранее нанесенный пенополиуретан с использованием специально разработанной системы бортов. Маленькие купола требуют стержней небольшого диаметра с большим шагом. Для более крупных конструкций необходимо использовать более толстые стержни, расположенные на меньших расстояниях.

        Последний этап строительства монолитных куполов заключается в напылении бетона на арматуру, сделанную на предыдущем этапе.Этот слой обычно не превышает 8 см и полностью покрывает стальные стержни, создавая тонкостенный монолитный каркас. После высыхания бетон образует чрезвычайно жесткую и прочную конструкцию. Для улучшения свойств напыляемого бетона часто используются специальные модифицирующие добавки, такие как, например, продукты серии Rofluid ( M, H, P, T ). Добавки для бетона этого типа используются в качестве очень эффективных замедлителей сцепления с бетоном , которые замедляют схватывание бетонной смеси.Кроме того, благодаря своей химической структуре и низкому содержанию хлоридов, Rofluids не вызывают коррозию стальной арматуры.

        Преимущества и недостатки монолитных куполов

        Монолитные купола обладают рядом преимуществ. Прежде всего, они характеризуются отличными несущими и изоляционными свойствами, в первую очередь благодаря своей форме. Их уникальный дизайн дает им возможность противостоять даже самым серьезным стихийным бедствиям, таким как штормы, торнадо и даже землетрясения.Поэтому монолитные здания особенно популярны в регионах мира, наиболее подверженных стихийным бедствиям.

        Отсутствие необходимости установки несущих стен в монолитных конструкциях. позволяет удобно расположить планировку помещений. К тому же, благодаря уникальному дизайну, нет необходимости в крыше. Это приводит к значительному снижению инвестиционных затрат, а также к экономии времени строительства. Большая экономия достигается также за счет использования меньшего количества строительных материалов, чем при стандартном строительстве.

        Одним из недостатков и трудностей, возникающих при возведении монолитных куполов, является необходимость привлечения опытных специалистов со специализированным оборудованием. Это может повлечь за собой относительно высокую стоимость выполнения такой конструкции. Кроме того, криволинейные поверхности внутри купола требуют корректировки всего внутреннего дизайна и меблировки. Для оптимального использования поверхностей, особенно труднодоступных частей, обычно необходимо изготавливать мебель на заказ.Оригинальный внешний вид этого типа зданий также может быть недостатком, особенно в районах с традиционными зданиями, где монолитные купола будут слишком самобытными.

        .

        Расстояние между арматурой в бетонных балках и перекрытиях

        Минимальное и максимальное расстояние между арматурой в бетонных конструктивных элементах, таких как балки и плиты, требуется в соответствии со стандартными правилами. Минимальное расстояние между арматурой основано на максимальном размере заполнителей, чтобы бетон можно было правильно укладывать и уплотнять. Максимальное расстояние между арматурой, основанное на глубине балок и плит, чтобы обеспечить адекватную поддержку изгибающего момента и поперечной силы в конструкции.

        Шаг арматуры в бетонных балках и перекрытиях

        1.Минимальное расстояние между стержнями при растяжении

        Минимальное расстояние по горизонтали между двумя параллельными основными стержнями должно быть равно диаметру большего стержня или максимальному размеру крупного заполнителя плюс 5 мм. Однако, если уплотнение выполняется игольчатым вибратором, расстояние может быть дополнительно уменьшено до двух третей от номинального максимального размера грубого заполнителя.

        Минимальное расстояние по вертикали между двумя основными стержнями должно быть

        • 15 мм,
        • Две трети номинального размера крупного заполнителя, или
        • Максимальный размер полосы или что больше.

        2. Максимальное расстояние между стержнями при растяжении

        Обычно этот интервал будет таким, как указано ниже:

          1. Для балок эти расстояния составляют 300 мм, 180 мм и 150 мм для марок основной арматуры Fe 250, Fe 415 и Fe 500 соответственно.
          2. Для плит
            • (i) Максимальное расстояние между двумя параллельными основными арматурными стержнями должно составлять 3 или 300 мм или в зависимости от того, что меньше, и
            • (ii) Максимальное расстояние между двумя вторичными параллельными брусьями должно быть 5 или 450 мм или в зависимости от того, что меньше.

        Рис: Шаг арматуры в балках

        3. Минимальные и максимальные требования к армированию в элементах

        Для балок

        • Сталь с минимальным пределом прочности на растяжение определяется соотношением (для фланцевых балок b = bw)
        • Максимальное усилие на растяжение в балках не должно превышать 0,04 bD.
        • Максимальная площадь сжатия арматуры не должна превышать 0,04 bD.
        • (d) Балка глубиной более 750 мм, усиление боковой поверхности 0.Предоставляется 1% веб-площади. Эта арматура должна быть равномерно распределена на двух поверхностях на расстоянии не более 300 или толщины стенки, или того, что меньше.

        Подробнее на Руководство по армированию

        .

        Смотрите также