Главное меню

Арматурный каркас для ленточного фундамента


схемы, расчет диаметра арматуры, расположение по углам и в подошве

Ленточный фундамент имеет нестандартную геометрию: его длинна в десятки раз больше глубины и ширины. Из-за такой конструкции почти все нагрузки распределяются вдоль ленты. Самостоятельно бетонный камень не может компенсировать эти нагрузки: его прочности на изгиб недостаточно. Для придания конструкции повышенной прочности используют не просто бетон, а железобетон — это бетонный камень с расположенными внутри стальными элементами — стальной арматурой. Процесс закладки металла называется армированием ленточного фундамента. Своими руками его сделать несложно, расчет элементарный, схемы известны. 

Количество, расположение, диаметры и сорт арматуры — все это должно быть прописано в проекте. Эти параметры зависят от многих факторов: как от геологической обстановки на участке, так и от массы возводимого здания. Если вы хотите иметь гарантированно прочный фундамент — требуется проект. С другой стороны, если вы строите небольшое здание, можно попробовать на основании общих рекомендаций все сделать своими руками, в том числе и спроектировать схему армирования.

Содержание статьи

Схема армирования

Расположение арматуры в ленточном фундаменте в поперечном сечении представляет собой прямоугольник. И этому есть простое объяснение: такая схема работает лучше всего.

Армирование ленточного фундамента при высоте ленты не более 60-70 см

На ленточный фундамент действуют две основные силы: снизу при морозе давят силы пучения, сверху — нагрузка от дома. Середина ленты при этом почти не нагружается. Чтобы компенсировать действие этих двух сил обычно делают два пояса рабочей арматуры: сверху и снизу. Для мелко- и средне- заглубленных фундаментов (глубиной до 100 см) этого достаточно. Для лент глубокого заложения требуется уже 3 пояса: слишком большая высота требует усиления.

О глубине заложения фундамента прочесть можно тут.

Для большинства ленточных фундаментов армирование выглядит именно так

Чтобы рабочая арматура находилась в нужном месте, ее определенным образом закрепляют. И делают это при помощи более тонких стальных прутьев. Они в работе не участвуют, только удерживают рабочую арматуру в определенном положении — создают конструкцию, потому и называется этот тип арматуры конструкционным.

Для ускорения работы при вязке арматурного пояса используют хомуты

Как видно на схеме армирования ленточного фундамента, продольные прутки арматуры (рабочие) перевязываются горизонтальными и вертикальными подпорками. Часто их делают в виде замкнутого контура — хомута. С ними работать проще и быстрее, а конструкция получается более надежной.

Какая арматура нужна

Для ленточного фундамента используют два типа прутка. Для продольных, которые несут основную нагрузку, требуется класс АII или AIII. Причем профиль — обязательно ребристый: он лучше сцепляется с бетоном и нормально передает нагрузку. Для конструкционных перемычек берут более дешевую арматуру: гладкую первого класса АI, толщиной 6-8 мм.

В последнее время появилась на рынке стеклопластиковая арматура. По заверениям производителей она имеет лучшие прочностные характеристики и более долговечна. Но использовать ее в фундаментах жилых зданий многие проектировщики не рекомендуют. По нормативам это должен быть железобетон. Характеристики этого материала давно известны и просчитаны, разработаны специальные профили арматуры, которые способствуют тому, что металл и бетон соединяются в единую монолитную конструкцию.

Классы арматуры и ее диаметры

Как поведет себя бетон в паре со стеклопластиком, насколько прочно такая арматура будет сцепляться с бетоном, насколько успешно эта пара будет сопротивляться нагрузкам — все это неизвестно и не изучено. Если хотите экспериментировать — пожалуйста, используйте стекловолокно. Нет — берите железную арматуру.

Расчет армирования ленточного фундамента своими руками

Любые строительные работы нормируются ГОСТами или СНиПами. Армирование — не исключение. Оно регламентируется СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В этом документе указывается минимальное количество требуемой арматуры: оно должно быть не менее 0,1% от площади поперечного сечения фундамента.

Определение толщины арматуры

Так как ленточный фундамент в разрезе имеет форму прямоугольника, то площадь сечения находится перемножением длин его сторон. Если лента имеет глубину 80 см и ширину 30 см, то площадь будет 80 см*30 см = 2400 см2.

Теперь нужно найти общую площадь арматуры. По СНиПу она должна быть не менее 0,1%. Для данного примера это 2,8 см2. Теперь методом подбора определим, диаметр прутков и их количество.

Цитаты из СНиПа, которые относятся к армированию (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Например, планируем использовать арматуру диаметром 12 мм. Площадь ее поперечного сечения 1.13 см2 (вычисляется по формуле площади окружности). Получается, чтобы обеспечить рекомендации (2,8 см2)  нам понадобится три прутка (или говорят еще «нитки»), так как двух явно мало: 1,13 * 3 = 3,39 см2, а это больше чем 2,8 см2, которые рекомендует СНиП. Но три нитки на два пояса разделить не получится, а нагрузка будет и с той и с другой стороны значительной. Потому укладывают четыре, закладывая солидный запас прочности.

Чтобы не закапывать лишние деньги в землю, можно попробовать уменьшить диаметр арматуры: рассчитать под 10 мм. Площадь этого прутка 0,79 см2. Если умножить на 4 (минимальное количество прутков рабочей арматуры для ленточного каркаса), получим 3,16 см2, чего тоже хватает с запасом. Так что для данного варианта ленточного фундамента можно использовать ребристую арматуру II класса диаметром 10 мм.

Армирование ленточного фундамента под коттедж проводят с использованием прутков с разным типом профиля

Как рассчитать толщину продольной арматуры для ленточного фундамента разобрались, нужно определить, с каким шагом устанавливать вертикальные и горизонтальные перемычки.

Шаг установки

Для всех этих параметров тоже есть методики и формулы. Но для небольших строений поступают проще. По рекомендациям стандарта расстояние между горизонтальными ветками не должно быть больше 40 см. На этот параметр и ориентируются.

Как определить на каком расстоянии укладывать арматуру? Чтобы сталь не подвергалась коррозии, она должна находится в толще бетона. Минимальное расстояние от края — 5 см. Исходя из этого, и рассчитывают расстояние между прутками: и по вертикали и по горизонтали оно на 10 см меньше габаритов ленты. Если ширина фундамента 45 см, получается, что между двумя нитками будет расстояние 35 см (45 см — 10 см = 35 см), что соответствует нормативу (меньше 40 см).

Шаг армирования ленточного фундамента — это расстояние между двумя продольными прутками

Если лента у нас 80*30 см, то продольная арматура находится одна от другой на расстоянии 20 см (30 см — 10 см). Так как для фундаментов среднего заложения (высотой до 80 см) требуется два пояса армирования, то один пояс от другого располагается на высоте 70 см (80 см — 10 см).

Теперь о том, как часто ставить перемычки. Этот норматив тоже есть в СНиПе: шаг установки вертикальных и горизонтальных перевязок должен быть не более 300 мм.

Все. Армирование ленточного фундамента своими руками рассчитали. Но учтите, что ни масса дома, ни геологические условия не учитывались.  Мы основывались на том, что на этих параметрах основывались при определении размеров ленты.

Армирование углов

В конструкции ленточного фундамента самое слабое место — углы и примыкание простенков. В этих местах соединяются нагрузки от разных стен. Чтобы они успешно перераспределялись, необходимо арматуру грамотно перевязать. Просто соединить ее неправильно: такой способ не обеспечит передачу нагрузки. В результате через какое-то время в ленточном фундаменте появятся трещины.

Правильная схема армирования углов: используются или сгоны — Г-образные хомуты, или продольные нитки делают длиннее на 60-70 см и загибают за угол

Чтобы избежать такой ситуации, при армировании углов используют специальные схемы: пруток с одной стороны загибают на другую. Этот «захлест» должен быть не менее 60-70 см. Если длины продольного прутка на загиб не хватает, используют Г-образные хомуты со сторонами тоже не менее 60-70 см. Схемы их расположения и крепления арматуры приведены на фото ниже.

По такому же принципу армируются примыкания простенков. Также желательно арматуру брать с запасом и загибать. Также возможно использование Г-образных хомутов.

Схема армирования примыкания стен в ленточном фундаменте (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Обратите внимание: в обоих случаях, в углах шаг установки поперечных перемычек уменьшен в два раза. В этих местах они уже становятся рабочими — участвуют в перераспределении нагрузки.

Армирование подошвы ленточного фундамента

На грунтах с не очень высокой несущей способностью, на пучнистых почвах или под тяжелые дома, часто ленточные фундаменты делают с подошвой. Она передает нагрузку на большую площадь, что придает большую стабильность фундаменту и уменьшает величину просадок.

Чтобы подошва от давления не развалилась, ее также необходимо армировать. На рисунке представлены два варианта: один и два пояса продольной арматуры. Если грунты сложные, с сильной склонностью к зимнему печению, то можно укладывать два пояса. При нормальных и среднепучнистых грунтах — достаточно одного.

Уложенные в длину пруты арматуры являются рабочими. Их, как и для ленты, берут второго или третьего класса. Располагаются друг от друга они на расстоянии 200-300 мм. Соединяются  при помощи коротких отрезков прутка.

Два способа армирования подошвы ленточного фундамента: слева для оснований с нормальной несущей способностью, справа — для не очень надежных грунтов

Если подошва неширокая (жесткая схема), то поперечные отрезки — конструктивные, в распределении нагрузки не участвуют. Тогда их делают диаметром 6-8 мм, загибают на концах так, чтобы они охватывали крайние прутки. Привязывают ко всем при помощи вязальной проволоки.

Ели подошва широкая (гибкая схема), поперечная арматура в подошве тоже является рабочей. Она сопротивляется попыткам грунта «схлопнуть» ее. Потому в этом варианте подошвы используют ребристую арматуру того же диаметра и класса, что и продольную.

Сколько нужно прутка

Разработав схему армирования ленточного фундамента, вы знаете, сколько продольных элементов вам необходимо. Они укладываются по всему периметру и под стенами. Длинна ленты будет длиной одного прутка для армирования. Умножив ее на количество ниток, получите необходимую длину рабочей арматуры. Затем к полученной цифре добавляете 20%  — запас на стыки и «перехлесты». Вот столько в метрах вам и нужно будет рабочей арматуры.

Считаете по схеме сколько продольных ниток, потом высчитываете сколько необходимо конструктивного прутка

Теперь нужно посчитать количество конструктивной арматуры. Считаете, сколько поперечных перемычек должно быть: длину ленты делите на шаг установки (300 мм или 0,3 м, если следовать рекомендациям СНиПа). Затем подсчитываете, сколько уходит на изготовление одной перемычки (ширину арматурного каркаса складываете с высотой и удваиваете). Полученную цифру умножаете на количество перемычек. К результату добавляете тоже 20% (на соединения). Это будет количество конструктивной арматуры для армирования ленточного фундамента.

По похожему принципу считаете количество, которое необходимо для армирования подошвы. Сложив все вместе, вы узнаете, сколько арматуры нужно на фундамент.

О выборе марки бетона для фундамента прочесть можно тут. 

Технологии сборки арматуры для ленточного фундамента

Армирование ленточного фундамента своими руками начинается после установки опалубки. Есть два варианта:

Оба вариант неидеальны и каждый решает, как ему будет легче. При работе непосредственно в траншее, нужно знать порядок действий:

Есть еще одна технология армирования ленточного фундамента. Каркас получается жесткий, но идет большой расход прутка на вертикальные стойки: их забивают в грунт.

Вторая технология армирования ленточного фундамента — сначала вбивают вертикальные стойки, к ним привязывают продольные нитки, а потом все соединяют поперечными

Удобнее и быстрее  всего делать армирующий пояс с использованием сформованных заранее контуров. Прут сгибают, формируя прямоугольник с заданными параметрами. Вся проблема в том, что их необходимо делать одинаковыми, с минимальными отклонениями. И требуется их большое количество. Но потом работа в траншее движется быстрее.

Армирующий пояс можно вязать отдельно, а потом установить в опалубку и связать в единое целое уже на месте

Как видите, армирование ленточного фундамента — длительный и не самый простой процесс. Но справиться можно даже одному, без помощников. Потребуется, правда, много времени. Вдвоем или втроем работать сподручнее: и прутки переносить, и выставлять их.

схема, чертеж и пошаговая инструкция по укладке арматуры своими руками, как правильно уложить каркас, какое должно быть расстояние

Чтобы выстроить малый дом в 1-2 этажа, хоз. постройку, придорожный магазинчик или гараж устраивается ленточный фундамент.

Это недорогой и надежный вариант при возведении строений малой этажности.

На его заливку расходуется минимум материалов и времени.

Бетон сам по себе довольно хрупкий и подвержен разрушению. Для его упрочнения используется арматурный каркас.

Строительные работы до начала процесса

Перед началом армирования необходимо сделать чертеж фундамента. Он должен подпирать внешние стены и несущие внутренние перегородки. После производится расчет арматурного каркаса.

Перед непосредственным началом строительных работ по вязке скелета необходимо:

  1. Выкопать траншею – согласно расположению и размерам чертежа.
  2. Собрать опалубку внутри траншеи из подходящих материалов.
  3. Организовать песчаную подушку в качестве подложки для равномерности распределения бетона.

Главные элементы для обустройства арматурного каркаса

От правильно собранной конструкции зависит ее надежность и долговечность.

Любой каркас ленточного фундамента включает такие арматурные элементы:

Правильный остов повышает несущую способность строения. Он также препятствует воздействию деформационных сил извне.

Какие схемы существуют?

Существует две установленные схемы продольной установке арматуры:

Если принять ширину основания для фундамента более чем 500 мм, то используется вторая схема. Это зависит от норм, которые предписывают рядом расположенные стержни укладывать с интервалом 400 мм друг от друга.


Боковая продольная арматура должна отходить от бетонных стенок на 50-70 мм. Это способствует сохранению защитного слоя бетона на каркасе.

При возведении фундамента любой высоты применяется два пояса армирования:

Типовые схемы по устройству углов и Т-образных примыканий применяются хомуты:

На рисунке изображен чертеж схемы армирования ленточного фундамента с применением Г и П элементов:

Гнутые элементы должны быть продолжением основных продольных прутьев и «наслаиваться» на них на 600-700 мм, но не короче 50 диаметров арматуры. Шаг арматуры в местах расположения углов вычисляется по соотношению: 0,75 х высоты фундамента.

Детальная информация по армированию содержится в СНиП 2.03.01-84 и СНиП 2.02.01-83.

Выбор и расчет

При армировании необходимо использовать арматуру класса АIII. Она отличается рифленой поверхностью. Ее применяют для продольных и поперечных хлыстов, а также в упрочнении углов.

Такой тип, по сравнению с гладкой, имеет лучшую сцепляющую способность с бетоном. Гладкие класса АI применяют для вертикальных элементов.

Допустимо применять только горячекатаную сталь марок:

В настоящее время помимо стандартных металлических прутков применяют арматуру из стеклопластика. Ее прочность выше, чем у стальной. Но такой тип чаще используется в крупногабаритном строительстве для уменьшения нагрузки.

Упрощенный план расчета:

  1. Чтобы рассчитать сечение рабочих прутьев необходимо взять 0,1% площади сечения фундамента, а именно, для фундамента длиной:
    • менее 3м применимо сечение в 10мм;
    • более 3м — сечение необходимо применять не менее 12 мм, но не более 40 мм.
  2. Горизонтальная арматура составляет более 25% толщины рабочего прутка (минимальное значение 6 мм).
  3. Вертикальные стержни рассчитываются согласно высоты фундамента:
    • менее 0,8м принимается сечение в 6мм;
    • более 0,8м принимается сечение в 8мм и более.

Данные формулы применимы только при возведении небольших построек. Габаритные строения в соответствие со СНиП требуют учитывать запас арматуры для обеспечения достаточной прочности.

При планировании постройки в три этажа и выше, либо при наличии подвижных грунтов, предпочтительнее заказать расчет и схему в специализированной строительной фирме.

Еще больше информации о расчете арматуры в видео:

Необходимые инструменты и материалы

Прежде чем приступить к строительно-монтажным работам нужно заранее собрать необходимые инструменты и приспособления:

Обустройство опалубки и подушки

Для устройства опалубки используются ОСБ-плиты, деревянные конструкции, фанера или ДВП. Материал должен удерживать бетон и не сгибаться под его давлением. Чем выше фундамент, тем прочнее требуется материал.

Сборка опалубки поэтапно:

Следом устраивается песчаная подушка. Ее толщина варьируется в пределах 200 мм. При этом песок следует предварительно утрамбовать. Для быстрой трамбовки достаточно намочить песок водой.

Как правильно армировать — пошаговая инструкция

Связывание арматуры для остова делается либо сразу в опалубке, либо за ее пределами с последующей установкой в местах использования.

Этапы вязки «скелета» фундамента:

Независимо от того, где происходит вязка: непосредственно в опалубке или же отдельно с последующей установкой в опалубку – последовательность шагов неизменна. Если части каркаса собираются отдельно, то их необходимо хорошо связать между собой непосредственно в опалубке.

Все пересечения арматуры должны вязаться проволокой. Иногда допустимо применять хомуты из пластика. Использование сварочного аппарата для соединения элементов запрещается строительными нормами.

Как правильно гнуть арматуру?

Правильность работы с инструментами, которые способны согнуть металлические основы для дальнейшего использования в процессе армирования, позволяет создавать правильные и надежные гнутые элементы костяка.

Чтобы согнуть металлический прут существует два способа:

Горячий метод делает место сгиба хрупким. Для дальнейшей работы необходимо остудить готовое изделие на открытом воздухе.

Раскрой

Если диаметр прутьев не превышает 12 мм, для резки применимы ножовка по металлу, либо ленточная пила. Если диаметр штырей больше 12 мм, лучше применять «болгарку» со специальной насадкой, предназначенной для «мягкой» стали.

Автоматический инструмент способствует ускорению строительно-монтажных работ, но требует аккуратной работы, чтобы избежать травматизма.

Расположение

Арматура должна отступать от края фундамента вовнутрь на 50-60 мм. Это предотвратит коррозию металла внутри фундамента и создаст защитный слой из бетона. Глубже делать не рекомендуется, так как остов перестанет выполнять свои функции и противостоять внешним воздействиям среды на бетон.

Для создания цельносвязанного каркаса необходимо соединять вертикальные и поперечные стержни одним хомутом.

Для создания защитного бетонного слоя внизу фундамента под каркас на расстоянии около 0,5 метров необходимо подкладывать кирпичи. При этом не следует допускать прогибов скелета.

Как правильно уложить продольную арматуру?

Продольная арматура должна обеспечивать равномерность распределение деформационных сил по всему фундаменту.

То есть она делает бетон работоспособным. В п. 7.3.6 СНиП 52-01-2003 указывается, что шаг между продольными армирующими прутами нужно рассчитывать исходя из их типа (стены, плиты перекрытия, балки, колонны), а также высоты и ширины поперечного сечения.

Но при этом расстояние между продольными прутками не должно быть более 400-500 мм. При укладке следует использовать целые хлысты без соединений, удлиненные на 1,5-2 метра для того, чтобы сделать загибы по углам. Это повысит их прочность.

Укладка поперечной

Правила поперечного армирования рассмотрены в п. 7.3.7 СНиП 52-01-2003. Вертикальная и поперечная арматура размещается с отступом до 300 мм друг от друга.

Но при этом это расстояние не должно быть меньше половины высоты основания. Она забирает на себя часть поперечной нагрузки, которая воздействует на бетон и предупреждает формирование наклонных трещин.

Процесс вязки

Для вязки существует специализированная «вязальная» проволока. Чтобы правильно выбрать необходимый материал, нужно обратить внимание на его состав.

В состав вязальной проволоки входит низкоуглеродистая сталь. Отличается она белым цветом.

В процессе связывания достаточно приобрести проволоку диаметром от 1,0 до 1,4 мм. Если использовать минимальную толщину, то материал легко рвется. При использовании более толстой продукции в процессе монтажа будет сложно ее скручивать.

Для вязки двух элементов остова необходимо подготовить отрезы длиной 250-500мм, для соединения трех штырей нужны отрезы не менее 500мм. Отрезаемая длина зависит от диаметра связываемых материалов. При связывании нескольких элементов, вязальную проволоку следует складывать пополам.

Длину скрутки не следует делать слишком большой. Достаточно 3-5 витков для создания прочного соединения.

Углы основания

Чтобы обеспечить гармоничный переход двух векторов разной нагрузки, нужно правильно произвести армирование углов. В этом случае применимы гнутые элементы.

При достаточной длине продольных стержней лучше будет завести хлысты за угол на 600-700мм. Цельные элементы значительно повысят прочность отдельных хомутов.

При этом шаг пояса из вертикальной и поперечной арматуры должен составлять ½ шага прямых участков ленточного фундамента.

Возможные ошибки и как исправить

Малый напуск арматуры или его отсутствие в каркасе недопустим, так как в процессе бетонирования костяк может двигаться.

Это может привести к нарушению готового изделия. Лучше оставлять припуски по 200 мм.

Сварка элементов или связывание неподходящим материалом, например, веревкой недопустимы.

Сварка делает узел крепления хрупким, а веревка не обеспечивает достаточной прочности соединения.

Армирование углов без напусков. Армирование углов внахлест хлыстом может привести к быстрому разрушению и неравномерному переходу нагрузок между двумя частями фундаментной конструкции. Для решения проблемы включаются добавочные гнутые элементы.

Заключение

В технологическом плане армирование ленточного фундамента – процесс запутанный и трудоемкий. Но его вполне реально осуществить самостоятельно с использованием инструкций. Достаточно использовать силу двух-трех рабочих и подготовить несколько простых расчетов. Такой фундамент станет хорошим началом для будущего негабаритного строения.

Вконтакте

Facebook

Twitter

Одноклассники

Мой мир

Схема армирования ленточного фундамента: арматурный каркас своими руками

При строительстве дома на ленточном фундаменте возникает вопрос об армировании. Арматура закладывается в бетонную конструкцию для увеличения ее прочности на изгиб, поскольку бетон имеет очень низкую способность воспринимать момент. Чтобы предотвратить проблемы с лентой в будущем необходимо досконально изучить такой вопрос об армировании ленточного фундамента.

Содержание статьи

Расположение арматуры в конструкции и общие положения

Стержни, заложенные в бетон, различаются по назначению:

Армирование ленточного фундамента чертежи - с особым упором на сложные участки каркаса

Любое здание, независимо от его предназначения, немыслимо без надежной основы. Возведение фундамента – одна из наиболее важных и естественных задач всего цикла строительства в целом, и этот этап, кстати, часто является одним из самых трудоемких и затратных – нередко до трети сметы уходит именно на него. Но вместе с тем здесь должны быть абсолютно исключены какие-либо упрощения, неразумная экономия на качестве и количестве необходимых материалов, пренебрежение действующими правилами и технологическими рекомендациями.

Армирование ленточного фундамента чертежиАрмирование ленточного фундамента чертежи

Изо всего разнообразия фундаментных конструкций максимальной популярностью пользуется ленточная, как наиболее универсальная, подходящая для большинства возводимых в сфере частного строительства домов и хозяйственных сооружений. Такое основание отличается высокой надёжностью, но, естественно, при качественном его исполнении. А ключевым условием прочности и долговечности является грамотно спланированное и правильно проведённое армирование ленточного фундамента чертежи и основные принципы устройства которого и станут вопросами рассмотрения в настоящей публикации.

В статье, помимо схем, будет приведено несколько калькуляторов, которые помогут начинающему строителю в выполнении этой достаточно непростой задачи создания ленточного фундамента.

Важные особенности ленточного фундамента

Общие понятия. Преимущества ленточного фундамента

Итак, вкратце, несколько общих понятий об устройстве ленточного фундамента. Сам по себе он представляет сплошную бетонированную полосу, без разрывов на дверные или воротные проёмы, становящуюся основой под возведение всех внешних стен и капитальных внутренних перегородок. Сама лента заглубляется на определенное расчётное расстояние в грунт и одновременно выступает сверху своей цокольной частью. Ширина ленты и глубина ее заложения, как правило, выдерживается единой на всём протяжении фундамента. Такая форма способствует наиболее равномерному распределению всех выпадающих на основание здания нагрузок.

Из общего разнообразия фундаментов для индивидуального строительства чаще всего выбирается именно ленточныйИз общего разнообразия фундаментов для индивидуального строительства чаще всего выбирается именно ленточный

Ленточные фундаменты тоже могут подразделяться на несколько разновидностей. Так, их не только заливают из бетона, но и делают сборными, применяя для этого, например, специальные фундаментные железобетонные блоки, или используя бутовое наполнение. Однако, так как наша статья посвящена армированию, в дальнейшем будет рассматриваться только монолитный вариант фундаментной ленты.

Ленточный фундамент можно отнести к универсальному типу оснований. Такой схеме обычно отдается предпочтение в следующих случаях:

Монолитный ленточный фундамент обладает немалым количеством других преимуществ, к которым можно отнести долговечность, оцениваемую многими десятками лет, относительную простоту и понятность возведения, широкие возможности в плане прокладки инженерных коммуникаций и организации утепленных полов первого этажа. По свои прочностным качествам он не уступает монолитным плитам, и даже превосходит их, требуя при этом меньших затрат материальных средств.

Наглядный пример допущенных грубых ошибок в проектировании фундамента – еще даже не испытав расчетной нагрузки, лента превратилась в гору строительного мусораНаглядный пример допущенных грубых ошибок в проектировании фундамента – еще даже не испытав расчетной нагрузки, лента превратилась в гору строительного мусора

Однако, не следует думать, что ленточный фундамент является абсолютно не уязвимой конструкцией. Все перечисленные достоинства будут справедливы лишь в том случае, если параметры возводимого основания для дома будут соответствовать условиям района строительства, расчётной нагрузке, иметь заложенный резерв прочности. А это, в свою очередь, означает, что к проектированию фундамента (любого, кстати) всегда предъявляются особые требования. И армирование ленты в череде этих проблем занимает одну из ключевых позиций.

Ширина ленты фундамента и глубина ее заложения

Это – два ключевых параметра, от которых будет зависеть и сама схема армирования будущей фундаментной ленты.

Цены на арматуру

арматура

Базовыми величинами для строительства ленточного фундамента будут являться ширина ленты и глубина её заложения в грунтБазовыми величинами для строительства ленточного фундамента будут являться ширина ленты и глубина её заложения в грунт

Но степени заглубления в грунт ленточные фундаменты можно разделить на две основных категории:

Понятно, что высота фундаментной ленты в целом, в том числе и глубина ее залегания – отнюдь не произвольные величины, а параметры, которые получаются в результате тщательно проведенных расчетов. При проектировании учитывается целый массив исходных данных: тип грунтов на участке, степень их стабильности как в поверхностных слоях, так и изменение структуры по мере углубления; климатические особенности региона; наличие, расположение и другие особенности грунтовых водоносных горизонтов; сейсмические характеристики местности. Плюс к этому накладывается специфика планируемого к возведению здания – общая нагрузка, как статическая, создаваемая только массой конструкции (естественно, с учетом всех ее составляющих элементов), так и динамическая, вызываемая и эксплуатационными нагрузками, и всевозможными внешними воздействиями, в том числе ветровыми, снеговыми и другими.

Правильный расчет ленточного фундамента – вопрос слишком серьёзный, чтобы, не имея соответствующей подготовки, проводить его самостоятельноПравильный расчет ленточного фундамента – вопрос слишком серьёзный, чтобы, не имея соответствующей подготовки, проводить его самостоятельно

Исходя из вышесказанного уместно будет сделать одно важное замечание. Принципиальная позиция автора этих строк заключается в том, что расчет базовых параметров фундаментной ленты – не терпит дилетантского подхода.

Несмотря на то что в интернете можно отыскать немало онлайн-приложений для проведения подобных расчетов, вопрос проектирования фундамента все же правильнее будет доверить специалистам. При этом нисколько не оспаривается корректность предлагаемых программ расчета – многие из них в полной мере соответствуют действующим СНиП и способны действительно выдать точные результаты. Проблема лежит в несколько иной плоскости.

Суть в том, что любая, даже самая совершенная программа расчета, требует внесения точных исходных данных. А вот в этом вопросе без специальной подготовки обойтись невозможно. Согласитесь, что правильно оценить геологические особенности участка под строительство, учесть все нагрузки, выпадающие на фундаментную ленту, причем – с разложением их по осям, предусмотреть все возможные динамические изменения – непрофессионалу просто не по силам. А ведь каждый исходный параметр имеет значение, и недооценка его вполне может затем «сыграть злую шутку».

Правда, если планируется возведение небольшого дачного домика или же хозяйственной постройки, то приглашение специалиста-проектировщика может показаться избыточной мерой. Что ж, на свой страх и риск хозяин может возвести малозаглубленный ленточный фундамент, воспользовавшись, например, примерными параметрами, которые приведены в таблице ниже. Для легких построек сильно заглубленная лента не требуется (большое заглубление может сыграть даже отрицательную роль, из-за приложения касательных сил при морозном вспучивании грунта). Как правило, в таких случаях ограничиваются максимальной глубиной расположения подошвы в 500 мм.

Тип возводимого зданияСарай, баня, хозяйственные постройки, небольшой гаражОдноэтажный дачный домик, в том числе - с мансардойОдно- или двухэтажный коттедж, рассчитанный на постоянное проживаниеДвух или трехэтажный особняк
Среднее значение нагрузки на грунт, кН/м ²20305070
ТИПЫ ГРУНТОВРЕКОМЕНДУЕМАЯ ГЛУБИНА ЗАЛОЖЕНИЯ ЛЕНТЫ (БЕЗ УЧЕТА ЦОКОЛЬНОЙ ЧАСТИ ФУНДАМЕНТА)
Выраженно каменистый грунт, опока200300500650
Плотная глина, суглинок, не распадающийся после сжатия усилием ладони300350600850
Слежавшийся сухой песок, супесь400600Обязателен профессиональный расчет фундаментаОбязателен профессиональный расчет фундамента
Мягкий песок, илистый грунт или супесь450650Обязателен профессиональный расчет фундаментаОбязателен профессиональный расчет фундамента
Очень мягкий песок, илистый грунт или супесь650850Обязателен профессиональный расчет фундаментаОбязателен профессиональный расчет фундамента
ТорфяникТребуется иной тип фундаментаТребуется иной тип фундаментаТребуется иной тип фундаментаТребуется иной тип фундамента

Еще раз подчеркнём –это лишь усредненные значения, которые нельзя рассматривать как истину в последней инстанции. В любом случае, если самодеятельный строитель пользуется подобными источниками, определенный риск он принимает на свою ответственность.

Теперь – о ширине фундаментной ленты.

Здесь также есть свои особенности. Во-первых, для обеспечения жёсткости конструкции фундамента принято придерживаться правила, что общая высота ленты должна как минимум вдвое превосходить ее ширину – но это правило соблюсти несложно. А второе – ширина ленты в области подошвы должна быть такой, чтобы распределенная нагрузка была меньше рассчитанных параметров сопротивления грунта, естественно, еще и с определенным конструктивным запасом. Одним словом, фундаментная лента с полной нагрузкой должна стоять стабильно, не проседая в грунт. В целях экономии материалов нередко для повышения площади опоры подошву ленточного фундамента делают с уширением.

Наверное, нет смысла приводить здесь формулы и табличные значения сопротивления грунтов для проведения самостоятельных вычислений. Причина – та же: не столько сложность в выполнении расчетов, сколько проблемы с корректным определением исходных параметров. То есть опять же лучше по таким вопросам обратиться к профессионалам.

Ну а если строится легкое сооружение или дачный домик, то можно руководствоваться тем, что ширина ленты должна быть как минимум на 100 мм больше толщины возводимых стен. Как правило, при самостоятельном планировании фундамента берут круглые значения, кратные 100 мм, обычно начиная от 300 мм и выше.

Армирование фундаментной ленты

Если проектированием ленточного фундамента занимается специалист, то готовый чертеж будет, безусловно, включать не только линейные параметры самого бетонного пояса, но и характеристики армирования – диаметр арматурных прутов, их количество и пространственное расположение. Но в том случае, когда принимается решение о самостоятельном возведении основания под здание, при планировании конструкции необходимо учитывать определенные правила, установленные действующими СНиП.

Цены на цемент

цемент

Какая арматура подойдёт для этих целей?

Для правильного планирования необходимо хотя бы немного разбираться в сортаменте арматуры.

Существует несколько критериев классификации арматуры. К ним можно отнести:

Арматурные пруты с периодическим профилем (сверху вниз): кольцевым, серповидным, смешаннымАрматурные пруты с периодическим профилем (сверху вниз): кольцевым, серповидным, смешанным

Для создания армирующей конструкции ленточного фундамента, как правило, применяют арматуру, выпускаемую в соответствии с ГОСТ 5781. Этот стандарт включает горячекатаные изделия, предназначенные для армирования обычных и предварительно наряженных конструкций.

В свою очередь, эта арматура распределяется по классам, от A-I до A-VI. Различие главным образом заключается в сортах используемой для производства стали и, стало быть, в физико-механических свойствах изделий. Если в арматуре начальных классов применяется низкоуглеродистая сталь, то в изделиях высоких классов параметры металла приближаются к легированным сталям.

Все характеристики классов арматуры знать при самостоятельном строительстве необязательно. А самые важные показатели, которые будут влиять на создание арматурного каркаса – приведены  в таблице. В первом столбце показаны классы арматуры по двум стандартам обозначения. Так, в скобках вынесено обозначение  классов, цифровое обозначение которых показывает предел текучести применяемой для производства арматуры стали – при приобретении материала в прайс-листе могут оказаться и такие показатели.

Класс арматуры по ГОСТ 5781Марка сталиДиаметры прутов, ммДопустимый угол изгиба в холодном состоянии и минимальный радиус кривизны при изгибе (d – диаметр прута, D – диаметр оправки для изгиба)
A-I (A240)Ст3кп, Ст3сп, Ст3пс6÷40180º; D=d
A-II (A300)Cт5сп, Ст5пс10÷40180º; D=3d
-"-18Г2С40÷80180º; D=3d
AC-II (АC300)10ГТ10÷32180º; D=d
A-III (A400)35ГС, 25Г2С6÷4090º; D=3d
-"-32Г2Рпс6÷2290º; D=3d
A-IV (A600)80С10÷1845º; D=5d
-"-20ХГ2Ц, 20ХГ2Т10÷3245º; D=5d
A-V (A800)23Х2Г2Т, 23Х2Г2Ц10÷3245º; D=5d
A-VI (A1000)22Х2Г2АЮ, 20Х2Г2СР, 22Х2Г2Р10÷2245º; D=5d

Обратите внимание на последний столбец, в котором указаны допустимые углы изгиба и диаметры кривизны.  Это важно с той точки зрения, что при создании армирующей конструкции приходите изготавливать гнутые элементы – хомуты, вставки, лапки и т.п. При изготовлении кондукторов, оправок или иных приспособлений для гнутья необходимо ориентироваться на эти значения, так как уменьшение радиуса изгиба или превышение угла может привести к потере арматурой своих прочностных качеств.

Пруты класса A-I выпускаются в гладком исполнении. Все остальные классы (за некоторыми исключениями, которые, впрочем, больше зависят от индивидуальных требований заказчика) – с периодическим профилем.

Для ленточного фундамента в частном строительстве оптимальным выбором будет арматура класса A-III, в крайнем случае — A-II, диаметром 10 мм и выше.

Гладкие пруты класса A-I – отлично подойдут для изготовления хомутов, необходимых для придания объемности создаваемой арматурной конструкцииГладкие пруты класса A-I – отлично подойдут для изготовления хомутов, необходимых для придания объемности создаваемой арматурной конструкции

Для конструкционных элементов армопояса (хомутов, перемычек) удобно использовать гладкий прут класса A-I, диаметром 6 или 8 мм. Применение арматуры более высоких классов – невыгодно, по причине большой её стоимости при явной невостребованности в столь высоких физико-технических показателях.

«Классическая» схема армирования фундаментной ленты. Количество продольных прутов

Для начала – рассмотрим типовую схему армирования прямых участков ленты фундамента.

Наиболее часто применяемая схема армирования прямых участков ленточных фундаментов неглубокого заложенияНаиболее часто применяемая схема армирования прямых участков ленточных фундаментов неглубокого заложения

В основе лежит прямоугольник, с обязательными уровнями армирования сверху и снизу, выполненными из продольной арматуры (поз. 1), которые соединены между собой горизонтальными поперечными (поз. 2) и вертикальными арматурами, создающими тем самым своеобразную «коробчатую» конструкцию. Такое расположение поясов позволяет максимально компенсировать две основные разнонаправленные силы: от общей нагрузки, создаваемой зданием, и от морозного вспучивания грунта. При этом центральная часть ленты нагружается меньше всего, и если фундамент имеет общую высоту до 800 мм, то двух поясов чаще всего бывает достаточно.

При более высоких лентах применяют расположение продольных поясов в три и более ярусов. Но, как уже говорилось, подобные фундаменты рассчитывать самостоятельно – довольно рискованное занятие.

На иллюстрации показано увязывание продольных прутов в объемную конструкцию с использованием отрезков арматуры. Такой подход – вполне допустим, однако, не отличается удобством. Работа пойдет намного быстрее и качественнее, если заранее на кондукторе готовить хомуты по размерам армопояса, а потом уже увязывать все детали в общую конструкцию.

Использование заранее подготовленных хомутов примерно такого типа существенно упростит сборку объемного арматурного каркасаИспользование заранее подготовленных хомутов примерно такого типа существенно упростит сборку объемного арматурного каркаса

Обратите внимание на иллюстрацию, на которой стрелками показаны два размера: Н – высота пояса армирования и К – его ширина. Следует правильно представлять, что это вовсе не высота и ширина ленты. Металлические детали фундамента в обязательном порядке должны быть защищены от кислородной коррозии слоем бетона. Согласно СНиП минимальный слой составляет 10 мм, но для ленточного фундамента оптимальным будет 50 мм до края бетонной конструкции. Это необходимо учесть при планировании, а уже в ходе монтажа соблюсти необходимые просветы между арматурой и опалубкой помогут нехитрые приспособления. Так, задать нужное расстояние от донной части опалубки можно, подложив обломки кирпичей или установив под нижние прутья специальные пластиковые стойки.

Такие пластиковые стойки задают необходимый просвет от дна опалубки до пояса армированияТакие пластиковые стойки задают необходимый просвет от дна опалубки до пояса армирования

А требуемый просвет от боковых стенок опалубки можно соблюсти, если использовать специальный фиксаторы-«звездочки» которые просто надеваются на арматурные прутья.

Фиксатор-«звездочка», задающий положение арматурного прута относительно стенок опалубкиФиксат

Армирование ленточного фундамента: схема, расчеты

зачем нужен арматурный каркас, как работает, правила монтажа по СНиП, а также фото

Самый часто встречающийся тип фундамента при строительстве малогабаритных сооружений — это ленточный фундамент.

Загородные дома, бани, гаражи и другие частные хозяйственные постройки прочно стоят благодаря именно данной конструкции. При этом ленточный фундамент достаточно просто возвести в короткие сроки с минимальными финансовыми затратами.

Однако чтобы всё прошло успешно, нужно технологически правильно выполнить процедуру армирования ленточного фундамента.

Зачем нужен арматурный каркас для ленточного фундамента?

Чтобы разобраться, почему фундамент нужно армировать, следует обратить внимание на свойства бетона.

Как строительный материал, бетон достаточно хрупок. Его деформация происходит даже при минимальном давлении.

В целом, на фундаментную конструкцию постоянно оказывается неравномерное давление с разных сторон. Следствием этого является образование мест с зонами растяжения и сжатия.

Так вот именно в зонах наибольшего растяжения фундамент и начинает давать трещины, если армирование было проведено неправильно.

Как работает арматура?

Для того чтобы фундаментная конструкция оставалась целостной, её усиливают арматурными прутьями. Внутри бетона формируется металлический каркас, который принимает на себя давление, оказываемое извне.

Металл гораздо лучше выдерживает нагрузки на растяжение, поэтому бетон становится более устойчивым к внешним факторам.

Если на участке строительства присутствует неоднородность грунта, армирование фундамента обеспечивает необходимую жёсткость конструкции. Таким образом, по фундаменту равномерно распределяется вся нагрузка от здания, и в целом сооружение становится более устойчивым.

Правила монтажа армокаркаса по СНиП

Количество необходимой для закладываемой конструкции арматуры и расстояние между арматурными прутьями напрямую зависят от размеров фундамента.

Согласно СНиП 52-01-2003 расстояние между прутьями рассчитывается, исходя из:

Технологически правильное армирование подразумевает, что расстояние между прутьями продольной арматуры должно находиться в пределах от 25 до 40 см. Прутья же поперечной арматуры должны быть не более чем в 30 см друг от друга.

Все самое важное об армировании ленточного фундамента найдете в этой публикации.

Требования к бетону

Бетон для ленточного фундамента должен отвечать определённым физико-техническим требованиям. Среди них:

Прочность — это способность выдерживать нагрузки на сжатие, выраженная в килограммах на квадратный сантиметр.

Морозостойкость обозначается буквой “F” и числовым эквивалентом. Число — это количество циклов полного замораживания и оттаивания опытного образца бетона без изменений своих характеристик.

Водонепроницаемость обозначается буквой “W” и также числовым эквивалентом. Число, в данном случае, — это максимальное давление, измеряемое в мегаПаскалях, при котором образец бетона не пропускает через себя влагу.

Марки бетона, рекомендуемые для сооружения ленточного фундамента:

Марка бетона Класс бетонаПрочность бетона, кг/см2МорозостойкостьВодонепроницаемость
М-200В-15196,5F-100W-4
М-250В-20261,9F-100W-4
М-300В-22,5294,4F-200W-6
М-350В-25327,4F-200W-8
М-400В-30392,9F-300W-10

Соотношение типа сооружения, грунта и марки бетона для ленточного фундамента:

Тип сооруженияСлабопучинистые грунтыПучинистые грунты
Лёгкие деревянные или каркасные домаМ-200М-250
Дома из бруса, бревенчатые срубыМ-250М-300
Дома из арболитовых блоков и подобных им материаловМ-300М-350
Дома из кирпича, камня, железобетонаМ-350М-400

Требования к арматуре

Для армирования ленточного фундамента используется стальная или композитная арматура. Поверхность её профилирована, что приводит к передаче максимальной нагрузки от прогибающегося бетона к арматурным прутьям.

Для продольного армирования обычно используются металлические прутья, диаметр которых находится в пределах от 10 до 16 мм.

Для поперечного армирования применяются металлические прутья, диаметр которых находится в пределах от 6 до 8 мм.

В соответствии со СНиП 52-01-2003, при возведении ленточного фундамента могут использоваться следующие виды арматуры:

О том, какую арматуру используют для армирования ленточного фундамента, расскажет эта статья.

Этапы выполнения работ

Общие проектные расчёты:

Расчёт диаметра и количества арматурных прутьев

В соответствии со СНиП 52-01-2003 минимальная площадь сечения продольной арматуры должна равняться 0,1% от площади поперечного сечения самого фундамента. Этим правилом необходимо руководствоваться при выборе диаметра арматурных прутьев.

Зная площадь сечения прута, а также количество прутьев в сечении фундамента, можно, используя таблицу ниже, быстро определить необходимый диаметр арматуры.

Арматурный сортамент:

Номинальный диаметр стержня, ммРасчетная площадь поперечного стержня, мм2, при числе стержнейТеоретическая масса 1 м длины арматуры, кгДиаметр арматуры классовМаксимальный размер сечения стержня периодического профиля
123456789А240
А400
А500
А300В500
37,114,121,228,335,342,449,556,563,60,052+
412,625,137,750,262,875,487,9100,51130,092+
519,639,358,978,598,2117,8137,5157,1176,70,144+
628,357851131411701982262540,222++6,75
850,31011512012513023524024530,395++9,0
1078,51572363143934715506287070,617+++11,3
12113,122633945256567979290510180,888+++13,5
14153,93084626167699231077123113851,208++15,5
16201,1402603804100512061407160818101,578++18
18254,55097631018127215271781203622901,998++20
20314,26289421256157118852199251328282,466++22
2238176011401520190022812661304134212,984++24

Расчёт количества арматуры:

  1. Вычисляем периметр фундамента.
  2. Составляем схему армирования и подсчитываем количество стыков арматурных прутьев (стыки всегда идут внахлёст на величину, равную 30 диаметрам прута).
  3. Периметр умножаем на схему армирования, прибавляем сумму стыков и добавляем к этому ещё 10% от получившейся величины.

Подробнее о расчете арматуры для ленточного фундамента можно узнать из этой статьи.

Разметка

На этапе разметки используется проектная схема фундаментной конструкции. Схему переносят на местность, используя обноску по периметру участка и разметочный шнур. Все получившиеся таким образом размеры должны соответствовать проекту.

Основание фундамента

Роется траншея для будущей фундаментной конструкции. Глубина должна соответствовать проектной и иметь запас в 30 см для песчано-гравийной подушки. При этом учитываются особенности грунта.

Опалубка

Опалубка делается из деревянных дощатых щитов снаружи будущего основания дома. На дно (поверх подушки) и стенки опалубки укладывается гидроизоляционный слой.

Вязка

Самый важный этап — это формирование в опалубке арматурного каркаса и его вязка. Для вязки обычно используется проволока.

На это есть ряд причин:

Все самое важное о вязке армокаркаса найдете в этом материале.

Армирование углов

На углы в фундаментной конструкции приходится наибольшая нагрузка. Поэтому их необходимо максимально усилить.

Для этого есть два основных правила:

  1. Пруты нужно изгибать так, чтобы каждая из их сторон заглублялась в одну из стен фундамента.
  2. Если длины прута недостаточно, чтобы его изогнуть, то для усиления углов используются Г-образные профили.

На фото ниже представлены схемы армирования углов:

1. Жесткость соединения внешней продольной арматуры (1) в угловой зоне обеспечивает Г-образный хомут (6).
2. Внутренняя продольная арматура (2) жестко скрепляется с внешней продольной арматурой (1) внахлёст.
3. Шаг поперечной арматуры (L) составляет не более ¾ высоты ленты фундамента.
4. Внутреннюю и внешнюю продольную арматуру соединяет дополнительная поперечная арматура (5).
5. Длина соединения внахлёст составляет 50 диаметров горизонтальной арматуры.


1. При использовании П-образных хомутов (5) угловое соединение внешней и внутренней горизонтальной арматуры ленточного фундамента (1) получает жёсткую сцепку наподобие замка.
2. В анкеровке П-образных хомутов участвует вертикальная (2), поперечная (3) и дополнительная поперечная (4) арматура.

После армирования приступают непосредственно к заливке бетона. Бетон заливается в опалубку в несколько слоёв, по 20-30 см каждый. В процессе необходимо тщательно перемешивать бетонную смесь.

Подробнее о технологии армирования углов ленточного фундамента читайте в этой статье.

Распространённые ошибки и способы их исправления

Следует обратить внимание на следующие грубейшие ошибки при армировании ленточного фундамента:

  1. Часто для арматурного каркаса не формируется защитный бетонный слой, что существенно влияет на долговечность конструкции. Об этом нужно помнить на этапе возведения опалубки.
  2. Отсутствие гидроизоляционного слоя между подошвой и стенками фундамента. Высокая водопроницаемость в данном случае разрушает конструкцию в течение 10 лет. Поэтому гидроизоляция тоже стоит здесь на одном из первых мест.
  3. Армирование углов с обыкновенным поворотом. Эта ошибка может привести к очень быстрой деформации и разрушению фундамента. На углы всегда стоит обращать особое внимание.

Заключение

Подводя итог под всем вышесказанным, можно сделать ряд выводов:

  1. Во-первых, финансовые и временные затраты на возведение и армирование ленточного фундамента не велики. При этом конструкция проста и надёжна.
  2. Во-вторых, подобный тип фундамента подходит практически для любого вида дачных загородных построек, что сильно расширяет область его применения.
  3. В-третьих, при армировании данного типа фундамента нужно помнить о технологических правилах и нормах, чтобы избежать типичных ошибок. И тогда конструкция прослужит долгие годы.

Арматурные каркасы для фундаментных плит

УСИЛЕНИЕ монолитно-плитных фундаментов: чертежи, схемы

Надежная монолитная арматура фундамента

Используя только один, даже качественный бетон, невозможно обеспечить надежность и долговечность. В монолитной фундаментной плите бетон - это всего лишь строительный материал, и оптимальная прочность, способность нейтрализовать внешние воздействия на нагрузку могут быть только за счет армирующего пояса.

Следовательно, надежные и прочные монолитные фундаменты, на которых часто возводят многоэтажные бетонные здания, имеют мощное армирование, и в этом случае часто можно использовать несколько разных типов задвижек в зависимости от грузоподъемности, структуры грунта и размеров плит.

.

Как построить железобетонный ленточный фундамент

Самая важная часть армирования в ленточном фундаменте - это арматура между фундаментом и стеной фундамента в случае, если стена фундамента построена из железобетона. В этом случае бетонная арматура может быть арматурой фундаментной стены. Армирование фундаментной стены в этой ситуации напоминает армирование бетонной балки, которая равномерно распределяет нагрузки по основанию и предотвращает разрыв фундамента под действием горизонтальных сил; и основание может быть построено из бетона или нет, при условии, что на его вершине, вдоль его средней оси, подготовлена ​​канавка для предотвращения скольжения фундаментной стены по опоре.

Фундаментная стена должна быть залита деревянной опалубкой.

Самая простая форма армирования получается размещением двух стальных стержней (арматурных стержней, арматуры, стержней арматуры) внизу опалубки, отделенных на несколько сантиметров (около 3) от нижней части опалубки и примерно на 2 см от сторон .

Стержни должны быть прочными во время укладки бетона, привязав их к маленьким бетонным блокам, связанным стальной проволокой, образующей основу.

Необходимо следить за тем, чтобы арматурные стержни не смещались при укладке влажного бетона в опалубку.

Самым простым способом настройки стержней является следующий, но он может быть поврежден.

Но наиболее правильной конфигурацией стержней является следующая, при которой никогда не бывает стержней, непрерывных под углом, угол которого меньше 180 ° градусов.

.

Фондов

Фондов

Фонды

Типы фундаментов

Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушечки («изолированные опоры»), ленточные опоры и плоты.
Фундаменты глубокие
включают сваи, свайные стены, диафрагменные стены и кессоны.


Типы фундаментов

Фундамент мелкого заложения

Фундаменты мелкого заложения - фундаменты, заложенные рядом с готовой поверхностью земли; как правило, если глубина фундамента (D f ) меньше ширины основания и менее 3 м.Это не строгие правила, а просто рекомендации: в основном, если нагрузка на поверхность или другие условия поверхности влияют на несущую способность фундамента, это «неглубокий». Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушки («изолированные опоры»), ленточные опоры и плоты.
Фундаменты мелкого заложения используются, когда поверхностные почвы достаточно прочные и жесткие, чтобы выдерживать приложенные нагрузки; они обычно непригодны для слабых или сильно сжимаемых почв, таких как плохо уплотненная насыпь, торф, современные озерные и аллювиальные отложения и т. д.


Фундамент мелкого заложения

Падовый фундамент

Подушечки фундаментов используются для поддержки отдельных точечных нагрузок, например, от несущей колонны. Они могут быть круглыми, квадратными или прямоугольными. Обычно они состоят из блока или плиты одинаковой толщины, но они могут быть ступенчатыми или изогнутыми, если они необходимы для распределения нагрузки от тяжелой колонны. Фундаменты с подушечками обычно неглубокие, но можно использовать и глубокие фундаменты.


Фундамент мелкого заложения

Ленточный фундамент

Ленточные фундаменты используются для поддержки линии нагрузок либо из-за несущей стены, либо если линия колонн нуждается в опоре, если расположение колонн настолько близко, что отдельные опорные основания были бы неприемлемыми.


Фундамент мелкого заложения

Плотные фундаменты

Плотные фундаменты используются для распределения нагрузки от конструкции на большую площадь, обычно на всю площадь конструкции.Они используются, когда нагрузки на колонны или другие нагрузки на конструкцию близки друг к другу и отдельные опорные основания взаимодействуют друг с другом.

Плотный фундамент обычно представляет собой бетонную плиту, простирающуюся по всей загруженной площади. Он может быть усилен ребрами или балками, встроенными в фундамент.

Фундаменты на плотах имеют то преимущество, что они снижают дифференциальные осадки, поскольку бетонная плита сопротивляется дифференциальным движениям между позициями загрузки. Они часто необходимы на мягких или рыхлых грунтах с низкой несущей способностью, поскольку могут распределять нагрузки на большую площадь.


Типы фундаментов

Фундамент глубокий

Глубокие фундаменты - это фундаменты, заложенные слишком глубоко под готовой поверхностью грунта, чтобы на их несущую способность основания влияли условия поверхности, обычно это происходит на глубине> 3 м ниже уровня готовой земли. К ним относятся сваи, опоры и кессоны или компенсированные фундаменты с использованием глубоких фундаментов, а также глубокие подушечные или ленточные фундаменты. Глубокие фундаменты могут использоваться для передачи нагрузки на более глубокие и более подходящие слои на глубине, если неподходящие почвы присутствуют вблизи поверхности.

Сваи представляют собой относительно длинные тонкие элементы, которые передают нагрузки на фундамент через слои грунта с низкой несущей способностью на более глубокие слои почвы или породы с высокой несущей способностью. Они используются, когда по экономическим соображениям, конструкционным соображениям или условиям почвы желательно передавать нагрузки на слои за пределами практической досягаемости фундаментов мелкого заложения. В дополнение к опорным конструкциям, сваи также используются для анкеровки конструкций против подъемных сил и для оказания помощи конструкциям в сопротивлении боковым силам и силам опрокидывания.

Опоры - это фундамент, выдерживающий большую конструктивную нагрузку, который сооружается на месте в глубоких котлованах.

Кессоны - это форма глубокого фундамента, который сооружается над уровнем земли, а затем опускается до необходимого уровня путем выемки грунта или выемки грунта изнутри кессона.

Компенсированные фундаменты - это глубокие фундаменты, в которых снятие напряжений, возникающих при выемке грунта, примерно уравновешивается приложенным напряжением, создаваемым фундаментом.Таким образом, прикладываемое чистое напряжение очень мало. Компенсированный фундамент обычно представляет собой глубокий фундамент.


Фундамент глубокий

Сваи

Свайные фундаменты можно классифицировать по
тип сваи
(разные конструкции, которые должны поддерживаться, и разные условия грунта, требуют разных типов сопротивления) и
вид конструкции
(могут использоваться разные материалы, конструкции и процессы).


Сваи

Типы свай

Сваи часто используются, потому что на достаточно малых глубинах нельзя найти адекватную несущую способность, чтобы выдержать нагрузки конструкции. Важно понимать, что сваи получают опору как от концевой опоры , так и от поверхностного трения . Пропорция несущей способности, создаваемая либо торцевым подшипником, либо поверхностным трением, зависит от условий почвы. Сваи могут использоваться для поддержки различных типов структурных нагрузок.


Типы свай

Концевые опорные сваи

Концевые несущие сваи - это сваи, оканчивающиеся твердым, относительно непроницаемым материалом, таким как скала или очень плотный песок и гравий. Они получают большую часть своей несущей способности за счет сопротивления слоя у носка сваи.


Типы свай

Сваи фрикционные

Фрикционные сваи получают большую часть своей несущей способности за счет поверхностного трения или адгезии.Это обычно происходит, когда сваи не достигают непроницаемого пласта, а забиваются на некоторое расстояние в проницаемый грунт. Их несущая способность определяется частично концевой опорой и частично поверхностным трением между заделанной поверхностью почвы и окружающей почвой.


Типы свай

Сваи редукционные

Сваи, уменьшающие оседание, обычно закладываются под центральной частью фундамента плота, чтобы уменьшить разницу осадки до приемлемого уровня.Такие сваи укрепляют почву под плотом и помогают предотвратить перекос плота в центре.


Типы свай

Натяжные сваи

Конструкции, такие как высокие дымоходы, опоры электропередачи и пирсы, могут подвергаться большим опрокидывающим моментам, поэтому часто используются сваи для противодействия возникающим подъемным силам на фундаменте. В таких случаях возникающие силы передаются на грунт по длине заделки сваи.Сила сопротивления может быть увеличена в случае буронабивных свай за счет недостаточного расширения. При проектировании натяжных свай необходимо учитывать эффект радиального сжатия сваи, так как это может привести к снижению сопротивления вала примерно на 10-20%.


Типы свай

Сваи с боковой нагрузкой

Почти все свайные фундаменты подвергаются, по крайней мере, некоторой степени горизонтальной нагрузки. Величина нагрузок по отношению к приложенной вертикальной осевой нагрузке, как правило, будет небольшой, и никаких дополнительных расчетов конструкции обычно не требуется.Однако в случае причалов и пристаней, несущих ударные силы швартованных судов, свайных оснований для опор мостов, эстакад для мостовых кранов, высоких дымоходов и подпорных стен, горизонтальный компонент является относительно большим и может оказаться критическим при проектировании. Традиционно сваи в таких случаях устанавливаются под углом к ​​вертикали, обеспечивая достаточное горизонтальное сопротивление за счет компонента осевой нагрузки сваи, действующего горизонтально. Однако способность вертикальной сваи противостоять нагрузкам, приложенным нормально к оси, хотя и значительно меньше, чем осевая способность этой сваи, может быть достаточной, чтобы избежать необходимости в таких «сгребающих» или «битых» сваях, установка которых является более дорогой. .Поэтому при проектировании свай для восприятия боковых сил важно учитывать это.


Типы свай

Сваи в насыпи

Сваи, проходящие через слои средне- или плохо уплотненного заполнителя, будут подвержены отрицательному поверхностному трению , которое вызывает сопротивление вниз вдоль ствола сваи и, следовательно, дополнительную нагрузку на сваю. Это происходит, когда заливка затвердевает под действием собственного веса.


Сваи

Виды свайных конструкций

Вытесняемые сваи вызывают смещение почвы как в радиальном, так и в вертикальном направлениях, когда вал сваи забивается или вдавливается в землю. При использовании несмещаемых свай (или сменных свай) грунт удаляется, а образовавшаяся яма, заполненная бетоном или сборной бетонной сваей, опускается в яму и заливается раствором.


Виды свайного строительства

Сваи вытесняющие

Пески и зернистые почвы имеют тенденцию уплотняться в процессе смещения, тогда как глины имеют тенденцию к вспучиванию.Сами вытесняющие сваи можно разделить на разные типы, в зависимости от того, как они построены и как они вставляются.


Сваи смещения

Полностью готовые вытесняющие сваи

Они могут быть из сборного железобетона;
армированный по всей длине (предварительно напряженный)
сочлененный (усиленный)
полый (трубчатый) профиль
или из стали различного сечения.


Сваи смещения

Забивные и забивные сваи

Этот тип сваи бывает двух форм. Первый включает в себя вбивание временной стальной трубы с закрытым концом в землю для образования пустоты в почве, которая затем заполняется бетоном, когда труба извлекается. Второй тип такой же, за исключением того, что стальная труба остается на месте, образуя прочный кожух.


Сваи смещения

Винтовые забивочные сваи

Конструкция этого типа выполняется с использованием специального шнека.Однако почва уплотняется, а не удаляется, поскольку шнек ввинчивается в землю. Шнек установлен на полой штанге, которую можно заполнить бетоном, поэтому, когда необходимая глубина будет достигнута, бетон может быть закачан вниз по штоку, и шнек будет медленно отвинчиваться, оставляя сваю на месте.


Сваи смещения

Способы установки

Сваи забиваются или вдавливаются в грунт.Можно использовать несколько различных методов.


Способы установки

Падение веса

Падающий груз или ударный молот - это наиболее часто используемый метод установки вытесняющих свай. Вес примерно в два раза меньше веса сваи поднимается на подходящее расстояние в направляющей и отпускается, чтобы ударить по головке сваи. При забивке полой трубы сваи вес обычно воздействует на пробку в нижней части сваи, что снижает любые избыточные напряжения по длине трубы во время вставки.

Вариантами простого отбойного молотка являются отбойные молотки одностороннего и двустороннего действия . Они приводятся в движение паром, сжатым воздухом или гидравлически. В молоте одностороннего действия вес поднимается сжатым воздухом (или другими средствами), который затем выпускается, и весу позволяют упасть. Это может происходить до 60 раз в минуту. Молоток двустороннего действия такой же, за исключением того, что сжатый воздух также используется при движении молота вниз. Однако этот тип молота не всегда подходит для забивки бетонных свай.Хотя бетон может выдерживать сжимающие напряжения, создаваемые молотком, ударная волна, создаваемая каждым ударом молота, может создавать высокие растягивающие напряжения в бетоне при возврате. Это может привести к разрушению бетона. Вот почему бетонные сваи часто подвергаются предварительному напряжению.


Способы установки

Дизельный молот

Быстрые контролируемые взрывы можно производить от дизельного молота. Взрывы поднимают таран, который используется для забивания сваи в землю.Хотя вес поршня меньше, чем вес, используемый в отбойном молотке, повышенная частота ударов может компенсировать эту неэффективность. Этот тип молота наиболее подходит для забивки свай через несвязные зернистые грунты, где большая часть сопротивления приходится на торцевую опору.


Способы установки

Вибрационные методы забивки свай

Вибрационные методы могут оказаться очень эффективными при забивании свай через несвязные зернистые грунты.Вибрация сваи возбуждает зерна почвы, прилегающие к свае, делая почву почти свободно текущей, что значительно снижает трение вдоль вала сваи. Вибрация может создаваться электрическими (или гидравлическими) эксцентриками, вращающимися в противоположных направлениях, прикрепленными к головке сваи, обычно действующими с частотой примерно 20-40 Гц. Если эту частоту увеличить примерно до 100 Гц, это может создать продольный резонанс в свае, и скорость проникновения может достигать 20 м / мин в умеренно плотных зернистых грунтах.Однако большая энергия, возникающая в результате вибрации, может повредить оборудование, распространение шума и вибрации также может привести к заселению близлежащих зданий.


Способы установки

Методы установки домкратом

Домкратные сваи чаще всего используются для опор существующих конструкций. Выкапывая грунт под конструкцией, можно вставить короткие куски сваи и вдавить их в землю, используя в качестве реакции нижнюю часть существующей конструкции.


Виды свайного строительства

Несвижные сваи

При использовании несмещаемых свай почва удаляется, а образовавшаяся яма заполняется бетоном или, иногда, сборная бетонная свая опускается в яму и заливается раствором. Глины особенно подходят для этого типа образования свай, так как в глинах требуется только стенка скважины. опора близко к поверхности земли. При бурении более неустойчивого грунта, такого как гравий, может потребоваться какая-либо форма обсадной трубы или опоры, например, бентонитовая суспензия.В качестве альтернативы раствор или бетон можно вводить из шнека, вращающего гранулированный грунт. Таким образом, существует четыре типа несмещаемых свай.

Этот метод строительства создает неравномерную поверхность раздела между стволом сваи и окружающей почвой, что обеспечивает хорошее сопротивление поверхностному трению при последующей нагрузке.


Несвижные сваи

Буронабивные сваи малого диаметра

Они обычно имеют диаметр 600 мм или меньше и обычно изготавливаются с использованием штатива.Оборудование состоит из треноги, лебедки и троса для управления различными инструментами. Основные инструменты показаны на этой диаграмме.

В зернистых почвах основной инструмент состоит из тяжелой цилиндрической оболочки с режущей кромкой и откидной заслонкой внизу. Для проведения раскопок этого типа необходима вода. При перемещении корпуса вверх и вниз на дне ствола скважины происходит разжижение грунта (так как под корпусом создается низкое давление, поскольку разжиженный грунт быстро перемещается вверх), и он течет в корпус и может быть поднят на лебедку. поверхность и опрокинуты.При просверливании зернистого грунта существует опасность чрезмерного разрыхления материала по бокам отверстия. Чтобы этого не произошло, необходимо продвинуть временную обсадную колонну, вбивая ее в землю.

В связных грунтах ствол скважины продвигается путем многократного опускания инструмента крестообразного сечения с цилиндрической режущей кромкой в ​​грунт и последующего подъема его на поверхность с грузом грунта. Оказавшись на поверхности, глина, которая прилипает к крестообразным лезвиям, разделяется на пары.


Несвижные сваи

Буронабивные сваи большого диаметра

Большие скважины диаметром от 750 мм до 3 м (с 7-метровыми нижними расширениями) возможны при использовании роторного бурового оборудования. Шнековая установка обычно устанавливается на кран или грузовик.

Спиральный или ковшовый шнек, показанный на этой схеме, прикреплен к валу, известному как штанга Келли (телескопический элемент квадратного сечения, приводимый в движение горизонтальным вращателем).При использовании этой техники возможна глубина до 70 метров. Использование бентонитовой суспензии в сочетании со шнековым ковшом может устранить некоторые трудности, связанные с бурением мягких илов и глин, а также рыхлых зернистых грунтов без постоянной поддержки обсадными трубами. Одним из преимуществ этого метода является потенциал до

.

% PDF-1.4 % 20283 0 объект > endobj xref 20283 41 0000000016 00000 н. 0000001179 00000 п. 0000001546 00000 н. 0000008551 00000 п. 0000009002 00000 н. 0000009512 00000 н. 0000010182 00000 п. 0000010416 00000 п. 0000010898 00000 п. 0000011133 00000 п. 0000011373 00000 п. 0000011418 00000 п. 0000011450 00000 п. 0000011474 00000 п. 0000012151 00000 п. 0000012508 00000 п. 0000012670 00000 п. 0000012694 00000 п. 0000013306 00000 п. 0000013330 00000 п. 0000013917 00000 п. 0000013941 00000 п. 0000014531 00000 п. 0000014555 00000 п. 0000015174 00000 п. 0000015198 00000 п. 0000015803 00000 п. 0000015827 00000 н. 0000016467 00000 п. 0000016491 00000 п. 0000017107 00000 п. 0000035214 00000 п. 0000060869 00000 п. 0000095174 00000 п. 0000102799 00000 н. 0000102880 00000 н. 0000103089 00000 н. 0000105769 00000 н. 0000105980 00000 п. 0000001768 00000 н. 0000008526 00000 н. трейлер ] >> startxref 0 %% EOF 20284 0 объект > >> / LastModified (D: 20030321074949) / MarkInfo> >> endobj 20285 0 объект > endobj 20322 0 объект > поток HtS} 8 wa1J-: q0> P \ e> tVfQ.vmuml5 "Yiqi | EAc №

.

Эффект интерференции двух соседних ленточных опор. на армированном песке

1 Contemporary Engineering Sciences, Vol. 2, 2009, вып. 12, Влияние двух соседних ленточных опор на армированный песок Приянка Гош Доцент кафедрыгражданского строительства, ИИТ Канпур, Департамент гражданского строительства Индии, Индийский технологический институт, Канпур Канпур, Индия Паван Кумар Бывший студент высшего образования, факультет гражданского строительства, ИИТ Канпур, Индия Канпур, Индия Резюме Были проведены испытания для изучения влияния взаимного влияния двух расположенных рядом ленточных опор на сухой укрепленный песчаный слой Энноре. Однослойная одноосная георешетка использовалась для усиления фундамента. Чтобы изучить влияние интерференции между двумя опорами, сначала была получена несущая способность одиночной изолированной опоры, а затем была определена несущая способность близко расположенных опор.Экспериментальное исследование показывает, что несущая способность одиночного фундамента на армированном грунте уменьшается с увеличением D / B, где D и B - глубина армирования и ширина основания, соответственно. Установлено, что коэффициент несущей способности, обусловленный удельным весом грунта, уменьшается с увеличением ширины основания. В этой статье основное внимание уделяется влиянию расстояния между центрами (S) между двумя опорами на их несущую способность и осадку. Установлено, что оседание мешающих оснований соответствует той же тенденции, что и несущая способность.Результаты представлены в виде коэффициентов эффективности (ξ γ, ξ δ), и их изменение было получено с изменением S. Настоящие экспериментальные наблюдения обычно находятся в хорошем согласии с теоретическими и экспериментальными результатами, доступными в литературе. Ключевые слова: геосинтетика, интерференционный эффект, ленточный фундамент, несущая способность, армированный грунт

2 578 П. Гош и П. Кумар 1 Введение Во многих случаях неизбежно размещать опоры с достаточно близким расстоянием, чтобы учесть детали конструкции или ограничить нагрузку на фундамент.В таких случаях вмешательство зон разрушения может изменить несущую способность и расчетные характеристики опор по сравнению с изолированным опорным положением. Поэтому проблема взаимодействия между соседними опорами имеет большое практическое значение, так как несколько раз опоры в поле обычно в той или иной степени мешают друг другу и редко изолированы. Влияние интерференции на предельную несущую способность двух близлежащих ленточных фундаментов было теоретически изучено Стюартом [1] с учетом метода предельного равновесия, который можно рассматривать как новаторскую работу в этой области.В этом анализе, в отличие от имеющихся теорий для изолированного грубого основания, под основанием фундамента был рассмотрен частичный непластический клин с ловушкой. Чтобы изучить влияние интерференции, предполагалось, что зона ниже двух мешающих шероховатых оснований состоит частично из небольшого непластичного клина и частично из зоны пластического сдвига. Форма поверхности разрушения была выбрана как комбинация логарифмической спирали и прямой линии в этом подходе. Позже, используя механизм разрушения, аналогичный тому, который ранее использовался Стюартом [1], Вест и Стюарт [2] применили метод характеристик напряжения, чтобы получить решение для столкновения двух ленточных фундаментов.Значения коэффициентов эффективности, полученные Вестом и Стюартом [2] на основе метода характеристик для φ = 35 0, оказались меньше, чем те, которые были получены ранее Стюартом [1] с использованием метода предельного равновесия; где φ - угол внутреннего трения грунта, а коэффициент полезного действия определяется отношением нагрузки, переносимой одной опорой при наличии другой опоры, к нагрузке на одиночную изолированную опору того же размера. Мурти [3] изучал влияние поверхности основания на песок, но оба основания не были нагружены одновременно, т.е.е. одна из двух опор сначала была нагружена до ее безопасной несущей способности, а затем нагрузка на другую прилегающую опору была увеличена до предельной нагрузки. Позже, чтобы изучить влияние столкновения двух близко расположенных опор на неармированный грунт, различные исследователи провели ряд исследований ([4], [5], [6], [7], [8]). , [9]). Однако из имеющихся теоретических и экспериментальных исследований теперь понятно, что величина предельной несущей способности, а также осадки фундамента, как правило, возрастают при близких расстояниях из-за влияния другого основания.Таким образом, нельзя игнорировать важность исследования по уменьшению осадки мешающих оснований за счет усиления грунтового основания, так как это в основном определяет поведение мешающих оснований. Khing et al. [10] и Аль-Ашоу и др. [11] экспериментально изучали влияние натяжения на несущую способность близко расположенных оснований, опирающихся на армированный песчаный слой. Кумар и Саран [12] изучали характеристики давления, осадки и наклона близко расположенных оснований на укрепленном грунтовом дне.Кумар и Саран [13] также представили аналитический метод определения давления, соответствующего данной осадке, для близко расположенных ленточных оснований на армированном песке. В настоящем исследовании экспериментальное исследование влияния столкновения между двумя соседними ленточными фундаментами было выполнено

3 Интерференционное влияние двух соседних ленточных фундаментов 579, проводящих ряд лабораторных модельных испытаний на сухом, средней плотности, армированном песке Энноре. постель.Песок Энноре широко доступен в южной части Индии. Таким образом, исследование влияния опор на песке Энноре оказалось важным. Ленточные опоры модели изготовлены из низкоуглеродистой стали, которая должна была вести себя как жесткие опоры, а шероховатость основы обеспечивалась приклеиванием наждачной бумаги под опорами. Однослойная одноосная георешетка использовалась для укрепления почвы. В этой статье было изучено влияние ряда параметров, таких как глубина армирующего слоя (D) и расстояние от центра до центра между опорами (S).2 Постановка проблемы Два набора оснований из грубых полос, где первый набор состоит из двух опор шириной 75 мм каждый, а второй набор состоит из двух опор шириной 50 мм каждый, помещаются на верх сухой, средней плотности, усиленная песчаная подушка Ennore. Отношение L / B для опор 75 и 50 мм было оставлено равным 2,0, чтобы имитировать характер ленточной опоры, где L - длина опоры. Одиночный слой георешетки укладывается на глубину D от поверхности. В каждом случае опоры расположены на расстоянии S от центра к центру, как показано на рисунке 1.Обе опоры одновременно нагружаются до отказа. Ожидается, что благодаря симметрии обе опоры будут нести одинаковую предельную разрушающую нагрузку P u. Задача состоит в том, чтобы определить величину предельной разрушающей нагрузки P u (на единицу длины основания) для каждого основания и осадки, соответствующей окончательному разрушению. 3 Свойства грунта основания и экспериментальная установка Для модельных испытаний в качестве материала основания использовался несвязный сухой песок Энноре (Тамилнаду, Индия) марки II.Гранулометрический состав и технические характеристики песка Энноре показаны на Рисунке 2 и Таблице 1 соответственно. Угол внутреннего трения был получен равным 38,9 o путем проведения испытания на прямой сдвиг на сухом песке Ennore, помещенном с относительной плотностью (D r) 65%. В настоящем исследовании коммерчески доступная одноосная георешетка (55RE) использовалась для укрепления почвенного дна. Георешетка изготовлена ​​из полиэтилена высокой плотности (HDPE), предел прочности которого составляет 64,5 кн / м, а приблизительная деформация - 11.5% при полном отказе. Экспериментальная установка была спроектирована и изготовлена ​​на собственном предприятии, чтобы облегчить изучение эффекта интерференции опор в лаборатории. Основное соображение, которое учитывалось при изготовлении, заключалось в том, что нагрузка всегда должна быть центрированной во время загрузки и не должно быть граничного эффекта из-за размеров резервуара. Полная экспериментальная установка показана на рисунке 3.

4 580 П. Гош и П. Кумар 4 Методика эксперимента Метод заливки песка играет важную роль в процессе достижения желаемой плотности песчаного слоя, поскольку надежность результатов будет зависеть от по равномерности плотности.Песок засыпался в резервуар методом дождя, выдерживая высоту падения 35 см для поддержания постоянной относительной плотности по всему дну. Бак опорожнялся и наполнялся после каждого теста. Метод фиксированного объема и динамический пенетрометр использовались для проверки относительной плотности и однородности плотности песка соответственно. Гидравлический домкрат с ручным управлением с активированным нагружающим поршнем, установленный между скользящей балкой и сильной противодействующей балкой (рис. 3), использовался для обеспечения необходимой нагрузки на опоры.Обе опоры одновременно нагружались вертикально через удлинительные стержни, прикрепленные к скользящей балке. Скользящая балка направлялась направляющими стержнями, так что она всегда оставалась горизонтальной во время процесса загрузки. Наклон опор проверяли с помощью пузырьковой трубки. Вертикальное смещение каждой испытательной опоры было измерено путем снятия средних показаний двух стрелочных индикаторов, размещенных на каждой опоре. Чтобы имитировать грубую основу основания, полоски наждачной бумаги с аналогичной текстурой песка Ennore были приклеены к каждому основанию основания.Постепенно увеличивая нагрузку, была проведена серия испытаний, чтобы контролировать все графики нагрузки-деформации до полного разрушения при сдвиге. Каждое испытание тщательно контролировалось смещением каждой опоры посредством показаний стрелочного индикатора и повторялось не менее трех раз, чтобы обеспечить повторяемость испытания. Сначала была получена несущая способность одиночного изолированного фундамента, а затем - близко расположенного фундамента. 5 Результаты и обсуждение 5.1 Одиночная изолированная опора Соотношение нагрузка-оседание для одиночной изолированной опоры 75 и 50 мм при D / B = 0.75 и D / B = 1,0 представлены на рисунке 4. Можно заметить, что прилагаемая нагрузка (P) на опору постоянно увеличивается с увеличением осадки (δ) фундамента и обычно достигает максимального значения при определенной величине δ. . Однако после достижения максимального значения нагрузка обычно уменьшается, но оседание продолжает увеличиваться. Здесь важно отметить, что предельная нагрузка была определена из графиков осадки нагрузки либо методом двойных касательных, либо методом одиночного касания в зависимости от характера кривой.Также можно видеть, что предельная нагрузка и оседание оказываются выше при D / B = 0,75, чем при D / B = 1,0. Здесь стоит упомянуть, что для каждого значения D / B величина предельной нагрузки, полученная на Рисунке 4, добавленная к весу основания и других принадлежностей, прикрепленных к основанию, рассматривалась как предельная разрушающая нагрузка (P u) основание.

5 Эффект столкновения двух близлежащих ленточных опор. Опоры под натягом. На Рисунке 5 показано изменение кривых нагрузка-оседание для близко расположенных опор 75 и 50 мм на залежи усиленного грунта с различными значениями S / B и D / B.Видно, что как для опор 75, так и для 50 мм предельная разрушающая нагрузка становится максимальной при S / B = 2,0; независимо от величины D / B. Изменение коэффициента полезного действия из-за несущей способности (ξ γ) и из-за осадки (ξ δ) с S / B для разных значений D / B показано на рисунках 6 и 7 соответственно; где ξ γ и ξ δ могут быть определены как = ξ γ и = ξ δ Предельная несущая способность одиночной опоры Предельная несущая способность одиночной изолированной опоры Расчет одиночной опоры при отказе при наличии разрушения одиночной изолированной опоры при отказе при наличии других другие опоры (2) Несколько исследователей сообщили, что значение коэффициентов эффективности в случае неармированного грунта сначала увеличивается с увеличением расстояния до максимального значения, а затем уменьшается с увеличением расстояния.В настоящем исследовании также наблюдается, что в усиленном слое величина ξ γ и ξ δ сначала увеличивается с увеличением S / B и обычно достигает максимума при S / B = 2,0, а затем уменьшается с увеличением расстояния. Это указывает на то, что несущая способность, а также оседание одиночной опоры при разрушении на усиленном грунтовом основании при наличии другой опоры сначала увеличиваются, а затем уменьшаются с увеличением расстояния между опорами. Здесь стоит упомянуть, что в конечном итоге ожидается, что величина ξ γ и ξ δ будет равна 1.0 при большем расстоянии, что указывает на поведение одиночного изолированного фундамента без каких-либо помех. (1) 6 Сравнение Для сравнения был проведен ряд испытаний на неармированном песчаном слое с опорами 75 и 50 мм. Сравнение характеристик нагрузки-осадки на армированном и неармированном основании показано на рисунке 8; где RB и URB представляют собой усиленное и неармированное основание соответственно. Можно отметить, что при D / B = 0,75 основание принимает на себя максимальную нагрузку при разрушении с наивысшей предельной осадкой; тогда как предельная нагрузка, а также осадка оказываются самыми низкими на неукрепленном грунтовом дне.Об этом же наблюдении сообщил Кернер [14]. В таблице 2 величина Nγ, полученная в результате настоящего экспериментального исследования для изолированного основания 75 и 50 мм на усиленном основании, сравнивается со значениями, указанными Михаловски [15], где N γ - коэффициент несущей способности из-за удельный вес грунта на усиленном основании. Коэффициент несущей способности N определяется формулой 'γ

6 582 P. Ghosh и P. Kumar Pu N γ = (3) 2 0,5γLB где γ - удельный вес грунта.Видно, что настоящие значения достаточно хорошо сравниваются с теоретическими результатами, предложенными Михаловски [15]. На рисунке 9 текущие значения ξ γ для опор 75 и 50 мм с разными S / B на усиленном основании для φ = сравниваются со значениями, сообщенными Кумаром и Сараном [12] для φ =. Значения, полученные из настоящих экспериментальных данных. Исследования оказались значительно меньше, чем предложенные Кумаром и Сараном [12], что могло быть вызвано использованием высокопрочной двухосной георешетки (SS20) в исследованиях Кумара и Сарана [12].В таблице 3 показано сравнение текущего максимального значения ξ γ для опор 75 и 50 мм с значениями, приведенными Al-Ashou et al. [11]. Здесь важно упомянуть, что Al Ashou et al. [11] использовали алюминиевые полосы в качестве армирующего материала. 7 Заключение В настоящем исследовании был проведен ряд лабораторных модельных испытаний для определения предельной несущей способности изолированного и двух близлежащих необработанных ленточных фундаментов на армированном песке Энноре. Основание фундамента было усилено однослойной георешеткой (55RE) на разных D / B.Укрепляя грунт, не только увеличивается предельная несущая способность основания, но и значительно улучшаются характеристики осадки. Величина N для одиночного изолированного основания на укрепленном грунтовом основании уменьшается с увеличением ширины основания. Следует отметить, что под действием интерференции предельная несущая способность и оседание фундамента обычно становятся максимальными при определенном критическом расстоянии между основаниями. Результаты представлены в виде коэффициентов эффективности (ξ γ и ξ δ) по отношению к изменению межцентрового расстояния между опорами.Можно заметить, что изменение ξ γ и ξ δ обычно следует одной и той же тенденции, но отличается по величине. Для основания 75 мм величина ξ γ и ξ δ сначала увеличивается с увеличением S / B и достигает максимума при S / B = 2,0, а затем уменьшается с увеличением расстояния. Однако ожидается, что величина ξ γ и ξ δ в конечном итоге будет равна 1,0 при большем расстоянии, что указывает на поведение одиночного изолированного основания без какого-либо интерференционного эффекта. Подтверждение.Первый автор выражает признательность за финансовую поддержку, предоставленную Министерством науки и технологий (DST) Индии для выполнения данной работы в рамках спонсируемого исследовательского проекта. Литература [1] Дж. Г. Стюарт, Интерференция между фундаментами, с особым упором на поверхностные основания в песке, Geotechnique, 12 (1962),

7 Эффект интерференции двух близлежащих ленточных опор 583 [2] Дж. М. Уэст и Дж. Г. Стюарт, Результирующая наклонная нагрузка от столкновения между опорами поверхности на песке, Материалы 6-й Международной конференции по механике грунтов и фундаментостроению, Монреаль, 2 (1965), [3] S.С. Н. Мурти, Воздействие на опоры поверхности на чистых песках, Труды симпозиума по фундаментам мелководья, Бомбей, Индия, 1 (1970), [4] С. Саран и В. К. Агарвал, Воздействие на опоры поверхности на песке, Indian Geotechnical Journal, 4 (1974), [5] AM Deshmukh, Интерференция различных типов оснований на песке, Indian Geotechnical Journal, 8 (1978), [6] E. Dembicki, W. Odrobinski и W. Mrozek, Несущая способность грунта под ленточным фундаментом. , Материалы 10-й Международной конференции по механике грунтов и фундаментостроению, 2 (1981), [7] B.М. Дас и С. Ларби-Шериф, Несущая способность двух близко расположенных неглубоких фундаментов на песке, Грунты и фундаменты, 23 (1983), 1 7. [8] Дж. Кумар и П. Гош, Максимальная несущая способность двух мешающие грубые ленточные основания, Международный журнал геомеханики, ASCE, 7 (2007a), [9] Дж. Кумар и П. Гош, Анализ верхнего предела для обнаружения эффекта интерференции двух близлежащих ленточных оснований на песке, Геотехническая и геологическая инженерия, 25 (2007b), [10] KH Khing, BM Das, VK Puri, E.Э. Кук и С. К. Йен, Несущая способность ленточного фундамента на песке, армированном георешеткой, Геотекстили и геомембраны, 12 (1993), [11] МО Аль-Ашоу, Р. М. Сулейман и Дж. Н. Мандал, Влияние количества армирующих слоев на натяг между опорами на армированном песке, Indian Geotechnical Journal, 24 (1994), [12] A, Кумар и С. Саран, Близко расположенные опоры на песке, армированном георешеткой, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129 (2003a), [13 ] А, Кумар и С.Саран, Ленточные опоры с близким расположением на армированном песке, Журнал Геотехнического общества Юго-Восточной Азии, 12 (2003b), [14] Р. М. Кернер, Проектирование с использованием геосинтетических материалов, 3-е изд. Прентис Холл, Энглвуд Клиффс, Нью-Джерси, [15] Р.Л. Михаловски, Предельные нагрузки на усиленные грунты фундамента, Журнал геотехнической и геоэкологической инженерии, ASCE, 130 (2004),

8 584 П. Гош и П. Кумар Свойства Коэффициент однородности ( C u) 1,56 Коэффициент кривизны (C c) 0.96 Эффективный размер, D 10 (мм) 0,45 Удельный вес, G s 2,66 Максимальная плотность, ρ max (г / см 3) 1,68 Минимальная плотность, ρ min (г / см 3) 1,47 Максимальное соотношение пустот, e max 0,80 Минимальное соотношение пустот , e min 0,58 Относительная плотность, D r (%) 65 Таблица 1: Технические свойства песка Эннор Ширина основания (мм) 'N γ Текущий анализ (φ =) Михаловски [15] D / B = 0,75 D / B = 1,0 φ = D / B = φ = 40 0, D / B = 1,0 Таблица 2: Сравнение 'Nγ для изолированной полоски Опора на усиленных ширина кровати Печные (мм) настоящее исследование (55RE, φ = Аль-Ashou и др.[11],) (Алюминиевые полосы, φ = 41 0) D / B = 0,75 D / B = 1,0 D / B = Таблица 3: Сравнение максимального значения ξ γ

9 Эффект интерференции двух близлежащих ленточных фундаментов 585

10 586 П. Гош и П. Кумар

11 Влияние двух близлежащих ленточных опор 587

12 588 П. Гош и П. Кумар

13 Влияние двух близлежащих ленточных опор 589

14 590 P.Гош и П. Кумар

15 Влияние двух близлежащих ленточных опор 591

16 592 П. Гош и П. Кумар Получено: октябрь 2009 г.

.

Смотрите также